THE CHROMATIC NUMBER OF RANDOM GRAPHS

Ву

Tomasz Łuczak

IMA Preprint Series # 404 March 1988

THE CHROMATIC NUMBER OF RANDOM GRAPHS

TOMASZ LUCZAK†‡

Abstract. Let $\chi(G(n,p))$ denote the chromatic number of the random graph G(n,p). We prove that for every constant $\epsilon > 0$ there exists a constant d_{ϵ} such that for $np(n) > d_{\epsilon}$, $p(n) \to 0$, the probability that

$$\frac{np}{2\log np} \leq \chi(G(n,p)) \leq (1+\epsilon) \frac{np}{2\log np}$$

tends to 1 as $n \to \infty$.

Let G(n, p) be a random graph with vertex set $[n] = \{1, 2, ..., n\}$ in which each possible edge is present independently with the probability p = p(n). We say that G(n, p) has some property a.s. if the probability that it has this property tends to 1 as $n \to \infty$. In this paper we shall consider the asymptotical behaviour of the chromatic number of G(n, p).

The case when p is a constant, $0 , was considered in [1] and [4] (in [1] <math>\chi(G(n,p))$ was determined also for p(n) which tends to 0 slowly enough i.e. for $p(n) > n^{-\frac{1}{3}+\epsilon}$ where $\epsilon > 0$). We shall solve this problem for every function $p(n) \to 0$ such that np(n) is greater than some large constant. Our main result is the following.

THEOREM. For every positive constant ϵ there exists a constant d_{ϵ} such that if $d=d(n)=np(n)>d_{\epsilon}$ and $p(n)\to 0$ then a.s.

$$\frac{d}{2\log d} < \chi(G(n,p)) < (1+\epsilon)\frac{d}{2\log d}.$$

The lower bound is an immediate consequence of the well known fact that a.s. the independence number of G(n,p) is less than $\frac{2\log d}{d}n$. Thus it is enough to show the second inequality.

A subset S of G(n,p) is k-independent if it can be split into some number of disjoint independent sets each of at least k elements. We shall start with the proof that for $k_0 = \lfloor (2-\epsilon) \frac{n \log d}{d} \rfloor$ G(n,p) contains a.s. large k_0 -independent set.

[†] Institute for Mathematics and its Applications, University of Minnesota, Minneapolis, U.S.A. - post-doctoral fellowship.

[‡] Institute of Mathematics, Adam Mickiewicz University, Poznań, Poland - permanent position.

LEMMA 1. Let $\epsilon > 0$, $k_0 = \lfloor (2-\epsilon) \frac{n \log d}{d} \rfloor$. Then there exists a constant d_{ϵ} such that whenever $np(n) = d(n) > d_{\epsilon}$ then with the probability at least $1 - n^{-2}$ G(n, p) contains k_0 -independent set with at least $nd^{-\epsilon}$ vertices.

Proof. Let $z = d^{0.9\epsilon}$ and $\mathcal{V} = \mathcal{V}(n, p, z)$ denote the partition of [n] onto sets $V_1, ..., V_{\frac{n}{z}}$ such that $z - 1 \leq |V_i| \leq z + 1$ for $i = 1, ..., \frac{n}{z}$. We shall call a subset S of G(n, p) \mathcal{V} -disjoint if no two elements of S are contained in the same set of partition \mathcal{V} .

Let X denote the size of the largest k_0 -independent V-disjoint set contained in G(n,p). Now define X_i , $i=1,2,\ldots,z$, as the expectation of the largest k_0 -independent V-disjoint set in a graph \mathcal{G}_i such that subgraphs induced by $\bigcup_{r=1}^i V_r$ in \mathcal{G}_i and G(n,p) are the same and all edges of \mathcal{G}_i which are not contained in $\bigcup_{r=1}^i V_r$ are present in this graph independently with the probability p. Then $X=X_{\frac{n}{2}}$ and setting $X_0=EX$ we have

$$|X_i - X_{i-1}| \le 1$$
 for $i = 1, ..., \frac{n}{z}$.

Furthermore the sequence $X_0, \ldots, X_{\frac{n}{2}}$ is a martingale known as Doob's Martingale Process (see [5]). Hence, using a martingale inequality of Azuma (see [1], [5]), we obtain

$$\operatorname{Prob}\left\{|X-\operatorname{E} X|\ \geq t\right\} \leq 2\exp\left(-\frac{zt^2}{2n}\right) = 2\exp\left(-\frac{d^{0.9\epsilon}t^2}{2n}\right)\ .$$

Thus, to prove Lemma 1, it is enough to show that the probability that G(n,p) contains a k_0 -independent \mathcal{V} -disjoint set with more than $2nd^{-\epsilon}$ elements is greater than $\exp(-nd^{-1.8\epsilon})$ (this observation was first made by Alan Frieze in [2]).

Let Y be the number of V-disjoint k_0 -independent sets of mk_0 elements, $m = \lceil \frac{2nd^{-\epsilon}}{k_0} \rceil$, which can be split into exactly m independent sets, each of k_0 elements. Then

$$P(Y > 0) \ge \frac{(\operatorname{E} Y)^2}{\operatorname{E} Y^2}$$

and

$$\frac{\mathbb{E} Y^2}{(\mathbb{E} Y)^2} \leq \prod_{i=1}^m \sum_{\substack{k_1, k_2, \dots, k_{m+1} \\ \sum_{j=1}^{m+1} k_j = k_0}} \frac{\binom{k_0}{k_1} \binom{k_0}{k_2} \dots \binom{k_0}{k_m} \binom{\frac{n}{z} - (i-1)k_0}{k_m \binom{\frac{n}{z} - (i-1)k_0}{k_{m+1}}} z^{k_{m+1}}}{\sum_{j=1}^m \binom{k_j}{2}}$$

$$\leq \left[\sum_{l=0}^{k_0} \frac{a_l \binom{\frac{n}{z} - mk_0}{k_0 - l} z^{k_0 - l}}{\binom{\frac{n}{z} - mk_0}{k_0} z^{k_0}} \right]^m$$

$$\leq \left[\sum_{l=0}^{k_0} \frac{a_l}{(n-k_0 m z)^l} \cdot \frac{k_0!}{(k_0-l)!} \right]^m \leq \left[\sum_{l=0}^{k_0} a_l \left(\frac{2k_0}{n} \right)^l \right]^m$$

where

(1)
$$a_{l} = \sum_{\substack{k_{1}, k_{2}, \dots, k_{m} \\ \sum_{j=1}^{m} k_{j} = l}} {k_{0} \choose k_{1}} {k_{0} \choose k_{2}} \dots {k_{0} \choose k_{m}} (1-p)^{-\sum_{j=1}^{m} {k_{j} \choose 2}}.$$

To estimate a_l divide all terms of the sum into two groups. We shall call a term large if some of indices k_1, k_2, \ldots, k_m are larger than $0.1\epsilon k_0$ and small otherwise.

Denote by k'_1, k'_2, \ldots, k'_r those from k_1, k_2, \ldots, k_m which are greater than $0.1\epsilon k_0$. Since $\sum_{j=1}^m k_j = l$ so $r \leq 10\epsilon^{-1}$ and we can choose k'_1, k'_2, \ldots, k'_r in at most $(ml)^{10\epsilon^{-1}}$ ways. Moreover, for every k', k'' such that $k' > k'' > 0.1\epsilon k_0$ and $k' + k'' \leq l \leq k_0$, we have (for d large enough)

$$\frac{\binom{k_0}{k'}\binom{k_0}{k''}(1-p)^{-\binom{k'}{2}-\binom{k''}{2}}}{\binom{k_0}{k'+k''}(1-p)^{-\binom{k'+k''}{2}}} \leq 2^{k_0}2^{k_0}\exp(-k'k'') < 1 ,$$

so

$$\binom{k_0}{k_1'} \binom{k_0}{k_2'} \cdots \binom{k_0}{k_r'} (1-p)^{-\sum\limits_{j=1}^r \binom{k_j'}{2}} \le \binom{k_0}{l} \exp\left(\frac{l^2 d}{2n}\right) .$$

Furthermore, for every choice of $\bar{k}_1, \bar{k}_2, \ldots, \bar{k}_s$, one can easily get the following inequality

(2)
$$\sum_{\substack{\bar{k}_1, \bar{k}_2, \dots, \bar{k}_s \\ \sum_{j=1}^s \bar{k}_j = l \\ 1 \le j \le s}} {k_j \choose \bar{k}_1} {k_0 \choose \bar{k}_2} \dots {k_0 \choose \bar{k}_s} (1-p)^{-\sum_{j=1}^s {k_j \choose 2}} \le {sk_0 \choose l} \exp\left(\frac{bld}{2n}\right).$$

Hence, (1) and (2) imply that the sum of all large terms is estimated from above by

$$(ml)^{10\epsilon^{-1}} \binom{k_0}{l} \exp\left(\frac{l^2 d}{2n}\right) \binom{mk_0}{0.1\epsilon l} \exp\left(\frac{0.1\epsilon l^2 d}{2n}\right) \le \left(\frac{10k_0}{l} \exp\left(\frac{(1+0.2\epsilon)ld}{2n}\right)\right)^l$$

whereas the upper bound for the sum of all small terms, from (2), is given by

$$\binom{mk_0}{l} \exp\left(\frac{0.1\epsilon l^2 d}{2n}\right) \le \left(\frac{emk_0}{l} \exp\left(\frac{0.1\epsilon l d}{2n}\right)\right)^l.$$

So, finally, we obtain

$$\frac{\mathrm{E}\,Y^2}{(\mathrm{E}\,Y)^2} \leq \left[\sum_{l=0}^{k_0} \left(\frac{10\ k_0^2\ m}{ln}\ \exp\left(\frac{0.1\epsilon ld}{2n} \right) \right)^l + \left(\frac{20\ k_0^2}{ln}\ \exp\left(\frac{(1+0.2\epsilon)ld}{2n} \right) \right)^l \right]^m \ .$$

Since the maximal term in the above sum is smaller than $\exp\left(\frac{100k_0^2d^{0.15\epsilon}m}{n}\right)$ we have

$$\operatorname{Prob}(Y > 0) > \exp\left(-\frac{200k_0^2d^{0.15\epsilon}m^2}{n}\right) > \exp(-nd^{-1.8\epsilon}).$$

This completes the proof of Lemma 1. []

LEMMA 2. Let $0 < \epsilon < 0.1$. Then there is a constant d_{ϵ} such that for $np(n) = d(n) > d_{\epsilon}$ with the probability greater than $1 - n^{-1} - d^{-0.1\epsilon}$ more than $n - nd^{-0.05\epsilon}$ vertices of G(n, p) can be properly coloured with less than $(1 + 5\epsilon) \frac{d}{2 \log d}$ colours.

Proof. In the proof we shall use an "expose-and-merge" technique introduced by David Matula (for details see [3] and [4]).

For $A \subset [n]$ define $[A]^2 = \{\{v, w\} : v, w \in A\}$ and let $\bar{k}_0 = (2 - 0.05\epsilon)(1 - \epsilon)\frac{n \log d}{d}$, $l_0 = \frac{nd^{-1.1\epsilon}}{\bar{k}_0}$. Consider the following algorithm

Algorithm

 $E := \emptyset$;

 $F_0 := \emptyset$;

 $W_0 := \emptyset$;

for i = 1 to $d^{1.1\epsilon} - d^{\epsilon}$ do

begin

choose randomly $A_i \subset [n] \setminus W_{i-1}$ with $|A_i| = nd^{-\epsilon}$;

define G_i as the graph with the set of vertices A_i and the set of edges E_i , where the probability that $\{v, w\} \in E_i$ is independent and equal p for each $\{v, w\} \in [A_i]^2$;

choose a family $\{\tilde{\mathcal{R}}_1^i, \tilde{\mathcal{R}}_2^i, \dots, \tilde{\mathcal{R}}_{l_0}^i\}$ of disjoint independent sets from A_i , each of the size \bar{k}_0 – if it is not possible FAIL;

$$E_i' := E_i \setminus (E_i \cap F_{i-1});$$

$$E := E \cup E_i';$$

$$F_i := F_{i-1} \cup [A_i]^2$$
;

$$W_i = W_{i-1} \cup \bigcup_{l=1}^{l_0} \tilde{\mathcal{R}}_l^i$$
;

end :

$$\overline{F}:=[n]^2\setminus \bigcup_{i=1}^{d^{1.1\epsilon}-d^\epsilon}F_i$$
 ;

choose $\overline{E} \subset \overline{F}$ in such a way that each $e \in \overline{F}$ belong to \overline{E} with the probability p independently of each other;

$$\begin{split} E := E \cup \overline{E} \;; \\ \text{output} \quad E \;; \; \{\tilde{\mathcal{R}}_1^1, \tilde{\mathcal{R}}_2^1, \dots, \tilde{\mathcal{R}}_{l_0}^{d^{1.1\epsilon}-d^{\epsilon}}\} \;; \\ \text{end} \end{split}$$

Let us observe first that the probability that $\{v,w\} \in E$ is equal p independently for each $\{v,w\} \in [n]^2$, so the graph \tilde{G} with the set of vertices [n] and the set of edges E can be treated as G(n,p).

Obviously, we can consider each \mathcal{G}_i as $G(\bar{n},p)$ where $\bar{n}=nd^{-\epsilon}$. The average degree of such a random graph is given by $\bar{d}=nd^{-\epsilon}p=d^{1-\epsilon}$ and $\bar{k}_0=(2-0.05\epsilon)\frac{\bar{n}\log\bar{d}}{\bar{d}}$. Thus, from Lemma 1, the probability that \mathcal{G}_i does not contain \bar{k}_0 -independent sets with $nd^{-1.1\epsilon}<\bar{n}\bar{d}^{-0.05\epsilon}$ elements is less than n^{-2} so the probability of FAIL in the Algorithm is less than n^{-1} .

Thus, with the probability 1 - o(1), the Algorithm finds

$$(d^{1.1\epsilon} - d^{\epsilon})l_0 = \frac{n - nd^{-0.1\epsilon}}{\bar{k}_0} < (1 + 5\epsilon)\frac{d}{2\log d}$$

disjoint sets $\tilde{\mathcal{R}}_1^1, \tilde{\mathcal{R}}_2^1, \ldots, \tilde{\mathcal{R}}_{l_0}^{d^{1.1\epsilon}-d^{\epsilon}}$ each of the size \bar{k}_0 , so $\sum_{i,l} |\tilde{\mathcal{R}}_i^i| = n - nd^{-0.1\epsilon}$. Note however, that although $\tilde{\mathcal{R}}_i^i$ is an independent subset of \mathcal{G}_i it is not necessarily independent as a subset of $\tilde{\mathcal{G}}$. Let X denote the number of edges of $\tilde{\mathcal{G}}$ contained in $\tilde{\mathcal{R}}_i^i$ for some $1 \leq i \leq d^{1.1\epsilon} - d^{\epsilon}$, $1 \leq l \leq l_0$. We shall estimate from above the size of X.

Let $\{v,w\} \in [n]^2$ be such that $\{v,w\} \in E$ and $\{v,w\} \in \tilde{\mathcal{R}}_l^i$ for some i,l. Denote by i(v,w) the smallest number i for which $\{v,w\} \subset A_i$ and let j(v,w), l(v,w) be such that $\{v,w\} \subset \tilde{\mathcal{R}}_{l(v,w)}^{j(v,w)}$. Notice that i(v,w) < j(v,w) since $\{v,w\} \in E$ implies that $\{v,w\}$ is an edge of $\mathcal{G}_{i(v,w)}$ whereas the set $\tilde{\mathcal{R}}_{l(v,w)}^{j(v,w)}$ contains no edges of $\mathcal{G}_{j(v,w)}$. Since for all i we have $|W_i| \leq n - nd^{0.1\epsilon}$, so the probability that for chosen i(v,w), j(v,w), a pair $\{v,w\}$ is contained in both $A_{i(v,w)}$ and $A_{j(v,w)}$ is less than $(2d^{-0.9\epsilon})^4$. Now observe that each subset of $A_{j(v,w)}$ of k_0 elements is equally likely to be chosen as $\tilde{\mathcal{R}}_l^{j(v,w)}$ with $1 \leq l \leq l_0$ (i.e. this event depends only on the structure of $\mathcal{G}_{j(v,w)}$ which is symmetric with respect to the labelling of vertices). Thus, since $|A_{j(v,w)}| = nd^{-\epsilon}$, the probability that both v,w are in the same set $\tilde{\mathcal{R}}_{l(v,w)}^{j(v,w)}$ for some l(v,w) is less than $d^{1.1\epsilon-1}$.

So finally we arrive at the following upper bound for the expectation of X

$$EX \le \binom{n}{2} \binom{d^{1.1\epsilon} - d^{\epsilon}}{2} 16d^{-3.6\epsilon} p d^{1.1\epsilon - 1} < nd^{-0.2\epsilon}.$$

Thus, from Markov inequality,

$$\operatorname{Prob}(X>nd^{-0.1\epsilon})\leq d^{-0.1\epsilon}\;.$$

Now, for all i, l, delete from $\tilde{\mathcal{R}}_{i}^{i}$ all these vertices which belongs to edges of \tilde{G} which are contained in $\tilde{\mathcal{R}}_{i}^{i}$ and denote the set obtained in this way by \mathcal{R}_{i}^{i} . Then

$$\sum_{i,l} |\mathcal{R}^i_l| \geq \sum_{i,l} |\tilde{\mathcal{R}}^i_l| - 2X = n - nd^{-0.1\epsilon} - 2X$$

SO

$$\operatorname{Prob}\left(\sum_{i,l} |\mathcal{R}_{l}^{i}| \ge n - nd^{-0.05\epsilon}\right) > 1 - o(1) - d^{0.1\epsilon}.$$

This completes the proof of Lemma 2.

Proof of Theorem. Lemma 2 implies that with the probability at least $1-o(1)-d^{-0.01\epsilon}$ we can colour $n-nd^{-0.005\epsilon}$ vertices of G(n,p) using only $(1+0.5\epsilon)\frac{d}{2\log d}$ colours. One can easily check that for d large enough a.s. every subgraph of G(n,p) on s vertices, $s \leq nd^{-0.005\epsilon}$, has less than $d^{1-0.001\epsilon}s$ edges. Hence, for large d, we have

(3)
$$\operatorname{Prob}\left(\chi(G(n,p)) \le (1+0.9\epsilon) \frac{d}{2\log d}\right) > 1 - o(1) - d^{-0.005\epsilon},$$

and for $d(n) \to \infty$, the assertion follows.

Moreover, Shamir and Spencer proved in [5] that for every $d(n) < \log n$ there exists a function $u_d(n)$ such that a.s.

$$u_d(n) \le \chi(G(n,p)) \le u_d(n) + 5$$
.

Thus, since from (3) for d(n) greater than some constant d_{ϵ} we have

$$\liminf_{n \to \infty} \operatorname{Prob}\left(\chi(G(n, p)) \le (1 + 0.9\epsilon) \frac{d}{2\log d}\right) > 0.5$$

so, for such d(n), a.s.

$$\chi(G(n,p)) \le (1+0.9\epsilon) \frac{d}{2\log d} + 5 \le (1+\epsilon) \frac{d}{2\log d}$$
.

This completes the proof of Theorem. []

Acknowledgements. I would like to thank Joel Spencer and Alan Frieze for discussions and many valuable suggestions.

REFERENCES

- [1] B. Bollobás, The chromatic number of random graphs, Combinatorica, to appear.
- [2] A. M. FRIEZE, On the independence number of random graphs, to appear.
- [3] D. MATULA, Expose-and-merge exploration and the chromatic number of a random graph, Combinatorica, 7 (1987), pp. 275-284.
- [4] D. MATULA AND L. KUČERA, On chromatic number of random graphs, in preparation.
- [5] E. SHAMIR AND J. SPENCER, Sharp concentration of the chromatic number on random graphs $G_{n,p}$, Combinatorica, 7 (1987), pp. 121-129.