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THE CHROMATIC NUMBER OF RANDOM GRAPHS
TOMASZ LUCZAK+t

Abstract. Let x(G(n,p)) denote the chromatic number of the random graph G(n,p). We pfove that
for every constant € > 0 there exists 2 constant d, such that for np(n) > d., p(n) — 0, the probability that
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Let G(n, p) be a random graph with vertex set [n] = {1,2,...,n} in which each possible
edge is present independently with the probability p = p(n). We say that G(n,p) has some
property ¢.s. if the probability that it has this property tends to 1 as n — oo. In this
paper we shall consider the asymptotical behaviour of the chromatic number of G(n, D).

The case when p is a constant, 0 < p < 1, was considered in [1] and [4] (in [1] x(G(n, ?))
was determined also for p(n) which tends to 0 slowly enough i.e. for p(n) > n=3+¢ where
¢ > 0). We shall solve this problem for every function p(n) — 0 such that np(n) is greater
than some large constant. Our main result is the following. :

THEOREM. For every positive constant e there exists a cor:tsi&.:%z'lt"dé such that if d =
d(n) = np(n) > d. and p(n) — 0 then a.s. - :

2logd

S <X(CP) < (149

The lower bound is an iﬁmedjate conseéﬁi&nte of the well known fact that a.s. the
2logd

-d

independence number of G(n, p) is less than n. Thus it is enough to show the second

inequality.

A subset S of G(n,p) is k-independent if it can be split into some number of-disjoint
independent sets each of at least k elements. We shall start with the proof that for

Fo=[(2—e) nlog d

| G(n,p) contains a.s. large 'k(,--iriﬁépeﬁdent set.
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LEMMA 1. Let e >0,k = [(2—¢)

whenever np(n) = d(n) > d. then with the probability at least 1 —n~% G(n,p) contains
ko-independent set with at least nd— ¢ vertices.

|. Then there exists a constant d, such that

Proof. Let z = d°%¢ and V = V(n, p, z) denote the partition of [n] onto sets V4,..., Va
such that z ~ 1 < |V} < z+1fori = 1,...,3:- . We shall call a subset S of G(n,p)
V-disjoint if no two elements of S are contained in the same set of partition V.

Let X denote the size of the largest ko-independent V-disjoint set contained in G{n, p).
Now define X;,1=1,2,. , as the expectation of the largest kg-independent V-disjoint

set in a graph G; such that subgraphs induced by U V. in G; and G(n, p) are the same and

r=1
all edges of G; which are not contained in U V; are present in this graph independently
r=1I
with the probability p. Then X = X and setting Xq = EX we have

) n
X — Xl €1 for ¢=1,...,—.
z .
Furthermore the sequence Xp,..., Xz is a martingale known as Doob’s Martingale Process

* (see [5]). Hence, using a martingale inequality of Azuma {see [1], [5]), we obtain -

ztz dU.thZ
Prob{|X ~EX| >t} < 2exp (..%) — 2exp (ﬂ - ) .

Thus, to prove Lemma 1, it is enough to show that the probability that G(n,p)
contains a ko-independent V-disjoint set with more than 2nd™¢ elements is greater than
exp(—nd~1-3¢) (this observation was first made by Alan Frieze in [2]).
2nd™¢

ko £

Let ¥ be the number of V-disjoint kg-independent sets of mkg elements, m = |

which can be split into exactly m independent sets, each of ky elements. Then
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where
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To estimate a; divide all terms of the sum into two groups. We shall call a term large
if some of indices kq, ks, ..., k,, are larger than 0.1ek, and small otherwise.

Denote by k},k3,..., k] those from ky,k2,..., k&, which are greater than 0.1ek,. Since
Yo kj=1s0r< 105 and we can choose ki,k},... kL in at most (mI)1%"" ways.
Moreover, for every k', k" such that k' > k" > 0.1eko and &' + k" < 1 < kg, we have (for d

large enough)
(2) (o) a-p e
< 2%k exp(—k'E") < 1,

(k’ iok”>(1 - P)"(k'?‘") <

S0
ko) (ko ( _ )—2( )< ko) o Ld
k;k;"' P =\ )P\ )
Furthermore, for every choice of k;, ks,. .., k,, one can easily get the following inequal-
ity
ko\ (ko “Z( 1) sk bld
- o — < —_
@ (@) (e T = () e (5
’ 1;k2r‘--)kl
D k=
max k;=b
1<i<a

Hence, (1) and (2) imply that the sum of all large terms is estimated from above by

ok 2d\ [mk 0.1el%d 10k (1+0.2e)d\\’
10e¢ Y 0 < _.,,_0 SR
e (7)o (55) () == (B < (o (H5572))

whereas the upper bound for the sum of all small terms, from (2), is given by

mko 0.1el2d < (emky _  (0.1eld !
1 )P\ T ) =S\ T P T,
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So, finally, we obtain

EY? _ [ /10K m 0.1e1d\\' | /20 k2 1 +0291d\\' ]

— < 2= %0 RSl Bt e

B < | (R e (%5)) + (5 oo (015202))

100k2d®5¢m
n

) we have

Since the maximal term in the above sum is smaller than exp (

200k2d%-15¢m?
n

Prob(Y > 0) > exp (— ) > exp(—nd1%¢) .

This completes the proof of Lemma 1. ]

LEMMA 2. Let 0 < € < 0.1. Then there is a constant d, such that for np(n) = d(n) > d,
with the probability greater than 1—n"! —d~%1¢ more than n —nd=%95¢ vertices of G(n, p)

colours.

can be properly coloured with less than (1 + 5¢) 2ljg 7

Proof. In the proof we shall use an “expose-and-merge” technique introduced by David
Matula (for details see [3] and [4]).

gd
For A C [n] define [A]* = {{v,w} : v,w € A} and let ko = (2 — 0.05¢)(1 — e)nlo
—1.1¢ .
Ih= nd 3 . Consider the following algorithm
0
Algorithm
E=10;
Fo:=0;
Wy i=0;
for ‘i=1 to d'¢—d* do
begin

choose randomly A; C [n] \ Wi_y with |4;] = nd™¢;

define G; as the graph with the set of vertices 4; and the set of edges E;, where the
probability that {v,w} € E; is independent and equal p for each {v,w} € [4;]%;

choose a family {Ri,Ri,... ,ifo} of disjoint independent sets from A;, each of the
size ko — if it is not possible FAIL ;

El = Ei\(E:NFi);

E:=FEUE!;

F i v — i1 U [A ]

W, = W;....IU U :R :
I=1

Anting et




end -

= [n]* \ Uiz
choose E C F in such a way that each e € F belong to F with the probability p
independently of each other ;

dl 1e__ d°

E:=EUE;

o Lt -~ 31.1ec <
output E;{R},R},...,R{""};
end '

Let us observe first that the probability that {v,w} € E is equal p independently for
each {v,w} € [n)?, so the graph G with the set of vertices [n] and the set of edges F can
be treated as G(n,p).

Obviously, we can consider each G; as G(7,p) where & = nd~¢. The average degree
nlogd

of such a random graph is given by d = nd~*p = d1™¢ and %, = (2 — 0.05¢)
Thus, from Lemma 1, the probability that G; does not contain ko-independent sets with
nd=11¢ < 3d—095¢ elements is less than n=2? so the probability of FAIL in the Algorithm
is less than n™21. _

‘Thus, with the probability 1 — o(1), the Algorithm finds

nd—o le

1.le 46V
(d Mo = i

<(1 —]—55)

d

e

disjoint sets i},ﬁ%,...,ﬁi'“—d each of the size kg, so 3 1 |Ri| = n — nd~%1¢. Note
however, that a.ithough 52 is an independent subset of G; it is not necessarily independent
as a subset of G. Let X denote the number of edges of G contained in 32‘ for some
1<i<db e —g¢, 1 <1< y. Weshall estimate from above the size of X. ‘

Let {v,w} € [n]* be such that {v,w} € E and {v,w} € R} for some 7, . Denote by
i(v,w) the smallest number i for which {v,w} C A; and let i(v,w), I{v,w) be such that
{v,w} C fRsz ). Notice that i(v,w) < j(v,w) since {v,w} € E implies that {v,w} is
an edge of g,(,,,w) whereas the set fRf E”,wg contains no edges of Gj, ). Since for all i we
have [W;| < n — nd’1¢, so the probability that for chosen #(v,w), J(v,w), 2 pair {v,w}
is contained in both A;(y,w) and Aj(y ) is less than (2d"°'9‘)4. Now observe that each
subset of A, ) of ko elements is equally likely to be chosen as 52‘,’ o) with 1 <1< 1,
(i.e. this event depends only on the structure of Gj(v,w) Which is symmetric with respect
to the labelling of vertices). Thus, since |4;(, w)| = nd™¢, the probability that both v, w
are in the same set ﬁ?g:;ig for some I {v,w) is less than d!-*¢~1,

So finally we arrive at the following upper bound for the expectation of X

S Al le _ e
EX S (;) (d . d ) 16da—-3.65pd1.16'-'1 < nd—0.2s .




- Thus, from Mackov inequality,
Prob(X > nd™%1¢) < d701¢

Now, for all 7, I, delete from .‘R’ all these vertices which belongs to edges of G which
are contained in fR and denote the set obtained in this way by Ri. Then

DRI =D Rl -2X =n—nd 012X
il il
50
Prob (Z IR} > n - nd_ms‘) >1-o(1) —d%,
i,
This completes the proof of Lemma 2.
Proof of Theorem. Lemma 2 implies that with the probability at least 1 —o(1)—d~0-01¢

colours. One

we can colour n — nd~%%%%¢ vertices of G(n,p) using only (1 + 0. 56)

logd
can easily check that for d large enough a.s. every subgraph of G(n p) on s vertices,
5 < nd™%09%¢ has less than d*~0-%9%¢s edges. Hence, for large d, we have

d ~0.005¢
logd>>1—o(1)_d ,

(3) Prob (x(G(n,p)) <1+ 0.9e5)2

and for d(n) — oo, the assertion follows.

Moreover, Shamir and Spencer proved in [5] that for every d(n) < logn there exists a
“function u4(n) such that a.s.

ua(n) < X(G(n, p)) < va(n) +5.

Thus, since from (3) for d(n) greater tham some constant d. we have

- < . .
hﬂt%f Prob (X(G'(n,}?)) <(1+0 96)2log d) > 05
sd, for such d(n), a.s

<(l+e)

d d
< . .
X(G(n,p)) S (14099 +5 T

This completes the proof of Theorem. [J
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