Type Theory and Concurrency

Rance Cleaveland
Prakash Panangaden

TR 85-714
December 1985

Department of Computer Science
Cornell University
Ithaca, NY 14853

Abstract

The burgeoning interest in concurrent computation has sparked an increased
interest in theoretical models of concurrency. While standard sequential
programming has a well-understood semantics and proof theory, the
nondeterministic nature of concurrency has made a similar understanding of
concurrent programming extremely difficult. Much interesting work in the field has
been done, and much remains yet to be done; it is our intention in this paper to
present a different kind of model of concurrency, a type-theoretic one, which we hope
will shed light on reasoning about concurrency.

We encode the synchronization tree model of Milner’s CCS as a type in the Nuprl
Type Theory. This is a constructive type theory equipped with a rich collection of
inference rules for reasoning about types. We relate the equality in the type of
synchronization trees with various behavioral equivalences. We also discuss the
relation between the logic induced by our models and various modal logics for

reasoning about concurrency.

Introduction

The burgeoning interest in concurrent computation has sparked an increased
interest in theoretical models of concurrency. While standard sequential
programming has a well-understood semantics and proof theory, the
nondeterministic nature of concurrency has made a similar understanding of
concurrent programming extremely difficult. Much interesting work in the field has
been done, and much remains yet to be done; it is our intention in this paper to
present a different kind of model of concurrency, a type-theoretic one, which we hope
will shed light on reasoning about concurrency.

The type-theoretic models in this paper revolve around giving a type for
processes, and they are developed in a style compatible with the Nuprl type theory,
which has evolved at Cornell. The models we present are based on Milner’s Calculus
of Communicating Systems, henceforth called CCS. This is an extremely general
formalism for describing systems comprising autonomous computating agents that
may interact with each other through the exchange of synchronizing signals. We
have opted for a type-theoretic approach for several reasons. First, the theory is
equipped with a an extremely expressive logic, a logic which appears to subsume
every modal logic of concurrency we have encountered. This paper details a
development of the Hennessy-Milner logic using the type theory and our model, and
preliminary investigations indicate that other logics have similar encodings. In
particular, Regular Trace Logic and Temporal Logic have straightforward
expressions in terms of the model and the Nuprl logic. Aditionally, types exhibit
built-in equalities between members of the type, and the logic provides machinery
for reasoning about equality. Both of the models presented here have equalities that
correspond to interesting behavioral equivalences on processes; one model, in fact,

exhibits Milner’s strong congruence as the equality between its elements. Using the

Nuprl machinery, then, we can reason in a very natural fashion about process
equivalence. The Nuprl logic forms the basis for the Nuprl proof development
system which has been implemented at Cornell. The availability of such a system
greatly facilitates the development of correct proofs in which some degree of
automatic assistance is given to the user. Finally, the Nuprl system has aspects of a
program-synthesis system, where programs are extracted from the constructive
proofs of theorems. We believe that such automated synthesis has promise in the
area of concurrency; using the Nuprl theory to discuss concurrency represents a first
step in this direction.

This paper is divided into several sections. The first two present overviews of
CCS, the formalism which is a basis for the models presented, and the Nuprl type
theory. We then present one type-theoretic model, the acceptance model, and
examine its relationship to existing models of concurrent processes. The
shortcomings of this model are pointed out, and the second model is presented.
Properties of this model are examined, including the relationship between this
model’s equality and strong equivalence; we then examine some examples of
reasoning about traditional properties of interest to designers of concurrent systems
in the Nuprl setting, and we conclude with a section which describes an encoding of

the Hennessy-Milner logic in type theory.

An Overview of CCS

The Calculus for Communicating Systems (CCS) is an algebraic formalism for

reasoning about concurrent and nondeterministic processes. A complete
presentation of the calculus may be found in [Milner80]; extensions to the formalism
(the extended formalism is called SCCS, for Synchronous Calculus of
Communicating Systems) are described in [Milner83]. Informally CCS provides a

mechanism for describing agents, which perform actions that may include

interaction with each other. The nature of these actions is left as unspecified as
possible; the only requirement is that each action (except for a distinguished silent
action, t) have an action, called an inverse, with which it synchronizes. Processes in
general may choose from several different actions at any point during their
computations, and choosing an action may give rise to nondeterminism in that the
same action may lead to different courses of computation. The number of different
choices available at any given point in the process execution is finite.
To define CCS formally we first must describe the set Action. Action must satisfy
the following two conditions.
(i) There is a distinguished action, t,in Action.
(ii) Ifa€Action and a= tthen soisa.
v is called the “silent” action. Intuitively, one may think of t as being an internal
transition or a communication between two different components of a system.
The actions a and a are called complements of each other and represent actions
which can synchronize. Given Action, the CCS terms may be described by the
following grammar.
P:= nil
| aP a€Action
| P+P
| P|P
| P\S SCAction
| P[L] L a relabelling
The nil process performs no actions and terminates. aP is a process which performs
an a action and then goes on to behave like P. P+ @ may behave like P or Q; it may
perform any of the first actions available to P or @, after which it behaves like one or
the other. P|Q represents the concurrent execution of P and Q. Initially this

composite agent may perform any first action available to P or @, after which it may

perform either the first action of the process not selected in the first step or the
second action available in the process which was selected in the first step.
Additionally, at any step in the compuation, if P may perform an action ¢ and @ may
perform a, the inverse of a, then P|@ may perform t, a synchronization; the next
actions available to P|Q after a t are the next actions available to P and Q. Thus, in
CCS, concurrent execution is represented by interleaving the atomic actions. P\S
corresponds to the restriction of P with respect to a set S of actions; it behaves like P
except that it may not perform any sequence of actions headed by an action in S.
Finally, if Action; and Actiong are two action sets and L:Actionj—Actiong is a
mapping such that L(x) = v and L(a) = L(a) for any a € Actionj, then L is called a
relabelling and P/L] is the relabelled process.

Processes may also be defined by guarded recursion, which is to say that no head
recursive definitions are allowed; every summand in a recursive definition of a
process must be headed by an action. Mutual recursion is also allowed. In general
processes may run infinitely.

An important property of the concurrent composition operator is captured in the
following theorem due to Milner.[Milner80] Za;P;is shorthand fora;P;+...+anPn.
Expansion Theorem: If P=Xq;P; and @ =2b;Q; then

PlQ=Zai(Pi|Q) + Zbi(P|Qi) + Zu(Pi|@j){if ai=bj}.
This makes manifest the idea that concurrency is being represented by
nondeterministic interleaving of the atomic actions.

The formalism of CCS supports an algebraic style of reasoning. Equivalences
between processes are defined and axiomatized, and reasoning is carried out
equationally. [Milner80] describes two notions of process equivalence which we
shall discuss in this paper. The first is strong equivalence, which we may define in
the following fashion. First, we say that P—aP’ if P=aP’+ @ for some Q; extending

this in an obvious way, if s=aj...a, then P-»sP’ if n>0 and there is a P”

such that P-»a1P” and P”—az2..anP’ or if n=0 and P=P’. Now we describe a nested
hierarchy of relations which in the limit will be strong equivalence.

P~oQ.

P~, +1Q if and only if for all s€ Action*, if P-sP’ then there is a @’ such that
Q—-sQ’ and P’~,Q’ and if Q—sQ’ then there is a P’such that P-»sP’
and P'~,Q’.

P~Q if and only if for all n, P~,Q.

The second equivalence, observational equivalence, is essentially an extensional
(in . the sense of extensional equality between functions) version of strong
equivalence. To define it we first introduce the notion of an observable experiment.
Let s € (Action-{t})* with length n. P=>sP’if there is an s’ € Action* and integers my,
..., mp such that s’=tmoesgtmi1,, tmn-15,_ 1tmn; that is, s’ is exactly s with some number
of v’s between every action in s. Essentially, = is just » with t's ignored. We may
now define a nested hierarchy of relations whose infinite intersection will be
observational equivalence.

P=,Q.

P=, +1Q if and only if for all s€(Action-{t})*, if P=>sP’ then there isa @ such
that Q=sQ’ and P’~ ,,Q’ and if Q=sQ’ then there is a P’such that
P=sP’and P’=,Q’.

P=Q if and onlyifforall n, P= Q.

Both equivalences are axiomatized (to varying degrees) in [Milner80].

Congruences also play an important role in the proof theory. Briefly, an
equivalence is a congruence such that if C/] is a context and p=gq, then C/p/=Clq].
Strong equivalence is a congruence, but observational equivalence is not.
Accordingly, in [Milner80] observational congruence, which is the weakest
congruence that is strictly finer than observational equivalence, is defined and

axiomatized.

We shall have occasion to refer to the SCCS composition operator, ®, as defined
in [Milner83]. ® is a synchronous parallel composition;in P®Q the actions in PRQ
are required to happen in lock-step synchrony. To define it we first need to
strengthen the Action set in the following fashion. We require that (Action, 1, , °) be
an Abelian group, with a.a =1 representing the synchronization of a and a and acb
representing the lock-step execution of a and b. Now if P=Za;P;and Q =Zb;Qj then

P®Q = Z(a;°bj)(P;®Q)).

Typically, models for CCS describe processes as synchronization trees, which are
unordered, finitely branching trees of actions. At each node of the tree the branching
represents the possible choices to the process being modeled, while the paths in the
tree represent possible execution sequences for the process represented by the
synchronization tree. The composition of processes corresponds to an operation
defined on such synchronization trees. The model we describe in this paper is
obtained by encoding synchronization trees as types, whose elements reflect the tree

structure.

Introduction to Type Theory

The type theory we use in this paper comes from the Nuprl system developed at
Cornell. The theory is explained fully in [Prl Staff86]; we will only discuss pertinent
points here. Intuitively a type is a collection of elements exhibiting a common
structure; typically, one thinks of integers as forming a type and of pairs of integers
as forming another type. Functions from one type to another also constitute a type
distinct from from either component type, and the disjoint union of two types also
defines a type. Propositions also correspond to types, as we shall see, so type theory
represents a convenient formalism for discussing both objects and logics for
reasoning about objects. 1t is this aspect of type theory that we shall exploit in our

model of CCS.

The Nuprl type theory resembles that developed by Martin-Lof in [Martin-Lof82].
The type structure may be defined inductively in the following fashion. The type of
integers,int, and the empty type, void, form the basis for the inductive definition. If
A is a type and B/a/x] is a type for every a in T (where substitution for free variable x
is defined in the usual sense), then so are the dependent product and the dependent
function types, x:A #B and x:A—B. Intuitively, the dependent product type defines
the type of pairs where the type of the second element of each pair depends on the
value of the first element of the pair, while the dependent function type denotes the
type functions whose codomain type may vary for each possible value of the domain.
If x is not free in B then B must be a type, and the two types described above
correspond to the standard Cartesian product and function space types; these will be
written A #B and A-B, respectively. The disjoint sum of types A and B, written A|B,
has inl(a) for a in A and inr(b) for b in B as its elements; this constructor may
actually be defined in terms of the dependent product and any two-element type with
a decidable equality. Other type constructors will be described later, but a complete
understanding of them requires first an understanding of the propositions-as-types
principle, which we will now describe.

Just as propositions are either true or not true, so are types either inhabited or
not inhabited, and it is the identification between truth and inhabitation which
allows one to translate logic into type theory. Given this identification, the types
and type constructors presented so far exhibit pleasing logical characteristics. void
corresponds to false. The type A #B, where the absence of a binding variable in front
of A indicates that B has no free variables and is hence a type, is inhabited exactly
when both A and B are, just as the proposition A&B is true exactly when both A and
B are. Type A|B is inhabited exactly when either A or B is, just as A\/B is true
(constructively) when either A or B is, and A—-B is inhabited exactly when there is a

function from A to B, just as A=B is true exactly when, from the truth of A, one can

deduce the truth of B. A is empty exactly when the type A—void is inhabited, just as
A is false when — A (which translates constructively to A=>false) is true. Even more
surprising is the correspondence between dependent products and existentially
quantified statements and dependent functions and universally quantified
statements. x:A #B is inhabited exactly when there is a pair <a,b> such thataisin
A and b is in Bfa/x], just as 3x:A.B is true exactly when there is an a in A such that
Bla/x] is true. x:A—B is inhabited exactly when there is a function mapping each
element a of A to an inhabiting element of B/a/x], just as Vx:A B is true exactly when
for each a in A Bla/x] is true. In fact, the entire constructive predicate calculus can
be translated into type theory.

The correspondence between propositions and types enables now a discussion of
three other kinds of types: equality types, set types and quotient types. Equality
types have the form a=b in T and are well-formed when T is a type and a and b are
elements of T'; they are inhabited (by a token named axiom) exactly when a and b are
equal in the given type. Equality in the types described so far are as expected; it
should be noted that two functions are equal if they are extensionally equal. Set
types have the form {x:A | B}, where A is a type and B/a/x] is a type for each a in A,
and comprise elements of A satisfying B interpreted as a proposition. Quotient types
have the form (x,y):A//B, where A is a type and for all a and b in A, Bfa,b/x,y] is a
type (proposition) which is an equivalence relation in x and y (reflexive, symmetric
and transitive), and allow equality to be redefined for the base type (A in this case).
That is, a=b in (x,y):A//B exactly when a and b are of type A and B/a,b/x,y] is true
(inhabited).

The Nuprl logic also allows a form of recursive type definition [CM85]. For our
purposes recursive types have the syntactic form rec(x.T) and represent “solutions”

to equations of the form x =T(x).

The proof theory of the Nuprl logic also mirrors proof theory of the constructive
predicate calculus, given the propositions-as-types principle. The entire
development will not be presented here (the interested reader is referred to [Prl
Staff86]), but it suffices to say that the rules for forming types and demonstrating
their inhabitation correspond precisely with rules for forming propositions in the
constructive predicate calculus and proving their truth. The Nuprl proof
development system also provides a mechanism for implementing derived rules of
inference and proof strategies called tactics. The programming language ML [GMW

79] serves as the metalanguage for expressing tactics.

A Type of Finite Sets

In order to define synchronization trees in a compact fashion we introduce the
finset type constructor. Given an arbitrary base type, this constructor will represent
a type whose elements are the finite sets of elements of the base type. Intuitively
these sets will correspond to the images of functions which map finite sets of integers
into the base type. Accordingly, we make the following definitions.

{1,...,n} = {t:int| 0 <i=<n}

Thatis, {1, ..., n} represents the type of all integers between 1 and n, inclusive. In the
case that n=0, {1, ..., n} is an empty type. We also assume the existence of projection
functions first and second for product types; these may easily be defined in the Nuprl
theory.

finset(A) = (f.g):(n:int#{1, ..., nj»A) //Nmy:A1, ..., first()}.An2:A{1, ..., first(g)}.

second(f)(m1) =second(g)(ng) in A
& Vm2:{1, ..., first(g)}.An1 A1, ..., first(f)}.
second(g)(mg) =second(f)(n1) in A
The quotient equivalence says that two elements of finset(A) are equal exactly when

they have the same images; this is exactly the extensional set equality. We shall

10

have occasion to refer to first(S) for S in finset(A) as the cardinality bound of S and to
second(S) as the element function of S.

We should note here that we have adopted this representation of finite sets rather
than the more usual characteristic function representation so that finset may be used
to construct recursive types. Briefly, for a Nuprl recursive type definition to be valid
it must satisfy the positivity requirements set forth in [CM85]; that is, the type being
defined must not appear in the antecedent of any arrow.

We now show how to define certain set-theoretic operations in this type. We start
with union.

PUQ = <first(P) + first(Q), Ax.if 0<x<first(P) then second(P)(x) else

second(Q)(x-first(P))>.
Performing the union of two sets in this scheme involves adding together the bounds
on the sets’ cardinalities and concatenating their element functions.

s€8 = {i:{1, ..., first(S)} [second(S)(i) = sin A}

Given the propositions-as-types principle, it suffices to give a type which contains an
element when s€S and is empty otherwise. If s is in the range of S’s element
function then the type given above will contain an element in the inverse image of s;
otherwise, the type will be empty. For this function to be computable the equality in
the base type A must be decidable.

Defining intersection in this scheme is tricky but not conceptually difficult. It
does involve some rather uninteresting details of the Nuprl theory, however, so
rather than present a formal account of intersection we will sketch how intersection
may be implemented. Given P and @ which are finite sets over a base type A (with
decidable equality), we may systematically check whether elements in P are in @ by
iterating through {1, ..., first(P)} and asking if second(P)(i) € . If so then increase
the bound of PNQ and update the element function of PN accordingly.

Other set operations such as set difference may be defined similarly.

11

The Acceptance Model

Our goal is to give a type-theoretic model of CCS which allows us to reason about
properties of concurrency using the Nuprl logic. Our first model somewhat
resembles the failures model of CCS and TCSP due to Brookes and the acceptance
model for CCS due to [Hennessy83] in that we represent processes as sets of pairs,
where the first element of each pair contains a finite execution sequence of the
process being modeled and the second element contains a structure which lists a
finite number of actions. Unlike the failures model our “action sets” specify
potentially allowable actions which the process may perform next, and unlike the
acceptance model we demand that our “next action” structure contain more
information about the structure of the tree being represented. Following Winskel
and and Milner we shall sometimes refer to processes as synchronization trees, where
the nodes of the tree represent states and the labeled transitions between nodes
correspond to the actions the process may perform to change state.

The model translates synchronization trees into sets of pairs, where each pair
contains a finite execution history, hereafter called a trace, and a set, which we call a
next set, whose elements consist of all next actions which the process (tree) can
perform. Intuitively the elements of a next set represent all the actions which may
be chosen after following one of (potentially) many paths labeled by the
corresponding trace in the synchronization tree. That there can be more than one
such path results from the inherent nondeterminism present in the CCS formalism;
depending on the choices made, the same trace can give rised to different sets of next

allowable actions.

12

Expressing the Acceptance Model as a Type

Formally a process P is a subset of (Action list) x 2Action satisfying the following
conditions:

(1) eis a trace of P;

(2) xa is a trace of P if and only if x is a trace of P and a belongs to a next set
connected to x;

(3) all next sets are finite.

Semantically, we interpret next sets as being complete accounts of the possible
actions which a process may perform after executing the associated trace. That is, if
a and b are actions such that they both may follow a trace s but the availability o f
one action means the other is not available then a and b must belong to different
next sets attached tos. (In synchronization tree terms, if a and b belong to different
subtrees headed by s then a and b must belong to different member sets.). Otherwise
a and b belong to the same next set .

Conditions (1) and (2) state that every process must have a starting point and
that at any point in a process’s computation the only available actions come from the
appropriate next set and that all actions in the next set are in fact available, while
condition (3) enforces finite choice at every choice point. Our interpretation of next
sets is what differentiates this model from other acceptance models. This
requirement essentially enables us to keep track of the fact that nondeterministic
choices may have been made during the course of a computation and that as a result
certain sets of actions may or may not be possible.

To express the class of processes as a type in this framework we use the finset
constructor described above to define the intermediary notion of computation, where
a computation is a trace-next set pair. Accordingly, given a type Action with
appropriate structure, define comps as follows.

comps = Action list # finset(Action)

13

A single process will be a subtype of comps satisfying properties (1)-(3). Therefore,
the following definition of Proc may be made. (It should be noted here that Uj
denotes the type of all previously described types which do not involve Uj, and that it
therefore makes sense, in light of the propositions-as-types principle, to define
predicates on a type T as functions from T to Uj. That is, predicate P is true of a
exactly when P(a) is an inhabited type.)

Proc = { P:comps »U;/

ds:finset(Action).P(<e,s>) &
Vx:comps. P(x)=>Va:second(x).3s:finset(Action).P(<first(x).a,s>) }
// ¥x:comps. P(x) & Q(x)

That is, Proc comprises predicates on comps such that conditions (1) and (2) above
are met. (The structure of comps guarantees that condition (3) will be met.) Our
intention is that Proc correspond to the type of sets of comps with the appropriate
restrictions; therefore, we must impose an extensional equality on the type of
predicates. We now define the set-theoretic operations we need in the discussion
which follows. Given P and @ in type Proc,

PUQ = Ax:comps.P(x)|Q(x); and

x€P & P(x).
PUQ is a predicate on comps which is true exactly when either P or @ is true;
therefore, PUQ has the right semantics. x€P exactly when P(x) is true (in the
language of type theory, when P(x) is inhabited), so the membership predicate is
properly defined.

We will have occasion to refer to all the traces of a process. Thus we define
Traces(P) = {s:for some N <s,N> € P}.
Some simple examples of CCS processes translated into our model follow.

alb+c) = {<e,{a}>, <a,{b,c}>, <ab,{}>, <ac, {}>}

ab + ac = {<g,{a}>, <a, {b}>, <a,{c}>, <ab,{}>, <ac,{}>}

14

a(b + tb) = {<e,{a}>, <a,{b,t}>, <ab,{}>, <ar, {b}>, <atb, {}>}
We should note that invisible actions are explicitly represented in our model and

that a pair whose next set is empty signifies a terminated computation.

Operations as Type Constructions

In this section we describe how Milner’s CCS operations on processes may be
implemented in our model. We also discuss the representations in our model which
arise when additional operations on processes such as those described in [HBR84]
and SCCS are allowed. In what follows we shall assume that the set-theoretic
operations used have been implemented in the type-theoretic model as described
above.
nil: In CCS nil represents the process which does nothing except terminate. In our
model,

nil = {<g, {}>}
aP: Given a process P we may represent the result of prepending an action a onto
the beginning of P as follows:

aP = {<eg,{a}>}U{<as,N>:<s,N> € P}.

P\a: In CCS one may provide for actions to be hidden in a process. Milner calls this
hiding “restriction”; in synchronization tree terms, P\a corresponds to the tree P
with all subtrees headed by the action a deleted. In our model we represent the
restriction of process P with respect to action a as follows:

P\a = {<s,N>:<s,M> € P and s contains no occurrences ofa and N = M-{a}}.
Relabeling: Relabeling provides one with a convenient mechanism for changing the
action set (the “sort”, in CCS terms) of a process. A relabeling from action set A to
action set B refers to a function S:A—B such that S(t) = tand such that S(a) = S(a).

We can also extend S to map strings in A* to strings in B* in a natural way.

15

Therefore, given a process P and a relabeling S, we define the relabeling of P via S in
the obvious way.

P[S] = { <s,N> :for some <s',N'> € Ps=S(s’) and N=S(N) },

where we extend S to map strings to string and sets to sets in the
obvious way.

Nondeterministic choice: P+ @ represents a process which may behave like either P
or Q; furthermore, the environment initially has some say as to which process gets
mimicked. That is, initially the first actions of both P and @ are available;
thereafter, either P or @ becomes the process which P+@ behaves like. Given
processes P and @ we represent P + Q as follows:

P+Q={<e,M>:€Pand <e, N> € Q and M'=MUN} U

{<s,M>:s=zeand <s,M> € Por <s,M> € Q}.

Composition: Given processes P and @ we define P|Q by first defining some
intermediate notions. If s; and sg are strings let shuffle(sy, s2) represent the set of all
possible shufflings of s; and sg; we assume that we can tell which actions came from
which component string in the members of shuffle(sz, s2). We now define a finite
family of sets in the following way:

So = shuffle(sy, s2).

Si+1 = {xty: xaay € S; for some a € Action and a, a from different strings}
Now define

Comp (s1,s2) = US;
and

Synch (M,N) = MUN U {t} ifa € Manda € N some a

=MUN otherwise.

We are now in a position to define P|Q in the following fashion:

PlQ = {<s,M’> :s € Comp(sy, s2) and M’ = Synch(M, N) for some

<s;,M> € P, <s9, N> € Q}.

16

We have now defined all CCS operations in terms of our model. We now turn our
attention to describing the TCSP operations of [HBR84].

Interleaving: P|||Q represents the process which can perform any interleaving of
events from P and Q. Given our definition of shuffle above we define P|||Q in the
obvious way.

P||Q = {<s,M’>:s € shuffle(s1,s2) and M’ = M U N for some <s;,M> € P,

<sg,N> € Q}
Parallel Composition: In TCSP P||@ represents the process which corresponds to the
simultaneous execution of P and @, provided P and @ are performing the same
actions. We define P||Q as follows:

P|Q = {<s,M’>:M’ = M N N for some <s,M> € P, <s,N> € @}
Indeterminate choice: P © Q represents a process which may behave like Por Q. It
differs from P+ @ in that the environment has no say as to which process will be
simulated. We define this as

P® Q = Puq.

So far we have concentrated on formalisms which characterize essentially
asynchronous parallelism. Our model, however, is sufficiently expressive that we
can capture the notion of synchrony as well. We will exhibit this by giving an
‘account in our model of Milner’s SCCS.

The essential difference between CCS and SCCS comes to light in the definition
of composition. In CCS events that happen in two processes that are being composed
happen asynchronously, except when an action and its complement synchronize. In
SCCS, on the other hand, corresponding events in composed processes must execute
in lock-step; that is, if P —»a P’ and Q—-% @’ then PQQ—abP’®Q’. The notion of
complementary action still exists, as aca reduces to t (1 in [Milner83]). With this in
mind, we turn our attention to modeling Milner’s SCCS product. We first define a

label set L which satisfies the abelian group axioms under o, where a°b represents

17

the action corresponding to the synchronous execution of @ and b and v is the unit.
Such a definition of L is possible in the Nuprl system[Prl Staff86]. Given two strings
s7 and s9, we further define
Glue(sy,s2) =-¢ ifsyj=eorsg=¢e
= (a°b)Glue(x,y) ifs;=axandsz=by
With this definition we can define P®Q as follows:
P®Q = {<s,M’> : for some <s;,M> € P, <sg,N> € Q, s = Glue(sy,s2) and
M’ = Mx N},
where MxN represents the Cartesian product of M and N.

Type Equality in Relation to Milner’s Equivalences

In Martin-Léfs conception of types each type comes equipped with an equality
relation between members of the type. This relation is an essential part of the
definition of the type. The Nuprl system incorporates rules for reasoning about the
equality relation in types. It is of interest to see, therefore, what equality relation
on synchronization trees is induced by the type definitions we have given. In
particular, we would like to find some correspondence between our equality and the
various equivalences that have been defined by Milner to reason about behavioral
aspects of processes.

We now turn our attention to the behavioral equivalence which the standard
notion of set equivalence induces on our model. It turns out that our equivalence is
strictly finer than Milner’s =1 and is incomparable with the rest of Milner’s
behavioral equivalences, including observation equivalence.

Theorem 1: = isstrictly finer than =.

Proof: If P=Q then Traces(P) = Traces(Q), implying that P=~;Q. Since a(b+c)

ab+acbuta(b+c) =1 ab+ac, strictness follows.

g

18

In fact the behavioral equivalence corresponding to equality in our model is fine
enough for us to give accounts of other models which have been proposed for CCS.
From the information contained in next sets, for instance, we can derive the failure
sets which form the foundation of the failures model presented in [HBR84] in the
following fashion. Given a particular process P and an experiment s, let Ny, ..., Np be
the next sets associated with s in our model. The maximal failures set, F, associated
with s then is F = U((UN;) - N;), and we are thus in a position to discuss failures
equivalence in this model. That is, the equivalence in the acceptance model is at
least as fine as failures equivalence. In the spirit of [DH82] we can also talk about
must sets and may sets and the equivalence, called testing equivalence, which these
sets induce on CCS expressions. Given a trace s in a process P and its associated next
sets N, . N, we define Must(s,P) = NN; and May(s,P) = UN,;. Using these
definitions we can now speak of testing equivalence; acceptance equivalence is at

least as fine as testing equivalence.

If our equivalence fit into the Milner observational equivalence hierarchy then
our work would jibe very nicely with work done to date. Unfortunately, the next
result demonstrates that such is not the case.

Theorem 2: = isincomparable with =g,

Proof:
= D =9: Consider the trees P = a(ab+ac) and Q = aab+aac. Clearly P=@ and

(P =2Q).
=~9 2 =: Consider the trees P = ta and @ = a. P=~2Q, and yet since in our model
P = {<g, {t}>, <,{t}>, <%, {}>} while Q = {<¢,{a}>, <a,{}>},P=Q.
O
In fact the following corollary holds.

Corollary: = isincomparable with observational equivalence.

d

19

The essential problem is that observational equivalence is not a congruence relation.
It does turn out, however, that equality in our model represents a behavioral
congruence with respect to CCS, which is to say that if two processes exhibit the
same representation in our framework then they may be used interchangeably in
any context.

Theorem 3: = is a congruence.

Proof: If P = @ then it follows from our definitions that for all processes R,

P+R=Q+R,PIR=Q|R,and PRR=Q®R and that for alla € L aP = aQ.
0o -

Additionally, equality in our model fits into the strong equivalence hierarchy
developed by Milner.

Theorem4: ~1 D = D ~9.

Proof:
~1 D =: ~jisjusttrace equality, soif P=@Q then P~1Q. Strictness follows from the
fact thata(b+c) ~1(ab+ac)buta(b+c) = (ab+ac).
= D ~9: Suppose P~2Q. We must show that P=@. Assume that <s,N> € P. Now,
since s € Traces(P) and P~2@Q, for all P’ such that P->sP’ there is a @ such that Q@—»sQ’
and P’~1Q’ (and vice versa). Associated with each P’is a set N’ such that <e N’> ¢
P’; furthermore, since in our model of CCS & may only have one next set associated
with it (since a process corresponds to a rooted synchronization tree), if P’~;Q’ then
<¢, N'> € Q. Now N must be associated with some P’, and hence some Q’, meaning
that <s,N> € Q. Thus P C Q. A symmetrical argument establishes that @ C P,
and we therefore have that P=@. Strictness follows from the fact that a(ab+ac) =

(aab+aac) but —[a(ab+ac) ~1 (aab+aac)].

20

The Recursive Model

The acceptance model is conceptually simple, and the implementations of the

CCS operations are straightforward, but the equality in the model does not
correspond to an expressive enough behavioral equivalence for our purposes.
Furthermore, the inductive definition of CCS operations becomes obscured in this
model, and it is difficult to reason inductively about the behavior of processes.

The model we are about to present derives from recent extensions to the Nuprl
type theory and exhibits both a pleasing equality and a simple structure. Its only
drawback involves its inability to account for nonterminating processes; this
drawback is only temporary, however, as implementation continues on the Nuprl
project. Formally, we represent the class of all processes as a recursive type, where
the type encompasses essentially labeled trees. This type, ST, solves the following
fixed-pointequation:

ST = finset (Action x ST),
and is written in Nuprl as rec(ST.finset(Action X ST)), where finset is a defined type
constructor which takes a type and constructs the type of all finite sets of the given
type and Action is the type of all actions. Some examples of specific CCS expressions

represented in this model follow.

nil ={}
a(b+c¢) = {<a, {<b,{}>,
<c {}>}
}
ab + ac = { <a,{<b,{}>}>,

<a,{<c¢ {}>}>

21

CCS Operations
We present the definitions in the model for choice and composition.
Choice: + :ST X ST ->ST isgiven by
P + @ = PUQ.
Composition: |: ST X ST »ST is given by

P|Q = U{<as|@>: <a,s’>€P} U
U{<b,Pl>: <b,t’>€Q} U
U{<rt, s|t’>: thereisan <a,s’> € Pand <g, t'> € Q}.
We.may also define SCCS composition, given an Action set with the appropriate
structure, and the TCSP composition and choice operators. To define SCCS
composition we postulate, as before, a group Action, where ° is the group operation
and tis the group identity. With this definition in hand we now are in a position to
define SCCS compostion.
PRQ = {} ifP={}or @ ={}
={<a°b,P®Q’> | <a,P’> € Pand <b,Q'> € Q}.
The other CCS operations and the TCSP operations may be defined in a similar
fashion. Care must be taken, however, in giving an account of © to ensure that the

processes being composed remain completely distinct.

Equivalence

Type equality in this model corresponds exactly to strong equivalence, as the
following inductive argument shows. We first note, however, that in this model,
unlike in the others we have discussed, the notion of subprocess is explicitly present
in the type model.

Theorem 5: Equality in the type model is exactly strong equivalence.

Proof: Assume P=@). The proof that P~@ follows by induction on n, the level of

n-equivalence.

22

Base: n=0. Trivially, P~¢Q.

Induction: Assume for all m<n that P~,Q; it remains to show that P~ Q. Now, if
P—sP’ then there is a @’ such that Q@—»s@’ and P’=@Q’ in the type model. The
induction hypothesis guarantees that P’~,.1Q’, and by symmetry the symmetrical
result holds if @—-sQ’. Thus by definition P~,Q.

Now assume that P~@Q; we must show that P=Q. The proof will proceed by
induction on the structure of P. If P or @ is the null process then P=Q =Nil. Now
suppose P is non-null. The induction hypothesis allows us to assume that for all
subtrees P’ of P and @’ of @ that if P’~Q’ then P’=Q’. Let <a,P’> € P; we must show
that <a,P’> € Q. Since P-aP’ there is a @ such that @—»2aQ’ and P'~Q’. By
induction, then, P’=Q’ and <a,P’> =<a,Q’> € Q. Thus PCQ. A similar argument
establishes that QCP, and thus P=Q.

O

Examples of Synchronization Problems in CCS

This section describes specifications of standard synchronization problems and
properties of concurrency in CCS. We assume here full CCS, which is to say that
processes may be nonterminating. We begin our study with a presentation of a
binary semaphore in CCS. (This example comes from [Milner80].) Suppose process
p1 has critical section af and pg has critical section y8; the implementation of binary

semaphore should enforce the atomicity of these critical sections. Consider the

followingdefinitions:
p1 = naPd p;
p2 = ny8¢ p2

sem = nd sem

q = (p1lsem|p2)\{n, ,m, d }.

23

Intuitively i and ¢ corresponds to the P and V operations on a semaphore, and sem is
a process which implements a semaphore. To see that mutual exclusion is enforced,
consider the form of process q. Using the expansion theorem and the definition of
restriction, it is easy to see that

q = (taft + tydv) q;
in other words, the critical sections of p; and pg are executed atomically.

Deadlock also has a natural definition in CCS. Intuitively, deadlock happens
when two or more processes cannot execute and have not terminated. To capture
this formally in CCS we first define a set of synchronization actions, Syn C Action.
Syn will typically contain events corresponding to send and recieve or signal and
wait. These events cause the possibility of deadlock in that without these actions
deadlock would not be possible. Processes p; and pg are deadlocked if it is the case
that neither processis nil and

(p1|lp2) \ Syn ~ nil.
That is, if we force synchronization events to synchronize then two processes are
deadlocked if neither process can perform an action. We can generalize this
definition to an arbitrary number of processes in the obvious way.

Our last example details a specification of the readers-writers problem. This
problem is paradigmatic of many database problems. The problem is this: given
some number of processes which wish to read from a database and some number of
processes which wish to write to a database, enforce the condition that at most one
writer may be writing at any time and that any number of readers may be reading at
any time, provided that no process is writing at that time. We will define a process
sched which enforces this condition, provided that readers issue B, (for “begin read”)
before each read operation and ¢, (for “finish read”) after each read and that writers
issue corresponding By and ¢ before and after their writes. Consider the following

definitions.

24

writer; = Bw WpWr dw writer;
reader; = Br rprr ¢ reader;
sched =(Bw dw + R) sched, where
R = Bror + BrR'0r
R’ = B&cR’ + BrR oy .
A specification of the readers-writers problem would then be
(| writery | ...| writery, | sched | readerp, | ... | reader;) \
{Br, Bw, Br, Bw, ¢r, dw, Or, dw}-
Arguing for the correctness of this specification is hard to do withing the CCS
formalism; in fact, arguing about the correctness is most naturally carried out in the
metasystem in which CCS resides. Informally one can argue that this is correct by
noting that sched allows a writer to write exactly when there are no other writers
writing or readers reading and that sched permits reading only if no writes are
occurring; furthermore, any number of reads may be occurring simultaneously.
This sort of argument can be unconvincing; in the next section we shall see how one
may use the Nuprl logic in conjunction with the abovementioned type-theoretic

account of CCS to state and prove formally properties of CCS expressions.

Reasoning Using Nuprl

Using the Nuprl logic one may reason about the properties of synchronization
trees. The logic is rich enough to encompass the predicate calculus, and since the
type equality associated with the type, ST, of synchronization trees corresponds to
Milner’s strong equivalence, one may conduct equational reasoning in the spirit of
CCS as well as logical reasoning.

Some properties of concurrent programs have natural expressions as equations;
an example of such a property is deadlock, as mentioned above. Other properties,

however, do not have obvious statements involving equivalence only; an example of

25

such a property is deadlock-freedom, where we wish to say that no subprocesses of
two processes may deadlock, or the readers-writers property in the context of the
specification given above. Both of these properties, however, do have natural
statments in the Nuprl logic, and the deductive apparatus associated with the logic
enables these properties to be proven in a straightforward fashion, if such a proof is
possible. Consider deadlock-freedom, for example. To define this property in Nuprl
we first define the following terms. Let p be of type ST, a€ Action, and s = ajag...an
forn = 0 and a; € Action.

p—ap’if and only if Jy€p.first(y) =a & second(y) =p’.

p—sp’if and only if 3y€p.first(y) =a; & second(y)—»az2as...anp’.

p’is a subprocess of p if and only if Is€ Action*.p—sp’.
All of these definitions are valid statements in Nuprl. With these in hand, and given
the above definition of Syn, the following expresses deadlock-freedom with respect to
Syn.

p and q are deadlock-free exactly when

Vp’,q":ST. p’ a subprocess of p and ¢’ a subprocess of ¢ = (p’lg") \ Syn = {}.
To prove this property for specific p and q the logic allows one to introduce p’ and ¢’
which are subprocesses of p and q, respectively; we then must prove that the
composition of p’ and q’ and the resulting restriction with respect to Syn is

nontrivial.

Hennessy-Milner Logic

The Nuprl logic provides a very expressive and powerful logic for reasoning about
properties of synchronization. To illustrate this we provide an account of the
Hennessy-Milner logic using Nuprl and show that the proof rules for Nuprl are

complete for the proof rules given in [Stirling85] for the HM logic.

26

HM logic is a variant of Propositional Dynamic Logic. The atomic proposition is
T (for “true”), and in addition to the usual propositional connectives the logic
provides modes subscripted by CCS actions for building propositions. Formally,
then, propositions may be described syntactically as follows:

P:=T|—P|PAP|<a>P

where a is an action as described earlier. Semantically the propositional connectives
are interpreted in the usual sense; we may also define derived connectives such as F,
A and =. Intuitively, a process satisfies <a >P if the process can execute an a action
and the resulting subprocess satisfies P. We can define the dual modal operator [a]
as [aJP = — <a >~ P;a process satisfies [a/P if whenever it performs an a action the
resulting subprocess satisfies P. To specify the semantics formally, we define a

satisfaction relation inductively on processes and predicates.

pET " for all processes p.
pE—P ifit is not the case that pE=P.
pEPAQ ifpEPand pEQ.

pE<a>P if Ap’:process. p—»ap’and p’EP.

Asa first step in translating HM into Nuprl we show how the propositions may be
described and how the satisfiability relation may be stated. Recalling that according
to the propositions-as-types principle, the truth of a proposition corresponds to
whether the corresponding type is inhabited, T in Nuprl can be any type which is
inhabited; therefore, the type 0=0 in int serves as an adequate definition of T.
Following [Prl Staff86] — P may be defined as P—void, where void is the empty type.
Similarly PAQ can be represented as P#Q, where # is the cartesion product type
constructor. We now turn our attention to describing the modal operators of HM in
the Nuprl logic. Since <a>P makes an implicit statement about processes, our
definition of <a >P in Nuprl will have an unbound variable x of type process in it;

since we have made the connection between processes and synchronization trees,

27

this unbound variable will in fact have type ST. We argue that the following
definition captures the semantic content of <a >P.

dyé€x. first(y) =a & second(y) in P
This sentence says that tree x has a branch y in it such that y is labeled by a and the
subtree associated with y satisfies P.

In constructive logic satisfiability reduces to provability, and since the Nuprl
logic is constructive we shall define the semantics of the above type-theoretic
account of HM in terms of - in the Nuprl theory. In general we shall say that p=P
in HM is equivalent to —P/[p/x] in Nuprl, where P[p/x] denotes the simultaneous
substitution of p for x in P with appropriate renaming to avoid capture. Consider the
case of T. In HM any process p satisfies 7. Similarly, for any process p, (0=0 in
int)[p/x] = (0=0 in int) is provable, since the type is inhabited, so our semantic
interpretation mirrors the one given. Now consider PAQ. In the Nuprl framework
H(PAQ)[p/x] exactly when HP[p/x] and HP[p/x]; again, satisfiability has the
desired property. In the case of negation —P[p/x], or P[p/x]=>void, is inhabited
(provable) only when P[p/x] is not inhabited (unprovable), so negation has the
desired semantic translation. Now consider <a >P. Using the Nuprl translation of
this form we see that - <a >P[p/x] means that F3y€x. first(y)=a & P[second(y)/x].
This is the case exactly when p may execute an a and wind up in a state satisfying P,
so this semantic characterization of <a>P captures the original semantic
characterization of the formula.

We shall now shift our attention to the axiomatization of a subset of HM due to
Stirling. We shall show that his axioms are all true (in a constructive sense) and
that his rules of inference all correspond to restricted rules of inference in the Nuprl
system. Stirling’s system allows one to reason about HM formulas in the context of
SCCS expressions; that is, the synchronous product, ®, rather than the

asynchronous product, |, is used as a constructor. The formulas which Stirling allows

28

also cannot involve negation. Formally, then, the formulas which Stirling allows
can be described by the following grammar.

A:=T|F|ANA|AyvA| <a>A|[a]A wherea€Action
The semantics of these formulas are exactly the semantics given above. The SCCS
expressions allowed are as follows.

pu=Z|nil|lap|fixZp|p+p|p®p wherea € Action
Fix Z.p is a recursion operator which binds free occurrences of Z in p and allows
infinite processes to be defined. We shall consider a finitary version of fix in our
exposition (although our ongoing work will permit this assumption to be dropped).

The paper defines two notions of provability: + and 4, where A is a HM
formula. + has the usual meaning; ptA holds if it can be deduced from the axioms
and inference rules. 4, on the other hand, has a slightly different meaning; paB
if for every q such that B, p|gHB. It is easy to check that -4 is compositional.

We now consider the axioms and rules of inference in our system. We will show
that the translation of Stirling’s system is valid in Nuprl. To begin with, we must
give an account of 4. Using the set type constructor from Nuprl, paB
corresponds to the following.

HVYq:{t:ST| A(t)}. B(p®q)
Namely, B must hold of p composed with any process satisfying A.

The axioms will now be considered. The following table summarizes the axioms
of Stirling’s system and the Nuprl translations of them. We should note that if

c=bea then b\c=a.

29

Axiom Tranlation

pHTr FO0=0inint

nilH[a]A FVy:{}. first(y) =a=>A(second(y))

pHATr FVq:{t:ST| A(t)}. 0=01inint

pFFalseA HVq:{t:ST | void}. A(p®q)

nil —[a]B FVq:{t:ST | A(t)}. Vp’:nil®aq. first(y) =a=>
B(second(y))

apt[b]A ifb=a FVa:Action. b=a = Vp’ap. first(p) =b =
A(second(p’))

aphA[b]B if b\a does not exist | —Va:Action. Vq:{t:ST|A(t)}.Vp:ap®q. first(p’) =b
= B(second(p’)), assuming that b\a does not exist

All the axioms, in their Nuprl form, are trivially provable.

We now turn our attention to the rules of inference. Stirling’s rules are divided
into nine categories; in our presentation we will analyze the rules category by
category. We will first translate Stirling’s rules into Nuprl and then note that the
rules in fact are rules in the Nuprl system or can be implemented as derived rules.
We also take the liberty of rewriting Stirling’s rules in a refinement (i.e., top-down)

style.

30

Inference Rule Translation

H(A|B)(p)
HA(p)

H(A|B)(p)
+B(p)

Vq:{t:ST]A()}.(B|C)(p®q)
FVq:{t:ST|A(t)}.B(p®q)

FVq:{t:ST|A(t)}.(B|C)(p®q)
FVq:{t:ST|A(t)}.C(p®q)

FVq:{t:ST|(A|B)(q)}.C(p®q)
Vq:{t:STIA(Q)}.C(p®q)
FVq:{t:ST|B(q)}.C(p®q)

\Vj |

The first two rules correspond to the |-introduction rules in the Nuprl logic. The next
three rules have straightforward implementations as tactics, or derived rules of
inference, in the Nuprl system. We will describe informally the implementation of
the last rule. Assuming the proofs of the subgoal, the first step in proving the goal
involves a step of V-introduction; the existence of an arbitrary q of the appropriate
type is assumed, and we know that (A|B)(q) is true. If A(q) is true then then proof of
the first subgoal (via a step of V-elimination) allows one to conclude that C(p®gq)
holds; similarly, if B(q) is true then the proof of the second subgoal gives the

conclusion.

31

Inference rule Translation

—(AAB)(p)
HA(p)
+B(p)

FVq:{t:ST|(AAB)(t)}. C(p®q)
FVq:{t:ST|A(t)}. C(p®q)

FVq:{t:ST|(AAB)(t)}. C(p®q)
FVq:{t:ST|B(t)}. C(p®q)

FVq:{t:ST|A(t)}. (BAC)(p®q)
Vq:{t:ST|A(t)}. B(p®q)
FVq:{t:ST|A(t)}. C(p®q)

N

The first rule corresponds to the /\-introduction rule in the logic. The last three rules
involve simple sequences of V-introduction and A-introduction and -elimination
rules and may be coded as tactics. To implement the second rule, for instance,
assume the proof of the subgoal and perform an V-introduction on the goal. Using
the q:{t:ST|(A/AB)(t)} assumption resulting from the introduction rule, perform an V-
elimination using the subgoal to conclude that C(p®q) holds.

32

Inference rule Translation

ap<a>A F3y:ap.first(y) =a/\A(second(y)
pHA HA(p)

b.p<ab>A<a>B FVq:{t:ST| <c>B(t)}.qy:bp@q.
pHaB first(y) =a /A B(second(y))

assuming a\b exists Fa=bec

FVq:{t:ST|A(t)}.B(p®q)

<a>I

The first rule is simple 3-intro in the logic. The second can be implemented with a
tactic which performs the following Nuprl reasoning. Given the truth of the
subgoals, the tactic first performs an V-introduction on the goal. From the definition
of @ the tactic concludes that (bp)®q, where q is the just-introduced member of
{t:ST| <c >B(t)}, comprises one element, a pair whose first element is a and whose
second element is equal to p®q’, where ¢’ satisfies A. From the second subgoal, the

tactic therefore concludes that the seond element of the pair must satisfy B.

33

Inference rule Translation

apH[a]A HVy:ap.first(y) =a AA(second(y))
pHA HA(p)

bpH[abjalalB FVq:{t:ST|([c]A)(t)}.Vy:bpRq.
pHaB first(y) =a = B(second(y))
assuming a\b exists Fa=hec
FVq:{t:ST]|A(t)}.B(p®q)

[a]l

The first rule has a straightforward implementation, given the definition of ap. The
second can be implemented as a tactic in the following fashion. Assuming the truth
of the subgoals, the tactic first introduces an arbitrary q of type {t:ST|([c]A)(t)}; from
the definition of [c/A it knows that each pair in q having c as its first element has a
second element satisfying A. From the definition of bp and &, then, the tactic may
conclude that each pair in (bp)®q having a (=bec) as its first element must have a
second element of the form p®q’, where ¢’ satisfies A. The second subgoal therefore

allows the conclusion of B(p®q’).

34

Inference rule Translation

p+q-<a>A
pH<a>A

F3y:p +q.first(y) =a /A A(second(y))
F3y:p.first(y) =a /\ A(second(y))

pt+qk-<a>A
q-<a>A

F3y:p +q.first(y) =a /A A(second(y))
3y:q.first(y) =a /\ A(second(y))

p+q-a<a>B
pHa<a>B

FVr:{t:ST]|A(t)}.3y:(p+ q)®r.
first(y) =a A\ B(second(y))
Vr:{t:ST]|A(t)}.3y:p®r.
first(y) =a/AB(second(y))

p+qka<a>B
qHa<a>B

Vr:{t:ST|A(t)}.3y:(p +q) ®r.
first(y) =a /\ B(second(y))
Vr:{t:ST|A(t)}.3y:q®r.
first(y) =a/\B(second(y))

+I<>

The first two rules can be implemented with very simple tactics which use the

definition of p + q to achieve the desired result. Likewise the third and fourth rules

have simple implementations based upon an analysis of + and &®.

35

Inference rule Translation

p+qtla]A FVy:p +q.first(y) =a = A(second(y))
pHI[a]A FVy:p.first(y) =a = A(second(y))
qH[alA FVy:q.first(y) =a = A(second(y))

p+qkalalB FVr:{t:ST|A(t)}.Vy:(p + q) ®r.
pHalalB first(y) =a = B(second(y))
qHalalB Vr:{t:ST|A(t)}.Vy:p®r.
first(y) =a=>B(second(y))
FVr:{t:ST|A(t)}.Vy:q®r.
first(y) =a=>B(second(y))

+1[]

These rules follow in a straightforward fashion from existing Nuprl rules.

36

Inference rule Translation

FB(p®q)
A(p)
FVr:{t:ST|A(t)}. B(q®r)

FB(q®p)
HA(p)
FVr:{t:ST|A(t)}. B(p®r)

FVr:{t:ST|A(t)}.C(p®q®r)
FVr:{t:ST|A(t)}. B(p®r)
FVr:{t:ST|B(t)}. C(q®r)

FVr:{t:ST|A(t)}.C(q®p®r)
FVr:{t:ST|A(t)}. B(p®r)
FVr:{t:ST|B(t)}. C(q®r)

xI

The first and second rules correspond to the V-elimination rule in Nuprl, using p (in
the first rule) and q (in the second rule) as the object of elimination. The third rule
can be implemented as a tactic which first performs V-introduction on the goal to
obtain rin {t.ST|A(t)} followed by an V-elimination on the first subgoal using r and
an V-elimination on the second subgoal using p®r. The fourth rule is symmetric

with the third rule.

37

Inference rule Translation

pHA HA(p)
pnkA HA(p)
where p=fixZ.q and n=m(A)

pHaB FVq:{t:ST|A(t)}.B(p®q)
pnkAB FVq:{t:ST|A(t)}.B(p®q)
where p=fixZ.q and n=m(B)

fixI

These rules are trivially true in this implementation of SCCS in Nuprl, since all
processes are terminating and hence all trees are finite. We are presently working
on a model which admits nonterminating processes; this model is based on Mendler’s
lazy types [Mendler85], and we expect that the induction principle associated with

these types will correspond to Stirling’s rules.

Conclusions

We have presented type-theoretic models of concurrency based upon Milner’s
CCS and SCCS formalisms. We have also shown that the Nuprl logic appears rich
enough to express and reason about properties of concurrent processes, especially
properties expressible in the Hennessy-Milner logic.

Several interesting problems arise from this treatment of concurrency. One such
problem involves the relative expressiveness of the Nuprl logic. There is evidence
that logics besides the Hennessy-Milner logic have natural expressions in the Nuprl

logic; investigating this connection would yield some useful results. Describing the

38

properties which the Nuprl logic can express in this framework also appears to be a
challenging and interesting problem.

The Nuprl system comes equipped with a metalanguage for developing proof
tactics. We are currently engaged in implementing the recursive model decribed in
the present paper and are developing proof tactics to facilitate reasoning about
properties of synchronization trees. This will alleviate the task of managing the
intricate interconnection of detail that often arises in reasoning about concurrent
computation.

The program-synthesis aspects of the Nuprl system briefly alluded to in the
introduction also deserve further investigation. One can certainly imagine writing a
“specification” of a CCS expression as a “there exists” formula; proving the existence
of a CCS entity with the desired properties will implicitly provide a means for
constructing the desired object. This is a very rudimentary form of verified
programming, where a proof specifies a “program” (CCS object in this case) that is
guaranteed to satisfy the properties set forth in the theorem. Clearly much work

remains to be done in this area.

Acknowledgements

We would like to acknowledge Bob Constable, Doug Howe, Scott Smith, Nax
Mendler and Richard Koo for their insightful remarks during the preparation of this

paper.

References
[CMS85]

[DHS82]

[GMW 79]

[HBR84]

[Hennessy83]

[HM85]

[Martin-Lof82]

[Mendler86]

[Milner80]

39

Constable, R.L., and Mendler, N.P. “Recursive Definitions in Type
Theory.” Proceedings of the Logics of Programs Conference 1985,
Springer-Verlag, Heidelberg, 1985.

deNicola, R., and Hennessy, M.C.B. “Testing Equivalences for
Processes.” Technical Report CSR-123-82, University of Edinburgh
Department of Computer Science, August 1982.

Gordon, M.J., Milner, A.R.J., and Wadsworth, C.P. Edinburgh LCF,
LNCS 78, Springer-Verlag, Heidelberg, 1979.

Hoare, C.A.R., Brookes, S.D., and Roscoe, A.W. “A Theory of
Communicating Sequential Processes.” Journal of the ACM, 31(3),
July 1984.

Hennessy, Matthew. “A Model for Nondeterminstic Machines.”
Technical Report CSR-135-83, University of Edinburgh Department
of Computer Science, July 1983.

Hennessy, Matthew, and Milner, Robin. “Algebraic Laws for
Nondeterminism and Concurrency.” Journal of the ACM, 32(1),
January 1985.

Martin-Léf, Per. “Constructive Mathematics and Computer
Programming.” 6th International Congress for Ligc, Methodology
and Philosophy of Science, North-Holland, 1982.

Mendler, Nax, Panangaden, Prakash, and Constable, R.C. “Lazy
Objects in Type Theory.” In preparation.

Milner, Robin. A Calculus of Communication Systems. LNCS 92,
Springer-Verlag, Heidelberg, 1980.

[Milner83]

[Prl Staff86]

[Stirling85]

40

Milner, Robin. “Calculi for Synchrony and Asynchrony.”
Theoretical Computer Science 25,1983

The Prl Staff. Implementing Mathematics with the Nuprl Proof
Development System. To appear.

Stirling, Colin. “A Complete Modal Proof System for a Subset of
SCCS.” TAPSOFT 85, LNCS 185, Springer-Verlag, Heidelberg,
1985.

	pdftemp/0001.tif
	pdftemp/0002.tif
	pdftemp/0003.tif
	pdftemp/0004.tif
	pdftemp/0005.tif
	pdftemp/0006.tif
	pdftemp/0007.tif
	pdftemp/0008.tif
	pdftemp/0009.tif
	pdftemp/0010.tif
	pdftemp/0011.tif
	pdftemp/0012.tif
	pdftemp/0013.tif
	pdftemp/0014.tif
	pdftemp/0015.tif
	pdftemp/0016.tif
	pdftemp/0017.tif
	pdftemp/0018.tif
	pdftemp/0019.tif
	pdftemp/0020.tif
	pdftemp/0021.tif
	pdftemp/0022.tif
	pdftemp/0023.tif
	pdftemp/0024.tif
	pdftemp/0025.tif
	pdftemp/0026.tif
	pdftemp/0027.tif
	pdftemp/0028.tif
	pdftemp/0029.tif
	pdftemp/0030.tif
	pdftemp/0031.tif
	pdftemp/0032.tif
	pdftemp/0033.tif
	pdftemp/0034.tif
	pdftemp/0035.tif
	pdftemp/0036.tif
	pdftemp/0037.tif
	pdftemp/0038.tif
	pdftemp/0039.tif
	pdftemp/0040.tif
	pdftemp/0041.tif
	pdftemp/0042.tif

