
AAECC 3, 79-98 (1992)

AAECC
Applicable Algebra in
Engineering, Communication
and Computing
�9 Springer-Verlag 1992

NC Algorithms for Real Algebraic Numbers
F. Cucker 1'* , H. Lanneau 2, B. Mishra 3'** , P. Pedersen 3'*** and M.-F. Roy 2

1 Department L.S.L F. d'Inform~ttica S-08028 Barcelona, Spain
2 I.R.M.A.R.U. de Rennes I, F-35042 Rennes France
3 NYU/Robotics New York University, New York 10003, USA

Received February 28, 1991; revised version August 30, 1991

Abstract. Characterizing real algebraic numbers by a sign-sequence (according to
Thorn's lemma), using a variant of Ben Or Kozan and Reif algorithm for reducing
the solving of systems of polynomial inequalities to the problem of counting real
zeroes satisfying one polynomial inequality, and using a multivariate Sturm theory
generalizing Hermite quadratic forms method for counting real zeroes, we prove
that the computations on real algebraic numbers are in NC.

Keywords: Real algebraic numbers, Parallel algebraic complexity, NC complexity,
Thorn's lemma, Systems of polynomial inequalities, Sturm theory

Introduction

The abstract data type real algebraic number is defined as the subset of the real
numbers consisting of real roots of rational polynomials, together with the usual
arithmetic operations +, - , , , / , as well as the order relations <, =, >. The object
of our paper is to describe parallel algorithms for this abstract data type based on
the sign-sequence representation of M. Coste and M.-F. Roy [7]. There are major
applications of the order relations to the computation of the topology of real algebraic
curves [8] and [22], the analytic structure of real algebraic curves [10], and to the
decision problem for semi-algebraic sets [16]. The arithmetic operations have appli-
cations to computational number theory and computational geometry. Our paper
summarizes the current state of knowledge about parallelization of algorithms for
real algebraic numbers.

* Partially supported by DGICyT PB 89/0379, UPC PR9014, and the ESPRIT BRA program
of the EC under contract no. 3075, project ALCOM
** Partially supported by NSF CCR-90-02819
*** Supported by AT&T Bell Fellowship, and partially supported by NSA MDA904-89-H-2030

80 F. Cucker et al.

We shall apply the NC model of parallel computation. The class NC was first
described by Nick Pippenger in [21] and it can be roughly defined as the class of
sets accepted by uniform families of boolean circuits having polylogarithmic depth
and polynomial size (in the size of the input). To be more specific, a set S belongs
to NC k if there is a Turing machine that, given n, generates within space O(log(n))
a circuit C, with depth O(log(n) k) and with n input gates such that, for every word
x of size n, C, returns 1 on x if and only if x6S. The class NC is the union of the
NC k for k > 1. A reference for the main properties of NC is [1]. Since our main
concern in this paper derives from algebraic problems, we shall describe our algo-
rithms in terms of arithmetic circuits i.e. circuits that have arithmetic nodes instead
of Boolean ones (a survey of parallel arithmetic computations can be found in [13]).
In a last step, we will replace the arithmetic nodes by Boolean circuits.

Algorithms using the sign-sequence representation reduce to the problem of
solving systems of simultaneous polynomial equalities and inequalities. For solving
such systems we have algorithms available that are based on the work of Ben-Or,
Kozen, and Reif [2] (BKR for short). The BKR algorithm was applied to the problem
of deciding order relations between real algebraic numbers in the original paper
of M. Coste and M.-F. Roy [7] where the sign-sequence representation was first
introduced. These algorithms have been improved in [23] and implemented within
MAPLE and REDUCE in a package called IF (from the French In~galit~s Formelles);
details concerning this package can be found in [9]. NC algorithms for the arithmetic
operations were given in [18] using the BKR algorithm recursively in the bivariate
setting.

The present paper uses multivariate Sturm theory [19] to describe a non-recursive
B K R algorithm in the multivariate setting. This puts all the algorithms into NC for
any fixed number n of real algebraic numbers. The order relations compare 2 inputs,
so they are always in NC. For general n, the arithmetic operations have low-depth
parallel circuits whose size is singly exponential in n. Such a complexity bound is
unavoidable in an algebraic model, since the polynomial defining the sum, product,
etc., of n real algebraic numbers may have degree O(d"), where d bounds the degrees
of the polynomials determining the inputs.

In the first section of this paper we describe the sign-sequence data structure.
We follow with the design of algorithms for the arithmetic and relational operators
in terms of a black box called "consistent sign patterns". The third section describes
an algorithm for this black box using a BKR-type algorithm in terms of a second
level black box, namely the Sturm query, and highlights the combinatorial aspect
of the problem. The fourth section describes algorithms for Sturm queries, including
a non-recursive multivariate version. We conclude with a complexity analysis.

I The Sign-Sequence Data Structure

Here we describe an encoding of real algebraic numbers which is well adapted to
NC computations. The basic idea is to encode such a number in terms of a poly-
nomial which has it as a root, and to attach the sequence of signs which all the
derivatives of that polynomial achieve at that root. This sequence turns out to identify
the root uniquely among the other roots of the polynomial. Such a representation

NC Algorithms for Real Algebraic Numbers 81

is non-canonical since other polynomials could also have been used, for this reason
we provide efficient equality comparisons.

We begin recalling that the subfield A c N of real algebraic numbers consists of
all the real roots ct of rational polynomials p e Q [x] . Throughout the following
paragraphs we shall speak of "sign-sequences", by which we mean vectors whose
components are drawn from the set { - 1, 0, + 1 }. We also refer to these as "sign-
patterns" when we consider them to be drawn from the set of relations { < 0, = 0, > 0}.

Definition 1.1. The "sign-representation" of the real algebraic number ~ which is a
root o f the polynomial p~Q[,x], deg(p) = d, is

(~t) = (p(x), [,sgn(p(e)), sgn(p'(e)),..., sgn(pta)(e))]).

The first and last components of the vector [,sgn(p(e)) sgn(pta)(~))] of course carry
no information and could be deleted. They shall be, in this paper, when this leads
to simpler formulae. We retain them in the definition above to simplify the notation.
This vector uniquely identifies e among the roots of p(z) by virtue of the following
theorem.

Theorem 1.2. (Coste and Roy) Given~,~ ' tworeal -rootsof thepolynomialp(x)EN[x] ,
then (~) = (~') implies ~ = ~'.

Proof. The proof is very easy by induction on the degree ofp (see [7], or for further
details [,181). �9

We denote the vector [p(x) , pr ell)ix]d+ 1 by Y-(p) for "Thorn sequence",
because Theorem 1.2 is a special case of Thorn's lemma (see [4]). Rational numbers
r e ~ are represented as (x - r, []). The sign representation may be stored using
O(dL) bits, where L bounds the bit lengths of the coefficients of p(x). As mentioned
in the first paragraph, the sign-sequence representation is not canonical, since a
given real algebraic number is the root of many different polynomials. We bypass
this problem by providing efficient parallel algorithms for equality comparisons.
The sign-sequence representation does not rely on any approximations to the roots
and therefore it also applies in the non-Archimedean case, a fact which is used in
[81 and [16].

Coste and Roy showed more than theorem 1.2. They showed that if cq, c% are
two distinct roots of p(x), then their order relation may be deduced directly from
the Thorn sequences.

Corollary 1.3. Suppose

(~ 1) = (p(x), FSo,. �9 ~ 3)

(~2) = (p(x), [-60 6d])

and let k be the smallest number such that ea-k r 6a-k. Then k > 1 and ed-k + 1 = 6d-k+ 1
is different f rom O. There are two cases:

a) I f ed-k+ 1 > O, then ~1 > 0~2 i f and o n l y / f ptd-k)(el) > pta-~)(~t2).
b) I f en-k+ 1 < O, then ~1 > ~2 if and only if ptd-k)(ex) < p(a-k)(e2). �9

This corollary permits the roots of p(x) to be sorted in NC, although it does not
immediately solve the problem of ordering two roots of different polynomials.

82 F. Cucker et al.

2 Algorithms for Real Algebraic Numbers

Our approach is "top-down". In order to calculate with the sign-sequence representa-
tion, we shall need a black box called "consistent sign patterns". With this black
box and the preceding encoding of real algebraic numbers, it is possible to implement
the arithmetic of real algebraic numbers.

2.1. The Black Box CSP (Consistent Sign Patterns)

A system of polynomials/5 = (Pl , . . . , Pk) in n variables is a finite list of polynomials
whose zero set is a zero-dimensional variety (that is, a finite number of complex
points). We denote by ZR(/5) all the real zeros of/5, and by r the number #ZR(/5).
We refer to vectors whose components are selected from { - 1 , 0 , + 1} as sign-
sequences. Using these notations we can give a specification for CSP.

CSP Black box

Input: a system/5, with p~(ff)eQ[y], i = 1 , . . . ,k and a list c~ = [ql(~) qs(~)] c
Q[~]s, where ~ = (x 1 x,).

Output: the sign-sequences achieved by q at the solutions ~ZR(/5).

The output then consists of "Consistent Sign Patterns" of the qSs at the real zeros
of the pi's, i.e. all the vectors [sgn(ql(~)),..., sgn(q~(~))], for ~EZR(/5).

Since our real algebraic numbers are defined by univariate polynomials, we shall
use this black box for the particular case of a system of the form pi(xl), i = 1 , n.

Given the CSP black box, it is possible to find the "sign-representation" of the
real roots of this particular system by taking

CSP(EPl (X1) Pn(Xn)]; E ~ - (p l (x 1)) , . �9 �9 ~--(Pn(Xn))]).
Given the black box CSP we can readily design algorithms for the arithmetic

of real algebraic numbers according to the following pattern. We find the sign-
representation for the sum, product, etc. ofn real algebraic numbers by first finding
a polynomial which has the sum, product, etc. as a root. The second step is to identify
the particular root corresponding to the inputs among all the other roots of the
constructed polynomial. The algorithms exhibited in this section appear in [19];
they are non-recursive, multivariate improvements of the bivariate algorithms used
in [18].

Lemma 2.2. Suppose 0% i= 1 , . . . ,n are n real algebraic numbers, with Pi(~i)= O.
Then the sum and product of the el are roots of the following rational polynomials,
respectively:

S (x) = 1-[p . (x - (/~1 + - " +/~.-1))
{m(Pi) p . - ~(P,- 0=O}

P(x) = I-I p,(x/(fl l ft, -1))
{p l (~) p . - ~(P~- t)= O}

Proof. S(x) = 0 if and only if some conjugates/71 ft._ ~ make x - (Pl + "'" + ft.- 1)
a root /3 of p,, (i.e.), if and only i fx = fla + "" + ft.-1 + ft.. This shows that S(x) has
as roots all the sums of conjugates of roots of the p~; certainly the sum of any particular

NC Algorithms for Real Algebraic Numbers 83

set of conjugates is among them. The argument for P(x) is similar. The two poly-
nomials are rational because they are symmetrized over the rational system p ~ (x~) =
. . . . p , - a (x , - ~) = 0. We recognize S(x) and P(x) as Poisson products which may
be computed via multivariate resultants (see [19]). �9

2.3. S ign-Representat ion for ~ ~i
t

We suppose we are given the sign-representations (~ > for real algebraic numbers
~t with p~(~)= O, i = 1, . . . , n and we want to compute the sign representation for

ai, as a root of S.
i

To do so, first compute

C S P ([p l (x ~) p,(x,)]; [y-(pl(xl)) Y (p , (x ,)) , Y - (S(x 1 + . . . + x,))]).

This computation outputs the sign-vectors achieved by the sequence

[y- (p~(x0) , . . . , y-(p,(x.)), y- (S(x l + ... + x,))]

at all real zeros (al ~,)~ZR(/~). The sign-pattern produced by Y-(S) at the
particular root ~ a t will appear among the trailing strings of signs. It may be

identified by doing a prefix search among the sign-patterns of Y-(p~) Y-(p,) for
the sign-pattern corresponding to the inputs at, i = 1 n.

2.4. S ign-Representat ion for [I ~i
i

We suppose we are given the sign-representations <cq> for real algebraic numbers
~ with pi(~ti)= 0, i = 1, . . . , n and we want to compute the sign representation for
I] ~t, as a root of P.

i

To do so, first compute

CS P([_p a (xl) p,(x,)]; [y-(pl(x 0 , y - (p , (x ,)), Y (P(x l , . . . , x,))]).

The argument here is the same as for ~ at. We obtain all the sign-vectors achieved by
i

[Y-(Pl(xl)) y-(p,(x,)), : (e (x ~ . . . x.))]

at the zeros (~1 ~,)eZR(iO). The sign-pattern achieved by Y-(P) at the particular
root [I ~t of P(x) will appear among the trailing strings of signs as before, and it

t
may be identified by doing a prefix search among the sign-patterns of y-(pt),. . . , y-(p,).

2.5. S ign-Representat ion for --

We suppose we are given the sign-representations <a) for a real algebraic
number ~, and we want to compute the sign representation for - a. If <a> = (p(x),
[s l, s z , . . . , s ,_ 1]) then < - ~> = (p (- x), Is1, - s z (- 1)"s,_ 1]).

84 F. Cucker et al.

2.6. Determining ~ <, = , > fl

We suppose we are given the sign-representations (~) and (f l) for real algebraic
numbers a root ofp and fl root of q, and we want to decide the order relation between

and ft.
Again, we first compute

CS P(]-p(x), q(y)]; [y-(p(x)), y- (q(y)), (x - y)]).

For each solution (~,fl) of p(x)= q(y)= 0, this prefixes the sign of (~ - fl) with
(~) (f l) . The sign o f~ - fl is sufficient to decide ~ > fl, ~ = fl, or ~ < ft.

2.7. Sign-representation for 1/~

We suppose we are given the sign-representations (~) for a real algebraic number
with p(~) = 0, and we want to compute the sign representation for 1/~.

First determine the sign of ~ by calling CSP([p(x)]; [g(p(x)) , x]). If ~ = 0, then
stop. Otherwise, if (d = deg(p)) the reversed polynomial q(x)= xap(1/x) has the
inverses i/~ as roots. Now, we multiply each component of y- (f) (1 /x) by a
sufficiently high even power of x so that it becomes a polynomial without changing
its sign. Call the resulting sequence p(x). Next compute CSP([q(x)]; [p(x), y-(q)]).
This prefixes the sign-codes at the roots 1/~ of q with the signs acquired by Y-(p) at
~, so again we may locate the sign-code for any particular 1/~ among all the
conjugate sign-codes.

2.8. Sign-Representations for a + ~ and a'ct

We suppose we are given the sign-representations (~) for a real algebraic number
with p(ct) = 0, and we want to compute the sign representation for a + ~ and a '~

where aeQ. The polynomial p(x - a) has a + ~ as a root, and the signs of its deri-
vatives at a + ~ are identical to those of p(x) at ~. The polynomial q(x) = aap(x/a)
has a '~ as a root. In this case

y-(q) (x) = [adp(x/a), a d - l p , (x / a) aptd- 1)(x/a), pta)(x/a)],

and the signs depend on (~) , the sign of a, and the parity of the exponents (in the
case that a is negative).

3 Designing CSP with Generalized Sturm Theory

In this section we turn our attention to the question of implementing the black box
CSP in terms of a second level black box, the Sturm query. Our algorithm at this
level is a BKR- type poly-log depth combining tree which takes information about
how many real zeros of the system V satisfy various constraints jAjqjs~, where s t is

one of { < 0, = 0, > 0}, and composes this information to count how many zeros
satisfy all possible conjuctions of constraints

A qjsj A A qkSk.
jeJ keK

NC Algorithms for Real Algebraic Nu.mbers 85

At this level we consider the "combinatorial complexity" of our.algorithms, in terms
of the number of real roots r of the system and the total number s of polynomials
q j, assuming unit cost for Sturm queries. In next section we will enter inside the
Sturm queries and see exactly what they cost.

3.1. The Sturm Query Black Box

Let/3 be a system, and q be a polynomial. Let

c(/~, q > O) = #{x~ZR(p)I q(x) > O}

c(~, q < O) = #{xeZe(P) lq(x) < 0}

c(p, q = O) = # {xEZR(p) Iq(x) = 0}.

We shall let SQ(p, q) = c(/~, q > 0) - c(/~, q < 0). We refer to it as a Sturm query.
The specification for the SQ blackbox is then the following.

Sturm query black box
Input: a system p = (Pl Pn) and a polynomial q
Output: SQ(ff, q) = c(ff, q > O) - c(~, q < O)

Now we shall explain how, given this subroutine, one can design an algorithm
for CSP.

Definition 3.2. We shall denote by B k the set of bit-vectors of length k, {0, 1} k, and by
S k the set of sign-patterns of length k, { < 0, = 0, > 0} k.

The algorithm that follows depend upon two simple but critical observations.
Points x, YSSk may be used to represent sign-patterns achieved by polynomials

ql and q2 at some subset finite [e~, . . . , C~k], and componentwise products xy in this
case correspond to sign-patterns of the product polynomial ql q2.

On the other hand, points in B k may be used to represent subsets of the above
mentioned [at , ek] since they can be viewed as characteristic functions for those
subsets. If q~,OeB k, then the componentwise product q~.0 corresponds to the
intersection of the subsets they represent, and if those subsets are disjoint, then ~o +
represents their union.

In particular, a point in B k may represent the subset of the real zeros of i0 where
a given vector of polynomials (like the Thorn sequence) achieves a particular sign-
pattern. In order to better describe this situation we introduce the following
notation.

Definition 3.3. Given ~ = [~1 %,3, q = [q l qm] ~l~[ff] m, and aeSm, define the
"sign-condition"

C(~, ~la) = [v(V iq~(oq)(r i) v(V i qi(ot~)a~)]

where v(p) = 1 if p is true, v(p) = 0 if p is false.

That is to say, C(~, gl~r) is the bit-vector representing the subset of points of 5 where gt
adopts the sign-pattern ~r.

We also introduce a notation to describe which sign-pattern is achieved by a
polynomial at some sequence of real points.

86 F. Cucker et al.

Definition 3.4. Given qe(I)[2], and a vector ~ = [cq, ~,,] of points c lR", define
sgnlq, a)eS,, as

sgnl q, 4) = [sgn(q(~0) , sgn(q(cq,))].

With these definitions and identifying + 1 and > 0, - 1 and < 0, 0 and = 0, we
get the following fundamental lemma.

Lemma 3.5. Given a finite set ~ and qE~[x] , then

[! 1 ~I 1 F C (~ ' q = O 1 Fsgnll,c~) 1
1 / C(~ 'q>0) = / sgnlq'~) /
1 I_C(~,q < O) I sgn[q2 ,~)A

Proof. We first remark that the meaning of the matrix product in the statement is
3

(Ax)i = Z al.jx~,
j = l

where the vectors xj are added componentwise. Note that the statement of the
lemma contains the hidden assertion that the result, a priori defined in (~k)3 actually
lies in S~.

The bit vectors on the left hand side are defined by mutually exclusive sign-
conditions, hence are disjoint, hence their sum corresponds to the union of their
associate sets of points. The first row says that the union C(~, q = 0)+ C(~, q > 0)+
C(c~, q < 0) of the subsets of points where q is zero, positive, or negative, respectively
(which accounts for all the real zeros) equals the sign vector 1 of all l's. The second row
has an entirely different significance: it restates the definition of sgn(q). The difference
of bit-vectors produces a sign-vector which is positive at the positive points and
negative at the negative points. The third row says that the union C(~, q > 0)+
C(& q < 0) equals the sign-vector ofq 2, which is correct because q 2 is positive when
q is either positive or negative. �9

k

Definition 3.6. F o r x E B k or XeSk, let # (x)= ~ xi. Also, for xEB" k or xES~, let

s(x) = [s(x~), . . . , s(x,)] , i= 1

Lemma 3.7. I f x e B " k, and Ae7Z "• n, then s (Ax) = AS(x).

Proof. If xj is thej-th component of x, let xj,z denote the l-th bit of xj. Then
k n n k

s((Ax),) = Y~ F~ a , jx j , , = Y~ % Y~ xj,, = (As(x)),. �9
l = t j = 1 j = l t =1

Corollary 3.8. Given q e Q [x] , we have the equality

1 " [c(fi, q > O) = SQ(p, q) I
1 Lc~,q < 0)_] _SQ(fi, qZ)_J

Proof. Apply S to both side of the equation in Lemma 3.5. �9

The results of such queries may be combined using the "BKR tensor identity"
[2] as follows

NC Algorithms for Real Algebraic Numbers 87

Lemma 3.9. Suppose CsB~ and C' eB~ specify n and m subsets.of ZR(fi), respectively.
Suppose ~eS~ and G'~S~ specify sign-patterns achieved on ZR(P) by n and m
polynomials qi and q'j,i = 1,.. . , n , j = 1 m. Then for any A e l R "• and A' eg l " •

A C = ~r; A'C' = a' ~ (A | A')(C | C') = a",

where a" eS~, m is the vector of sign-patterns of the mn polynomials qiq's.

Proof. This lemma follows from the definition of the tensor product: (A | B)(v | w) =
(Av) | (Bw). The point is that the tensor product C | C' on the left hand side has
components which represent intersections of sign-conditions, whereas the tensors
o-" = ~ | a' on the right hand side represent the sign-vectors of product polynomials.

3.10. How to Obtain CSP

We are now ready to describe how to obtain CSP. Using a log-depth combining
tree, we can compute a single large linear relation between the vector of every
possible conjunction of sign-conditions on q 1 , q~ and the vector of sign-vectors
achieved by the polynomials

M

qv= l-[q~ ~
i = 1

(where vi varies in {0, 1, 2}') at ZR(/5) (the zeros of the system pl(Xl) p,(x,) = 0).
At every level of the tree, the accumulating linear relations may be mapped via
to corresponding linear relations between the cardinalities c(/~, Ovo-) and the
sign-counts given by Sturm queries for the product polynomials %.

The key observation of Ben-Or, Kozen, and Reif was that only sign-conditions
with non-zero cardinalities are of interest; those with cardinality zero should be
discarded on the way up the tree. This process of removing empty sign-conditions
requires deleting those columns i of A (in the relation Ac = s) where cl = 0, and then
extracting a maximum-rank square sub-matrix of the resulting system. There can
never be more than r = #ZR(P) different non-empty sign-conditions, and this limits
the size of the arrays which occur.

The pattern of binary combinations among the relations Ac = s evidently
produces a tree whose depth is logarithmic in s, the number of polynomials whose
consistency is being checked. The circuit size is polynomial in s by virtue of the fact
that the total number of nodes in any binary tree with s leaves is less than of equal
to s + s/2 + s/4 + ... + 1 = 2 s - 1.

Without this reduction the subcircuits solving CSP would become exponential
in the input parameter s, trebling in size at each level going up the tree. As it is, the
matrices can never exceed r = #ZR(/~) in dimension, since that is the maximum
number of distinct non-empty sign-patterns which can be achieved: one per distinct
real zero. In the section four where we discuss implementations of Sturm queries
we shall see that this makes it possible to keep the Sturm queries subcircuits in NC.
Each combining step involves the tensor product of two linear systems each of size
bounded by r, therefore of total size bounded by r 2. We refer to this as parallel B K R .

When the number of processors is small, it may be preferable to combine the
sign-patterns using an unbalanced binary tree which looks like a ladder: adding

88 F. Cucker et al.

only one new constraint at each level. This produces a size bound of 3.r for the
matrices, although it sacrifices the logarithmic depth of the combining circuit.
Circuit size remains polynomial. We shall denote this approach by vectorial BKR.

Let us now enter into further details about parallel BKR and vectorial BKR, as
well as about improvements in the case of coding real algebraic numbers.

3.11. Optimizations and Algorithms for CSP

We shall consider practical optimizations of the algorithms presented above and in
[7], which includes the calculation of order relations between arbitrary real
algebraic numbers as well as the determination of the sign of q(2)Ol)[2]k at the real
roots of i0(~)eQ[Y)". In particular, a detailed analysis of the algorithm allows to
prove that at each node of the B K R tree, the polynomials to consider are products
of at most log(r) polynomials in ~. This fact will not modify the depth of the circuits
computing CSP but will reduce their size.

The following data structure contains the information at one node of a BKR
combining tree; it is essentially a "frame" which allows the computation to be
resumed at that node.

Definition 3.11.1. We shall say that T is a Tarski Type (TDT in the sequel), if T is a
list of the form [p, (t, ~, c, A, Q, s], where:

�9 p is a system of polynomials
�9 (t is a list ofk polynomials
�9 G is the list of the non-empty sign conditions realized by (1 at the real zeros of~
�9 c is the corresponding vector ofcardinalities of the sets of zeros verifying the non-

empty sign conditions
�9 A E Z t• is an l • matrix, where 1 is the number of non-empty sign conditions
�9 Q is a list ofl polynomials
�9 s~Slk is an l-vector of integer numbers satisfying

i) A'c = s
ii) si = SQ(~, Qi).

That is to say, the various parts of T stand in the relation generated by the BKR
tensor identity as one combines sign-consistency conditions going up the tree. By
retaining this partial computation we avoid having to recompute. We shall call/5
the system of T, ql qk the list of polynomials of T, l the dimension of T, and k its
size.

In the following we describe in detail the modules with the BKR algorithm, and
we include a number of practical optimizations which use the Tarski Data Types.
The second one, which we call VCSP (vectorial consistent sign patterns) is not in
NC but is useful when few processors are available since it has an optimal speed-up,
i.e. parallel time is close to sequential time divided by number of processors.

3.11.2. Adding the Inequalities "by Packages". The first procedure explains the
combination of two nodes in the BKR tree.

Procedure PCSPC (parallel consistent sign pattern combination)

NC Algorithms for Real Algebraic Numbers 89

Input: two TDT's T 1 and T2 with the same system/5, and list of polynomials
ql , . . . , qk, and q'p . . . , q'k2 respectively.

Output: a TDT T with system/5 and list of polynomials ql qkl, q'l , qk2"

Let T1 and T2 be given respectively by

[p , (h , a l , C l , A i , Q l , s i] and [p, q2,0.2,c2,A2,Q2,s2]

where a 1 = [trl , i , . . . , tr l .k,] and O- 2 ~---[0"2,1 0"2,k2] ' and let ni,n2,kl and k 2 be
their dimensions and sizes. The procedure performs the following steps:

1. Compute a new list cj catenating t]~ and c]2, and a new list Q' of nl 'n 2 elements
whose ((j - 1)n2 + l) th element (for 1 < j < n i and 1 _< 1 <_ n2) is the product of the
jth element of Q1 by the I th element of Q2. Then compute the vector s' of dimension
n i" n2 such that s i = SQ(i6, ri) where rl is the i th element of Q'. This last computation
is performed with n l .n 2 independent processors, one for each Sturm query.

2. Define a list of ni 'n2 (kl + k2)-tuples of sign conditions whose ((j - l)n 2 +/)th
element (for 1 < j < ni and 1 < I _< hE) is 0"1, j followed by 0"2a.

3. Compute the product A' of A1 and A 2.
4. Compute an (n~-n2)-dimensional vector c' satisfying the equation A' .c ' = s'.
5. Determine a new vector c" by deleting the zero components of c', a new

tectangular matrix A" by deleting in A' the columns corresponding to these
components, and a new list a of (kl + k2)-tuples of sign conditions by deleting
the ones non satisfied (i.e. those whose corresponding coordinate in c" is zero).
Let n denote the number of elements in 0".

6. Determine an invertible square submatrix A of A" by keeping the first n indepen-
dent rows, a list Q obtained from Q' by keeping the dements corresponding to
the rows of A, and a vector s obtained from s' in the same way.

7. Return the TDT T = [it3, q, a, c, A, Q, s].

Procedure P C S P (parallel consistent sign patterns)

Input: a systefft of polynomials/~ and a list of polynomials qx,-.-, qs.
Output: a TDT with system 1O and list of polynomials ql qs.

The procedure is done in several steps. In step 0 we compute in parallel the
values c(~,q~ = 0), c(~,qj > 0) and c(~,qj < 0) for 1 < j < s. We get as output of this

step s TDT's. In Step 1 w e a p p l y P C S P C [~ J t i m e s t o t h e p a i r s o f T D T ' s f o r q l

I - _ ' 7

and qz,qa and qg,..-qk-1 and qk ob t a in ing /~} new TDT's.
/ l - /

Following the process in this way, we perform in step j, }3 applications of

P C S P C , c o m b i n i n g I 2 @ _ ~ l T D T ' s i n t o I ~ l n e w T D T ' s . W e c l e a r l y f i ~ i s h t h i s

process after [log s] steps obtainiaag the desired TDT.
The following proposition will be helpful to sharpen size bounds in complexity

estimations.

Proposition 3.11.3. Le t r be the number o f elements Of ZR(fi). The polynomials Qi in
2 the output o f P C S P (p; ql q~) are products o f at most log r polynomials q~ or q j

(j = 1 , . . . , s).

90 F. Cueker et al.

Proof. The proof is a variation on the one given for the sequential case, see [8].
The main point of the proof consists in proving that if a polynomial Q = 1-I qi l~ q

iEll i~I2

(with 11 c~ I 2 = ~) appears in the output of PCSP, for each subsets J1 and J2 of I1
and 12, the polynomial Q ' = 1-I q~ I-I q2 appears in the output ofPCSP. �9

ieJ1 ieJ 2

3.11.4. Adding Inequalities "one by one". Procedure VCSPC (vectorial consistcnt
sign pattern combination)

Input: a T D T ' s T = [P,[ql qk],a,c,A,Q,s] and a polynomial qk+l.
Output: a TDT T with system p and list of polynomials q~,. . . , qk § 1"

Let n be the dimension of T. The procedure performs the following steps:

1. Compute a list Q' of 3n elements such that, for 1 _< i < n

t h e i th element of Q' is the i tu element of Q,

the (n + i) t~ element of Q' is the i th element of Q multiplied by qk + 1, and

the (2n + i) th element of Q' is the i th element of Q multiplied by q~+ 1.

Then compute the vector s' of dimension 3n such that sl = SQ(~, r~) where r~ is
t h e i th element of Q'. This last computation is performed with 2n independent
processors, since we already know the first n coordinates of s'.

2. Now define a list of 3n(k + 1)-tuples of sign conditions whose first n elements are
the input k-tuples followed by 0, and whose second and third sets of n elements
are the same k-tuples but followed by + 1 and - 1 respectively.

3. Compute the product A' of A with

1 - 1 .

1 1

i.e. the m a t r i x

Ei A AAI A ' = A -

A A
where A is the matrix of T.

4. Compute a 3n-dimensional vector c' satisfying the equation A'.c' = s'.
5. Determine a new vector c" by deleting the zero components of c', a new

rectangular matrix A" by deleting in A' the columns corresponding to these
components, and a new list ~ of(k + 1)-tuples of sign conditions by deleting the
ones non satisfied. Let fi denote the number of elements in ~7.

6. Determine an invertible square submatrix A of A" by keeping the first ~ indepen-
dent rows, a list (~ obtained from Q' by keeping the elements corresponding to
the rows of A, and a vector g obtained from s' in the same way.

7. Return the TDT [/~, [q 1 qk + 1], 8, ~, A, Q, ~.

Procedure VCSP (vectorial consistent sign patterns)

Input: a sequence of polynomials with integer coefficients p, ql,--- , qs-
Output: a TDT T with system p and remaining polynomials ql , - - . , qs.

NC Algorithms for Real Algebraic Numbers 91

In particular we get from T the satisfied sign conditions on the elements of Z R(/5)
as well as the number of roots satisfying each one of them. The procedure just
performs V C S P C k times.

Again, we have the following result.

Proposition 3.11.5. Let r be the number of real roots of the system p. The polynomials
Qi in the output o f V CSP (/~; ql, . . . , qs) are products of at most log r polynomials qj or

2 qj"

Proof. The proof is given in [8]. As in 3.11.3, the main point of the proof consists
in proving that if a polynomial Q = I-I ql FI q2 (with 11 ~ I 2 = ~) appears in the

i~ l t i~l 2

output of VCSPC, for each subsets J~ and J2 of 11 and 12, the polynomial
Q' = [[qi 1-] q~ appears in the output of VCSPC. �9

i~J 1 i~J2

3.11.6. Real Algebraic Numbers. In the particular case we study, where the system
,6 consists of n univariate polynomials, we want to describe a procedure P R A N for
encoding real algebraic numbers.

Procedure P R A N (parallel real algebraic numbers)

Input: a system ofunivariate polynomials p = (p ~ Pn) of degrees d~, i = 1 n.
Output: a TDT with system io and remaining polynomials Pl,Pl' " Pl~dl~ ,Pn;

" ' ' ~ / J n "

The satisfied sign conditions code the roots of p and make it possible to sort
them as we have seen. The procedure just applies independently P C S P in parallel
for each i to Pi and P'i, PI', Pl a~.

Remark 3.11.7. A better strategy can be followed in the case when few processors
are available. It is suggested by the following facts.

1. We are not interested in the signs of all the derivatives on the roots of p~ but
just on the signs necessary to "separate" them.

2. Once the roots are discriminated from each other, we just need the signs of the
derivatives of lowest degree in order to sort them.

3. If for some roots the k-th derivative vanishes Thom's lemma applies to this
derivative, so we need no more sign computations for characterizing this set of roots.

Following this remark, a procedure called R A N add is described in [23] which
stops the sign computations for the roots once a zero sign is reached or the roots
have been separated. It involves a modification of the linear system used in VCSPC.
Using it, a procedure V R A N can be designed which is similar to the algorithm R A N
in [23] but computes in parallel all Sturm queries each time a derivative is added.

Since the number of elements in every non empty sign condition on the
derivatives obtained in the output of P R A N is equal to 1, if we are interested on
consistent sign patterns for a list of polynomials at real algebraic numbers~ we can
consider each polynomial independently.

Procedure P R A N C S P (parallel real algebraic numbers and consistent sign patterns)

Input: the output of P R A N for a system p of univariate polynomials, as well as a
sequence of polynomials q~ qs.

92 F. Cucker et al.

Output: the signs taken by q~ q~ on the real roots of/3.

If the system ,0 has r roots the dimension of the input TD T is r and its vector c
is (1, 1 1). So, we can independently perform V C S P C for this TDT and every
qj, 1 < j < s, in parallel, to get the desired signs.

4 Algorithms for Sturm Queries

We turn now to the lowest level of our algorithms, in which we construct subcricuits
for the Sturm queries. In the first paragraph we recall the univariate methods for
answering Sturm queries and in the second we give information on new multivariate
methods, and make them explicit in the particular case of a system of univariate
polynomials. It turns out that in the two cases, Sturm queries computations involve
only linear algebra subroutines. In order to do this with the required parallel
complexity, we need circuits for calculating determinants and also for calculating
rank (for the size reduction). One of the central results in this subject is Berkowitz's
algorithm for computing the characteristic polynomial [3] that we quote in
subsection 4.3.

4.1. The Univariate Case

There are two main ways for computing the Sturm query SQ(p, q) = c(p, q > O) -
c(p, q < 0) in the univariate case.

4.1.1. Sturm-Sylvester Sequence. It can be done, for example, by using the classical
Sturm-Sylvester sequence in the following way. Let Stu(p,p'q), for univariate
polynomials p, q, be defined as the sequence

Stuo(p, p'q) = p
Stul(p, p' q) = p' q

. . .

Stum+ I(P, P' q) = - Rem(Stum_ ~(p, p' q), Stu,,(p, p' q))

where Rem is the remainder in Euclidean division. Then the Sturm query SQ(p, q)
is the difference between the sign variations of Stu(p, p'q) at - ~ and the sign
variations of Stu(p,p'q) at + ~ . This is very easy to prove, by a straightforward
generalization of the classical proof of Sturm theorem. This result was first observed
by Sylvester [24].

Using subresultant theory, where precise relations are described between the
remainders in the Euclidean division and subdeterminants extracted from Sylvester
matrix, it is possible to compute the Sturm query by linear algebra subroutines, that
is, computing determinants and then evaluating their signs. Details about it appear
in [14] or 1-15] where the Sturm-Habicht sequence is introduced and studied.

4.1.2. Hermite's Method

Let p be a monic polynomial of degree d and q a polynomial. Let (~i)i- 1...,p be the
zeros of p in ~.

NC Algorithms for Real Algebraic Numbers 93

Let us define a quadratic form B(p, q) with d variables Yo, Yx Yd- 1, by
d

.d - 1 ~2
B(p,q)= ~ q(~i)(Y0 + Y l ~ i + "" +Yd-lCZi]

i = 1

each root of p being counted with multiplicity, so that the coefficients of the
quadratic form are symmetric functions of the ~i.

One has
d--1 d

B(p,q)= ~ ~ q(o~i)~e+fyeyf.
e , f = O i = l

Theorem 4.1.3. (Hermite's method) With the above notations we have:
i.) the rank of B(p, q) is equal to the number of zeros of p which are not zeros of q in rE.
ii) the signature of B(p, q) is equal to SP(p, q) = e(p, q > O) - e(p, q < 0).

Proof. Let fix ft, be the distinct real zeros of p, and ma,. . . , rn, their multiplicities.

Also, let ~ 1,71 ?,,, 7,, be the complex (non real) distinct zeros of p, and Wl,..., wm
their multiplicities.

For aO~, let y be the linear form on fly defined by

y(a, x) = Yo + Yl a + ... + ye_ 1 ad- 1

and let b(a, x) = y(a, x) 2. The quadratic form B(p, q) is equal to
n m

B(p, q) = ~ mjq(fl2)b(flj, x) + ~" Wh(q(~h)b(];h, X) d- q(~h)b(~h, X)).
j = l h = l

Linear forms y(flj, x),y(]~h,X),y(Th, X) are linearly independent (the zeros are
distinct and it is sufficient to consider a van der Monde determinant). This gives (i).

Writing q(Th) = d2 are decomposing dh(b(Th, X) under the form Ph + iqh with Ph et

qh real linear forms, it is clear that q(yh)b(yh, X) + q(yh)b(~h, X) is the difference of two
squares of real linear forms.

The signature of B(p, q) depends then only on the n first terms of the form and
is hence equal to C>o(p,q) - C<o(p,q). �9

Let us now explain how to compute B(p,q). Since polynomials qx e+I can be
reduced modulo, p, we need to compute linear combinations of the Newton sums

P

Sk = ~, q(al)a~, k = 0 d -- 1.
i = 1

1
For computing these Newton sums, let us consider the development in -- of the

X p'
rational function --. Since p = I~ (X - ~i) one has

p i=1 p

p_'= ~ 1 .

p i = 1 (X O~i)

1 p' 1
The coefficient of ~ in the development of in -- is hence with the preceding

p X
notations sk 1.

94 F. Cucker et al.

Once the Hermite's quadratic form B(p, q) is known, it is only needed to evaluate
its signature. The evaluation of the signature of the Hermite quadratic form can be
made using linear algebra subroutines. Once the coefficients of the quadratic form
are computed, one computes the characteristic polynomial of the associated
symmetric matrix. All the roots of this characteristic polynomial are real (perhaps
with multiplicities). Using Descartes's rule of signs, which counts exactly the number
of positive (and hence negative) real roots with multiplicities when all the roots are
real, a very simple sign evaluation gives the signature, which is the difference
between the number of positive eigenvalues (counted with multiplicity) and the
number of negative eigenvalues (counted with multiplicities).

So only linear algebra subroutines are required.

Remark4.1.4. In fact it turns out that it is possible to compute the signature of
the Hermite quadratic form through principal minors rather than through character-
istic polynomial, since the associated symmetric matrix is a Haenkel matrix. Since
it is clear by the definitions that these principal minors are just the principal coeffi-
cients of the Sturm-Habicht sequence, it is possible to prove that Sturm method and
Hermite method, who look very different at first sight maybe very precisely related
through Sturm-Habicht sequences. This can be found in [14] or [15]).

4.2. The Multivariate Case

The Sturm-Sylvester sequence does not generalize to the multivariate case. On the
other hand, generalizations of Hermite method are possible.

Hermite's method has been already used in some problems in computational
algebra, in the univariated setting (see [12] and [17]). In [19] Hermite's method is
generalized and an implementation for generalized Sturm queries (for systems
defined by a number of equations equal to the number of variables) is given. A new
generalization of Hermite's method giving the Sturm query computation in case of
a system (given by an arbitrary number of equations) will be given in [20]. In the
two cases, the Sturm query is equal to the signature of a quadratic form, generalizing
Hermite quadratic form for the univariate case. The coefficients of the quadratic
form can be obtained through symmetric functions computations (in [19]) or
through trace of multiplications (in [20]). Once the quadratic form is computed,
Descartes' rule applied to the characteristic polynomial of the associated symmetric
matrix gives the required signature.

Let us explain the computations in [19] in our particular simple case of a system

= (p , (x l) p . (x .))

of polynomials with degrees dl , . . . , d k.
Let F be the set of sequences e = (el e,)0 < e k < dk for all k. The cardinality

of F i s D = [1 d i . . I f a = (c q , ' " , c ~ ,) i s a r ~ 1 7 6 1 7 6 and eeF we write
i = l,..,~n

X e _ e l e2 en e e e2 en
- - X 1 X 2 " " X , n , ~ ~ i ~ 2 "(Z n .

The Hermite's quadratic form is

(/ B(/~,q)= E q(~) Z Ye ~" = • E q(~t)c~"+J'YeYf
~eZ(~) k e e p / e e F , f e F cteZ(p)

NC Algorithms for Real Algebraic Numbers 95

(where Z(~) is the set of complex zeros of/5, and the sum takes into account the
multiplicity of the root; if a = (aa,~2,... ,a,), its multiplicity is the product of the
multiplicities of the ~i's as zeros of the pi's).

The number of variables of this quadratic form is D.
We have again the following theorem:

Theorem 4.2.1. (Hermite's method) With the above notations
i) the rank of B(p, q) is equal to the number of zeros of~5 which are not zeros of q in IF..

ii) the signature of B(~5, q) is equal to c(p, q > O) - c(/5, q < 0).

Proof. The proof is a straightforward generalization of the proof in the univariate
case. �9

It is always possible, by reducing modulo 15 to replace qxex I by a polynomial
whose degree in each variable x k is smaller than d k. Hence in order to compute
B(/5, q)t, one may compute the symmetric functions

E e e2 en
(~1 0~2 " " O~n .

~Z(~)

where e~F, f E F and make linear combinations of them.
These symmetric functions are just products of the Newton sums associated

respectively to the roots Pa, . . . , Pn"
The computation of the Newton sums starting from the coefficients of the p~'s

has been explained in the previous subsection.

4.3. Parallel Linear Algebra

In order to end our "top-down" approach it is needed to give now parallel
implementation to linear algebra subroutines needed in the previous Sturm queries
computations. We use the work of [3].

Definition 4.3.1. Let SD(LD) denote the class of functions which may be computed by
uniform families of arithmetic circuits of size bounded by L and Depth bounded by D.

Then, as Berkowitz [3] proves:

Theorem 4.3.2. Let ~ be a real number such that the product of two n x n matrices
can be computed in SD(n',log(n)) (currently ~ < 2.376, see [6]), and M an n x n
matrix. Then for every e > 0 the characteristic polynomial of M can be computed in
SD(n,+~+ 1, log/(n)). Moreover the circuit required can be computed uniformly (i.e. in

logspace). �9

Remark 4.3.3. Suppose the entries of the matrix considered in the preceding
theorem are integers and t bounds their sizes. In that case the sizes of the
intermediate results obtained during the circuit computation are bounded by
O(n(t + log n)). This is because the circuit is constructed as a tree of depth O(log n)
whose nodes perform products of matrices, and the circuits realizing these products
have multiplications only at the first level, with the rest involving additions. Using
this algorithm may other problems can be solved in NC. For instance

1) R A N K (M) = the rank of an n x m matrix M with real entries (m < n).
2) C L EAN (M) = an m x m submatrix of the n x m matrix M of rank m.

96 F. Cucker et al.

Proposition 4.3.4. We have the following complexity bounds:
1) RANK (M) can be computed in SD(n ~+~+ 1, log2 (n))
2) CLEAN (M) can be computed in SD(n "+~+2,1og 2(n)). Moreover, if t bounds the
sizes of the entries of M, the intermediate computed values have sizes bounded by
O(n(t + log n)).

Proof. 1) First compute M~.M, which is an m x m real symmetric matrix, and then
compute q~(2), its characteristic polynomial. RANK(M) equals m - ord(~b(2)),
where ord is the degree of the lowest non-zero coefficient. The bounds follow from
Berkowitz's result.

2) Compute, for 2 < i < n the rank r~ of the matrix given by the first i rows of
M, and we put r 1 = 1. Now return the matrix containing the i-th row of M if and only
if r~ > r i_ r This given n - 1 applications of RANK (M) from which the bounds are
deduced.

The claim about the sizes easily follows from the last remark because we may
apply Berkowitz's algorithm to matrices of the form BB t (with B a submatrix of M)
whose entries have size bounded by t + log n. The reader can see these as well as
other parallel algorithms for computer algebra in [5]. �9

5 Complexity of the Univariate Algorithm

For our complexity bounds we shall consider the "classical" circuits which multiply
two n-bit numbers within size O(n 2) and depth O(log (n)). Also, we shall suppose
that the input polynomials have integer coefficients.

Thus, let p, q~,..., qs~Z[X] and let us consider the following parameters: d, a
bound on the degrees and sizes of p, q l , . . - , qs (we recall that if p = a,X" + --. + a o
its size is defined as [p]= log(x/a 2 +--- + ao2)), and r, the number of real roots of p.
Then we have

Lemma 5.1. Let p, q 67Z.[X] with degrees d and e respectively and sizes bounded by t.
Then the Sturm-Habicht query Sth(p, q) can be computed by a binary circuit with size
O(d(d + e)5"5(t + log(d + e)) 2) and depth O(log2(d + e)(log(d + e) + log t)).

Proof. We know that the query SQ(p, q) can be calculated as the principal coef-
ficients of the Sturm Habicht sequence of p and q. Now, since these coefficients
are defined as determinants of matrices with size bounded by d + e we get, using
Berkowitz's result, a bound of O(d(d+e) 35) on the number of arithmetical
operations, and a bound of O(logZ(d + e)) for the parallel time complexity. Finally,
since the entries have sizes bounded by t, the intermediate values are bounded in
size by O((d + e)(t + log(d + e))). The statement easily follows. �9

Proposition 5.2. The algorithm PCSP runs in parallel time O(logslog3 d) using
O(sr2(d(d log d) 7s + r 13 log2 r)) processors.

Proof. At each node in the combining tree we compute O(r 2) Sturm-Habicht
queries. Since the degrees and the sizes of the second inputs of these queries are
bounded by O(d log r), by applying Proposition 4.3, we can compute each one within
parallel time O(log 3 d) using O(d(d log r) 7"5) processors. On the other hand we call
the CLEAN procedure for a matrix with O(r 2) rows whose entries have unit size.
According to the complexity of the CLEAN procedure this uses O(rl31og2r)
processors within parallel time O(1og 2 r). Adding up these bounds and considering
that the combining tree has O(s) nodes and depth log s, we deduce the statement. �9

NC Algorithms for Real Algebraic Numbers 97

Corollary 5.3. Let d be a bound o f the degree and size of p and r the number of its
real roots,

i) The algorithm P R A N runs in parallel time O(log 4 d) using O(dr2(d(dlog d) 75 +
r 13 log/r)) processors.
ii) I f e is a bound on the degree and size of the polynomials in a list gl = (q l , . . . , qs),
set L = e + d log r. The algorithm P R A N C S P runs in parallel time O(log 3 L) using
O(srdL 7. s) processors.

Proof. It is enough to observe that we can run P R A N with p~~ instead o fp ") and
those polynomials have size bounded by i + Idl--- O(d). So we just substitute d for
s in the preceding proposition.

Since the roots are separated, we can now independently apply the procedure
VCSPC for each q~ 1 < j __< s. Each one of these computations calculates 2r S tu rm-
Habicht sequences whose second inputs have degree and size bounded by L. As
before, this can be done within parallel time O(log 3 L) using O(drL 75) processors.
Note that in this case we do not need to clean the resulting 3r x 3r matrix since the
independent part is formed by the first r rows. �9

Remark 5.4. One observes that the parameter r is not strictly meaningful since its
worst case value coincides with d. We have included it here because it turns out to
be important from an average case point of view. It can be shown that for a wide
class of random distributions on the coefficients of a polynomial of degree d, the
expected number of real roots of such a polynomial is asymptotically (2/n)log d. So,
on average we shall need only O(sdlog2d(dlogd) 7"5) processors when running
PCSP. For these results see [11].

6 Complexity of the Multivariate Case

The total complexity of the arithmetic on real algebraic numbers is clearly in the
class NC of the parameter D, product of the degrees of the polynomials in/5.

In terms of the number n of inputs, we get a circuit of size d ~ where d is a
bound on the degrees of the polynomials.

The determination of each symmetric function needed in Hermite quadratic
form amounts to n table look-ups followed by n multiplications. Clearly this can
be done in constant time in parallel. All the different symmetric functions may be
evaluated independently (hence simultaneously) as well, so that the parallel com-
plexity is a constant.

The overall circuit complexity for any fixed n remains in NC.

7 Conclusion

We summarize here the total complexity of our algorithms.
In all cases the parallel B K R combining tree is in N C 1, i.e. it has depth log(s)

where s bounds the size of the input enboding. The size of the parallel B K R combining
tree is linear in s and polynomial in the number of real roots r of the system.

In the multivariate case have shown algorithms for the Sturm queries at the
nodes of the combining tree whose circuit size is bounded by D ~ where D bounded
the products of the degrees ofn inputs. This is in N C for any fixed n, and in particular
it is always in N C for the order relations, which involve only some linear polynomials.

98 F. Cucker et al.

In the univariate case we exhibited a number of opt imizat ions involving
Sturm Habicht sequences which gives N C algori thms for all the cases.

References

1. Balcfizar, J. L., Diaz, J., Gabarr6, J.: Structural Complexity. vol 2, EATCS Monographs of
Theoretical Computer Science. Berlin, Heidelberg, New York: Springer 1990

2. Ben-Or, M., Kozen, D., Reif, J.: The complexity of elementary algebra and geometry. J. Comp.
Sys. Sci. 32, 251-264 (1986)

3. Berkowitz, S.: On computing the determinant in small parallel time with a small number of
processors. Inform. Process. Lett. 18, 147-150 (1984)

4. Bochnak, J., Coste, M., Roy, M.-F.: G6om6trie alg6brique r6elle. Berlin, Heidelberg, New York:
Springer 1988

5. Borodin, A., von zur Gathen, J., Hopcroft, J.: Fast parallel matrix and GCD computations.
Inform. Control. 52, 241-256 (1982)

6. Coppersmith, D., Vinograd, S.: Matrix multiplication via Arithmetic progressions. J. Symb.
Comput. 9, 251 280 (1990)

7. Coste, M., Roy, M.-F.: Thom's lemma, the coding of real algebraic numbers and the computa-
tion of the topology of semi-algebraic sets. J. Symb. Comp. 5, 121-129 (1988)

8. Cucker, F., Gonzfilez, L., Rossell6, F.: On algorithms for real algebraic plane curves. Proceed-
ings of the MEGA'90. Progress in Mathematics. vol. 14, pp. 63-89, Basel: Birkh~iuser 1991

9. Cucker, F., Gonz~ilez, L., Roy, M.-F., Szpirglas, A.: IF, a package for deciding systems of
inequalities. Proceedings of the IX Conference of the Chilean Computer Science Society,
pp. 77-86 (1989)

10. Cucker, F., Pardo, L. M., Raimondo, M., Recio, T., Roy, M.-F.: On the computation of the
local and global analytic branches of a real algebraic curve. Proceedings of the A.A.E.C.C.-5,
1987. Springer LNCS vol. 356, pp. 161 182. Berlin, Heidelberg, New York: Springer 1989

11. Cucker, F., Roy, M.-F.: A theorem on random polynomials and some consequences in average
complexity. J. Symb. Comp. 10, 405-409 (1989)

12. Fitchas, N., Galligo, A., Morgenstern, J.: Algorithmes rapides en sequentiel et en parallelle
�9 pour l'elimination des quantificateurs en G6ometrie Elementaire. S6minaire sur les Structures
Alg6briques Ordonn6es. Publication Math6matiques de l'Universit6 Paris VII, 32, 103-145
(1989)

13. von zur Gathen, J.: Parallel arithmetic computations: a survey. Proc. 13 th Conf. MFCS. LNCS
vol. 233, pp. 93-112. Berlin, Heidelberg, New York: Springer

14. Gonzalez, L., Lombardi, H., Recio, T., Roy, M.-F.: Sturm-Habicht sequence. Proceedings of
the ISSAC-89, Portland, 136-145 (1989)

15. Gonzalez, L., Lombardi, H., Recio, T., Roy, M.-F.: Sous-r6sultants et sp6cialisation de la suite
de Sturm Iet II. I: Informatique Th6orique Applications 24, 561-588 (1990); II: to appear in
Informatique Th6orique et Applications

16. Heintz, J., Roy, M.-F., Solerno, P.: On the complexity of semialgebraic sets. Proceedings of
the IFIP'89, San Francisco. North-Holland, 293-298 (1989)

17. Korkina, E.I., Kushnirenko, A.G.: Another proof of the Tarski Seidemberg theorem.
Translated from Sibirskij Matematicheskij Zhurnal 26, 94-98 (1985)

18. Mishra, B., Pedersen, P.: Arithmetic with real algebraic numbers is in NC. Proceedings of
ISSAC-90, 120-126 (1990)

19. Pedersen, P.: Counting Real Zeros, thesis, New York University, NYU Technical Report
545-R243 (1991)

20. Pedersen, P., Roy, M.-F., Szpirglas, A.: Counting Real Zeros in the multivariate case, to appear
in MEGA 92

21. Pippenger, N.: On simultaneous resource bounds. Proceedings of 20 th Found. of Comp. Sci.,
pp. 307-311, 1979

22. Roy, M.-F.: Computation of the topology of a real algebraic curve. Proceedings of the
Conference on Computational geometry and topology. Ast6risque 192, 17-33 (1990)

23. Roy, M.-F., Szpirglas, A.: Complexity of computations on real algebraic numbers. J. Symb.
Comp. 10, 39-51 (1990)

24. Sylvester, J. T.: On a theory ofsyzygetic relations of two rational integral functions, comprising
an application to the theory of Sturm's function. Trans. R. Soc. London, 429 586 (1853)

