Skip to main content
Log in

Evaluation of the Simplex method for training simple multilayer neural networks

  • Articles
  • Published:
Neural Computing & Applications Aims and scope Submit manuscript

Abstract

A learning algorithm based on the modified Simplex method is proposed for training multilayer neural networks. This algorithm is tested for neural modelling of experimental results obtained during cross-flow filtration tests. The Simplex method is compared to standard back-propagation. Simpler to implement, Simplex has allowed us to achieve better results over four different databases with lower calculation times. The Simplex algorithm is therefore of interest compared to the classical learning techniques for simple neural structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Le Cun, Y. Disordered Systems and Biological Organizations. NATO-ASI Series, Springer-Verlag, 1986

  2. Rumelhart D, Zipsner D. Feature discovering by competitive learning. Cognitive Sci 1985; 9: 75–112

    Google Scholar 

  3. Bishop CM. Neural networks and their applications. Revue Scientific Instruments 1994; 65: 1803–1832

    Google Scholar 

  4. Fahlman SE. Faster-learning variations on back-propagation: an empirical study. Proc Connectionist Models Summer School, San Mates, CA, 1988; 38–51

  5. Jacobs RA. Increased rates of convergence through learning rate adaptation. Neural Networks 1988; 1: 295–307

    Google Scholar 

  6. Lippmann RP. An introduction to computing with neural nets. IEEE ASSP Mag 1987; April: 4–22

  7. Solla SA, Levin E, Fleisher M. Accelerated learning in layered neural networks. Complex Syst 1988; 2: 625–640

    Google Scholar 

  8. Sontag ED, Sussmann HJ. Back-propagation can rise to spurious minima even for networks without hidden layers. Complex Syst 1989; 3: 91–106

    Google Scholar 

  9. Baffes PT, Shelton RO, Phillips TA. NETS: a Neural Network Development Tool. Software Technology Branch, Lyndon B. Johnson Space Center, Houston, TX, 1991

    Google Scholar 

  10. Acuna G, Latrille E, Beal C, Corrieu G. Modélisation par réseaux de neurones des cinétiques réactionnelles caractéristiques des fermentations lactiques batch à pH régulé. Récents Progrès en Génie des Procédés 1993; 7: 215–220

    Google Scholar 

  11. Parker DB. Optimal algorithms for adaptive networks: second order back-propagation, second order direct propagation and second order hebbian learning. Proc 1st Int Conf Neural Networks, San Diego, CA, 1987; 593–600

  12. Zurada JM. Introduction to Artificial Neural Systems. West Publishing, 1992

  13. Spendley W, Hext GR, Himsworth FR. Sequential application of Simplex designs in optimisation and evolutionary operation. Technometrics 1962; 4: 441–461

    Google Scholar 

  14. Aberg ER, Gustavsson GT. Design and evaluation of modified Simplex methods. Analytica Chimica Acta 1982; 144: 39–53

    Google Scholar 

  15. Heyd B. Contribution de l'automatique en métrologie et formulation sensorielle. PhD Thesis, Ecole Nationale Supérieure des Industries Alimentaires, Massy, France, 1991

    Google Scholar 

  16. Fredenslund A, Gmehling J, Rasmussen P. Vapor-Liquid Equilibria Using UNIFAC. A Group-Contribution Method. Elsevier Scientific, 1977

  17. Lebert A, Richon D. Infinite dilution activity coefficients of n-alcohols as a function of dextrin concentration in water-dextrin systems. J Agric Food Chem 1984; 32: 1156–1161

    Google Scholar 

  18. Morgan SL, Deming SN. Simplex optimization of analytical chemical methods. Analytical Chem 1974; 46: 1170–1181

    Google Scholar 

  19. Nakai S. Comparison of optimization techniques for application to food product and process development. J Food Sci 1981; 47: 144–176

    Google Scholar 

  20. Subrahmanyam MB. An extension of the Simplex method to constrained nonlinear optimization. J Optimization Theory Applic 1989; 62: 311–319

    Google Scholar 

  21. Nelder JA, Mead R. A Simplex method for function minimization. Computer J 1965; 7: 308–313

    Google Scholar 

  22. Bochereau L. Conception et interprétation des réseaux connexionnistes multicouches. PhD Thesis, Université Paris VII, France, 1991

    Google Scholar 

  23. Brun JP. Procédés de Séparation par Membranes: Transport, Techniques Membranaires, Applications. Masson, 1989

  24. Mulder M. Basic Principles of Membrane Technology. Kluwer Academic, 1991

  25. Dornier M, Rocha T, Trystram G, Bardot I, Decloux M, Lebert A. Application of neural computation for dynamic modelling of food processes: drying and microfiltration. Proc Artif Intell for Agriculture and food. Nîmes, France, 1993, 233–240

  26. Dornier M, Decloux M, Trystram G, Lebert A. Dynamic modeling of crossflow microfiltration using neural networks. J Membrane Sci 1995; 98: 263–273

    Google Scholar 

  27. Dornier M. Développement d'outils pour l'optimisation des conditions hydrodynamiques en filtration tangentielle. PhD Thesis, Ecole Nationale Supérieure des Industries Alimentaires, Massy, France, 1994

    Google Scholar 

  28. Latrille E, Corrieu G, Thibault J. Modélisation par réseaux de neurones: application à des fermentations lactiques batch. Proc Journées d'Etude AFCET-GFGP, Obernai, France, 1992

  29. Rocha Mier T. Influence des prétraitements et des conditions de séchage sur la couleur et l'arôme de la menthe (Mentha spicata Huds.) et du basilic (Ocimum basilicum). PhD Thesis, Ecole Nationale Supérieure des Industries Alimentaires, Massy, France, 1993

    Google Scholar 

  30. Dornier M, Decloux M, Lebert A, Trystram G. Use of experimental design to establish optimal crossflow filtration conditions. J Food Process Eng 1994; 17: 73–92

    Google Scholar 

  31. Punidadas P, Decloux M, Trystram G. Microfiltration tangentielle sur membrane minérale en céramique; application au traitement du sucre roux. Industries Agricoles et Alimentaires 1990; 7–8: 615–623

    Google Scholar 

  32. Decloux M, Dornier M, Gratius I. Crossflow microfiltration of gum arabic solutions: comparison of the classical system with the co-current permeate flow system. Int J Food Sci Tech 1996; 31: 153–166

    Google Scholar 

  33. McClelland JL, Rumelhart DE. Explorations in Parallel Distributed Processing: a Handbook of Models, Programs and Exercises. MIT Press, 1988

  34. Dornier M, Decloux M, Trystram G, Lebert A. Interest of neural networks for the optimization of the crossflow filtration process. Lebensm.-Wiss-Technol 1995; 28: 300–309

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Heyd.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dornier, M., Heyd, B. & Danzart, M. Evaluation of the Simplex method for training simple multilayer neural networks. Neural Comput & Applic 7, 107–114 (1998). https://doi.org/10.1007/BF01414162

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01414162

Keywords

Navigation