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Abstract: A combinatorial optimization problem can often be understood as the problem to mini­
mize cost in a complex situation. If more than one party is involved, the solution of the optimization 
problem is not the end of the story. In addition it has to be decided how the minimal total cost has 
to be distributed among the parties involved. In this paper cost allocation problems will be consid­
ered arising from one-machine scheduling under additive and weakly increasing cost functions. The 
approach of the problem will be game theoretical and we shall in fact show that in many cases the 
games related to the cost allocation problems are balanced. 
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In combinatorial optimization the problem is often to compound - as cheaply as 
possible - a composite whole out of available components. The minimum cost 
spanning tree problem, for example, looks for a spanning tree of minimal cost 
composed from the arcs available in a graph. The traveling salesman problem 
asks for a hamiltonian cycle of minimal length consisting of arcs of a given 
graph. When the optimization problem has been solved we are often faced with 
a second problem, especially if the composition of the whole is in the interest of 
more than one agent. If, for example, the minimal cost spanning tree problem 
models the connection of villages with a water resource, then it is important for 
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the villages to be connected and therefore it seems reasonable that they contrib­
ute in the cost. Also in the traveling salesman problem it may be in the interest 
of the cities (or inhabitants of the cities) to be visited. In those situations the 
optimization problem should be followed by a cost allocation problem. In the 
literature there can be found several papers in the same spirit as this one, such 
as the paper by Granat and Huberman (1981) about the cost allocation in 
minimal cost spanning tree problems, the paper of Kalai and Zemel (1982) about 
flow problems and the paper of Potters et al. (1990) about the traveling salesman 
problem. The paper of TijsjDriessen (1986) gives a general description of the 
connection between cost allocation and the theory of cooperative games. 

In this paper we elaborate on this general philosophy in the case of one­
machine scheduling problems. We assume that associated with each job there is 
an agent (player) only interested in a quick processing of this particular job. 
In technical sense this implies that we will consider regular and additive 
optimality criteria. Further we formulate the optimization problem slightly 
differently. We assume that the jobs are already given in an initial order and ask 
for a rearrangement of the jobs with maximal cost savings. In order to get a 
reasonable distribution of the cost savings among the jobs (agents) we take into 
consideration the "virtual" cost savings which a subgroup (coalition) of agents 
can obtain by - for this group admissible - rearrangements. Which rearrange­
ments are admissible for a coalition depends on the special situation, but in 
general the following two principles should be maintained: 

1) The rearrangement should not hurt the interests of the agents outside the 
coalition. 

2) The rearrangement is possible without an active cooperation of agents out­
side the coalition. 

By these rules we sometimes take as admissible rearrangements every permu­
tation of the positions of the jobs in the coalition, at other time we impose 
stronger conditions (e.g. only permutations which respect the components of the 
coalition are admissible; see section 1 for a more explicit description). 

We finish this introduction with a concrete example. 
Suppose an aircraft industry has a waiting list of customers (airlines companies) 

each waiting for the delivery of one aircraft. Each airline company has to incur 
cost, weakly increasing with the data of delivery. If the airlines companies 
cooperate, they can decide to make a new list with minimal cost and to com­
pensate the companies which get their aircraft later delivered for the increase 
of cost. In this paper we study the problems involved in reaching a suitable 
compensation. 

The organization of the paper is as follows. In section 1 we introduce the 
concepts from job scheduling and cooperative game theory that we will need. In 
the sections 2 and 3 we consider special job scheduling situations and prove that 
the associated cost saving games are balanced. In section 2 the main restriction 
will be that all jobs have the same processing times. In section 3 we introduce 
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two generalizations of the sequencing games of Curiel et al. (1989): a0-compo­
nents additive games and a0 -pairing games. We prove the balancedness of these 
types of games and a rule to obtain a core element is given. In the last section 
(section 4) we give some suggestions for future research and a few results already 
obtained in Hamers (1988) and Veltman (1988). 

1 Preliminaries 

In this section we introduce the concepts from job scheduling and cooperative 
game theory needed in the following sections. Further, we describe how we think 
to combine these theories for the purpose we have in mind. 

I) Job Scheduling 

We consider single machine scheduling problems with a regular and additive 
criterion R. The set of jobs will be denoted by N = {l, 2, ... , n}. The jobs are 
given in an initial order. The position of each job with respect to a certain order 
can be described by a permutation a of N. So, a(i) = j means that job i has the 
j-th position in the order according to <T. By renumbering the jobs we may 
assume that, initially, the i-th job is on the i-th place. Each job i EN has a ready 
time ri. The processing of job i cannot start before ri. We assume that the jobs 
are given with an initial order that causes the ready times to be weakly increasing. 
So, if the initial order is given by the identity permutation this means that 
0 = r1 ::;; r2 ::;; • • • ::;; rn. For each job i the processing time is denoted by Pi> 0 and 
(if it matters) the due date is di 2 ri +Pi· In general, we consider additive regular 
optimality criteria i.e. for each agent (job) i there is a weakly increasing function 
f;: [ri + pi, - ) -i. R such that the expression :Le N f;( CJ is to be minimized. Here 
the number Ci is the completion time of job Ji. Special examples are the functions 
f;(t) = rx.it with rx.i > 0 for each i e N (weighted completion time criterion) and the 
functions f;(t) = 0 for ri + Pi ::;; t ::;; di and f;(t) = ai if t > di (penalties ai > 0 for 
tardiness). 

The jobs can be reordered to decrease the total cost. As mentioned above, such 
a new order can be described by a permutation of N. A time table -r is a mapping 
which assigns to every job i a starting time ti with ti 2 ri for all jobs i EN and 
ti 2 ti + Pi if ti 2 ti and i =F j. As far as we are considering weakly increasing 
cost functions f; we may restrict our attention to semi-active time tables, i.e. 
time tables without unnecessary delay. If we put the jobs in the order q: N -i. 
{l, 2, .. ., n} (<T assigns ranking numbers to jobs) the starting time of job i in the 



116 I. Curiel et al. 

semi-active time table determined by a is 

where job j is such that rr(j) = a(i) - 1. If rr(i) = 1, then t;,a = ri. If a fixes an 
order the completion time of i equals Ci(u) = t;,a + P;· 

II) Cooperative Game Theory 

A cooperative game (the terms cooperative game with side payments, game in 
characteristic function form, game in coalitional form and games with transfer­
able utility are also used) is a pair (N, v) where N is a finite set (of players) and v 
is a mapping v: 2N -+ R with v(0) = 0. The mapping v assigns to each coalition 
S c N the worth of the coalition v(S). A cooperative game (N, v) is called 
superadditive if for all coalitions S, T c N 

v(S) + v(T) ~ v(S v T) whenever S 11 T = 0 . 

A cooperative game (N, v) is called convex iffor all coalitions S, Tc N 

v(S) + v(T) ~ v(S v T) + v(S 11 T) . 

In other areas, e.g. matroid theory, a set function that satisfies the above prop­
erty is called supermodular. 

Cooperative games are often used to describe economic situations in which 
several individuals can benefit by cooperating because the profit of a group 
consisting of several individuals is greater than the sum of the profit of the 
separate individuals. If the grand coalition N is formed the problem is how to 
divide the total profit v(N) among the players. An allocation of the amount v(N) 
can be described by a vector x E RN with x(N) := LieN X; = v(N). The quantity 
xi is the amount allocated to player i. Such an allocation is called individual 
rational if X; ;;:: v(i). If the players decide to divide v(N) according to an individual 
rational allocation, no player has an incentive to leave the grand coalition N and 
work on his own because he is receiving at least as much as he would be able to 
obtain when working alone. However, it could still be possible for a group of 
players to leave the grand coalition and to do better working as a separate group. 
This would cause the grand coalition to be unstable, even in situations where the 
greatest total profit can be obtained if it is formed. If an allocation x satisfies the 
condition L;esxi ~ v(S) for all Sc: N, then this problem does not arise because 
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clearly, no coalition can do better by leaving the grand coalition and working 
on its own. The set of all allocations that satisfy this condition is called the core 
of the game (N, v) and is denoted by C(v). So, formally we have 

C(v) := {x E Rn [.I X; = v(N), .L X; ;;::: v(S) for all S c N} . 
1eN 1eS 

The core of a cooperative game can be empty. If it is not empty it is a convex and 
compact subset of W. In general it will contain more than one element ifit is not 
empty. The core of a convex game is always non-empty. A game with a non­
empty core is called balanced. Given a balanced game (N, v) we can construct a 
subgame of (N, v) by restricting v to a subset S of N. If all the subgames that can 
be constructed in this way are also balanced, we call the game totally balanced. 
Two other solution concepts widely used in cooperative game theory are the 
Shapley value (Shapley (1953)) and the r-value (Tijs (1981)). Contrary to the core 
these are one-point solution concepts, that is instead of assigning a set of 
allocations to each game they assign one particular allocation. 

To explain how the Shapley value works we need the following definitions. 
Let flN denote the set of all permutations of the set N. Consider a n E [JN· The 
set P(n, i) is defined to be the set of predecessors of i with respect to the 
permutation n. So P(n, i) := {j E Nln(j) < n(i)}. The vector l/Jn(v) ER" is de­
fined to be the vector with i-th coordinate equal to v(P(n, i) u {i}) - v(P(n, i)). 
The Shapley value r/J(v) is given by 

r/J;(v) := n!-1 I l{lt(v) for all i EN 
1tE flN 

The idea behind the Shapley value is the assumption that the formation of the 
coalition N takes place according to a permutation n, with players joining one 
after the other in the order n-1 (1), n-1 (2), ... , n-1 (n). Player i receives his 
marginal contribution which is equal to the amount 1/1/'(v). The Shapley value 
assigns to player i has expected payoff in the case where all possible orders of 
formation are considered equally likely. The Shapley value of a convex game is 
the barycenter of the core. 

The r-value is defined on the set of quasi-balanced games, a subset of the set of 
all cooperative games. The set of balanced games is a subset of the set of 
quasi-balanced games and therefore if a game has a core allocation, then the 
r-value can be defined. If (N, v) is a cooperative game, we define the upper vector 
of the game to be the vector M(v) E Rn with coordinates M;(v) = v(N) - v(N\i). 
M;(v) is the maximal payoffplayer i can expect to obtain; if he asks for more the 
others will be better of without him. 

Further, we define the lower vector m(v) E Rn by m;(v) = max8 , ieS [v(S) -
LieS,j;"iM/v)]. The game (N, v) is quasi-balanced if m(v):::;; M(v) and 
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LieNm;(v) s v(N) s LieNM;(v). The r-value of the game (N, v) is the unique 
vector r(v) on the segment [m(v), M(v)] with LieN•;(v) = v(N). In the following 
section we only need the fact that for a convex game m;(v) = v(i) for all i EN. 

III) Sequencing and Cooperation 

If we have a single machine scheduling problem and an initial order of the jobs 
cr0 , then we can define a cooperative game (N, v) by taking N to be the set of 
agents behind each job. The characteristic function v of the game can be defined 
by considering the maximum cost savings that a coalition can achieve. This 
leads to the following definition for v(S) 

v(S) := L J;(C;(cr0 )) - min L J;(Ch)) 
ieS reA(S) ieS 

where A(S) is the set oftime tables, admissible for coalition S. It is clear that A(S) 
depends on the reorderings that we allow coalition S to perform. In this paper 
we mostly deal with two cases. The first one is the case where coalition S is 
allowed to reorder the jobs belonging to Sin any way it wants while the jobs not 
belonging to S do not change positions. The set of permutations that satisfy this 
property will be denoted by n;0 • When cr0 is the identity permutation the 
notation will be simplified to fl5 • The second case is more restrictive, coalition 
S is allowed to perform only those reorderings that respect its components 
according to the original order cr0 . This means that two jobs in Sare not allowed 
to switch their position if there is a job in between, not belonging to S. We will 
denote the set of permutations satisfying this property by PCS0 • When cr0 is the 
identity permutation this notation will be simplified to PC8 . The idea of compo­
nents can be formalized in the following way. The components of a coalition S 
with respect to the order cr0 are the equivalence classes in S under the relation 
i "'j where i "'j means that the coalition S contains all jobs k with ranking 
number cr0 (k) between that of i and that of j. For example if the initial order a0 
is the order l -< 2-< 3-< 4-< 5 and Sis the coalition { 1, 2, 4, 5}, then S consists 
of two components {1, 2} and {4, 5} and the switch (1, 4) is not allowed in the 
second situation (they are not allowed to jump over job 3). We denote the set of 
components of a coalition S with respect to a0 by S/a0 • 

Two papers on cost allocation play a crucial role in our discussion. 
(1) The first one is the paper of Tijs et al. (1984) where the following situation 

is discussed. All jobs have processing time one and all reorderings of its jobs are 
allowed to coalition S. The original order of the jobs is taken to be given by 
the identity permutation. Let A be an N x N-matrix where Aii denotes the 
cost player i incurs if he takes the j-th position. A permutation game is defined 
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by 

v(S) := L Aii - min L Ai.,<i> 
ieS ae fis ieS 

The main result of this paper is that permutation games are totally balanced. 
(2) In the paper on sequencing games of Curiel et al. (1989) the situation is 

different. There the jobs may have different processing times and the weighted 
completion time criterion I, rx.;C; is studied. Also, the original order need not 
be given by the identity permutation. For a coalition S only the permutations 
which respect the components of S in the original order are allowed. Hence, a 
sequencing game is defined by 

v(S) := I, rx.;C;(0'0 ) - min I, rx.;Ci(O') 
ieS aePC~O ieS 

One of the results of the paper is that sequencing games are convex (and 
therefore totally balanced). Urgency indices are defined in the following way. 
For each job i the urgency index ui is given by rt.;p; 1. It follows from Smith's rule 
that an optimal order for the jobs is to arrange them according to decreasing 
urgency indices. Such an optimal order can be achieved by a series of switches 
of neighbours. Let i and j be two neighbours with i standing in front of j. The 
gain obtained by switching i andj is denoted by gii and given by 

Using the gu's an alternative expression for v can be given. Let T be a connected 
coalition, i.e. a coalition which consists of only one component. Then 

v(T) = I, 9u . 
i,j E T,a0 (i) < ao(j) 

For a non-connected coalition S the total cost savings is the sum of the cost 
savings in all its components. Hence, 

v(S) = I, v(T) 
TeS/a0 

Furthermore, the authors introduce a simple allocation rule for the cost savings, 
the Equal Gain Splitting (EGS) rule. The EGS-rule splits 9u equally between i 
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andj. Formally, 

EGS;(v) = 1/2 ( L 9ki + L gii) 
ao(k) «ro(i) ao(j)> ao(i) 

The authors prove that EGS-rule assigns to each sequencing game a core 
allocation. So, we can find a core allocation without computing the values v(S) 

of the game. 
N.B. In the sequel of this paper we will use the following notation. If a0 is the 

initial order of the jobs and i and j are jobs with a0 (i) < a0 (j), then [i,j]a0 := 
{kla0 (i) ~ <r0 (k) ~ a0 (j)} and we write [i,j] instead of [i,j]a0 if <r0 is the natural 
order 1 -< 2-< · · ·-< n. For a coalition T the T-unanimity game Ur is defined by 
ur(S) = 1 if T c Sand ur(S) = 0 for all other coalitions S. It is easy to check that 

a sequencing game v can be expressed by v = Lao(i) <aoU>9iju1;, 11• 0 • 

Example: We consider a situation where there are three jobs (customers) with 
processing times vector p = (2, 3, 5), weights vector a= (1, 3, 6), due dates d = 

(5, 3, 8) and penalties for lateness a = (1, 4, 7). The original order is given by the 
identity permutation. The admissible rearrangements of jobs for a coalition Sare 
those that do not switch jobs that are in different components of S, i.e. no 
jumping over non-members is allowed. 

In we consider the weighted cost criterion, we find the following sequencing 
game v(l, 2) = 3, v(2, 3) = 3 and v(l, 2, 3) = 13 (with optimal order 3 -< 2-< 1). 
The coalition ( 1.3) has value 0 as a (profitable) switch (1, 3) is not allowed since 
this would involve jumping over 2 who is not in the coalition. This game has a 
non-empty core. A core allocation is for example (4, 5, 4). 

If we consider the penalties for lateness, we get another game w with the 
following values: w(l, 2) = 4 (by a switch (1, 2) the second job is no longer late 
and the penalty is saved), w(2, 3) = 7 (job 3 is no longer late). Again w(l, 3) = 0 
for the same reason as in the game v. Finally, w(l, 2, 3) = 10 (the optimal order 
is 2-< 3-< 1). This game also has a non-empty core. An example of a core 
allocation is given by (2, 4, 4). 

2 Cost Allocation in the Case of Equal Processing Times 

In this section we consider one machine scheduling problems under the follow­
ing conditions. The processing times Pi are one for all jobs i EN. The initial order 
of the jobs is 

a0 : l -< 2-< · · · -< n 
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and 0 = ri s r2 s · · · s r •. Furthermore, the ready times are integers. The cost 
functions f;: [ri + 1, - )--? R+ are weakly monotonic. Let {todkeN fix the semi­
active time table r 0 belonging to the initial order a0 . In order to define a cost 
savings game we have to give the admissible actions for a coalition S c N. 

To start with, we admit every time table T = {tdkeN with It; - til;:::: 1 for all 
jobs i, j E N, i i= j (no overlap), ti = t0i for all jobs j E N\S (the jobs not in S take 
their original position) and ti ;:::: r; for all jobs i ES (the ready times are respected). 
Let us call such time tables S-feasible. 

The following lemma states that there is no loss of efficiency if we only allow 
permutations of the jobs. 

Lemma 1: If r is a S-feasible time table, then there is a S-feasible time table r' such 
that all jobs of S hold a position initially also taken by a job in Sand all completion 
times are at most as large as under r. 

Proof: The proof goes in two steps. 

I) If there is a job i E S of which the starting time can be decreased without 
changing the job order or violating the ready time conditions we do so. Under 
such an action completion times decrease. After several moves we have a time 
table in which no such actions are possible for job in S, a so-called S-semi-active 
time table. Without loss of generality we may assume that T is S-semi-active. 
Note that in a S-semi-active time table the starting times of all jobs are integer 
(since To is semi-active, P; = 1 and ri EN for all i EN). 
II) We assume that r is S-semi-active. If r is not permuting the time slots of S 
under T0 , there is a time slot [p, p + 1], p EN which is empty under To and 
occupied under T. Take the first time slot of this kind. The jobs k EN starting 
later than p in T0 , do so because their ready time is larger than p. (since r0 is 
semi-active and the ready times are weakly increasing). Therefore the time slot 
[p, p + 1] is taken by a job m starting before pin r 0 . Hence, in time table T there 
are fewer jobs (in S) starting before time p and at least one of the time slots before 
[p, p + 1], initially taken by a job of Sis empty under T. Take the first time slot 
of this kind: [q, q + 1]. Then there are less jobs in S starting under r before q + 1 
than under r 0 and there is a job in S which starts under T later than time q and 
can start at time q. If we let it start at time q we have one job with a lower 
completion time and the time table is still feasible. So we proved: 

As long as there is a job in S in a time slot not taken under r 0 we can decrease 
the completion time of at least one job in S. 

After finitely many moves we have a time table r' of the type we looked for with 
no completion time larger than under c. • 
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By the Lemma we can restrict the set of admissible actions of a coalition S to 

A(S) := { {toa(i)heslo- Ells and toa(il ~ r; for all i ES} 

Then the cost saving game (N, v) is defined by 

v(S) := L J;(toi + 1) - min L f;(toa(il + 1) 
ieS ae fls ieS 

and we can formulate the following theorem. 

Theorem 2: The cooperative game (N, v) as defined above is a permutation game 
and consequently totally balanced. 

Proof: Let M be a real number with M > Lie N J;(t0 i + 1) and define the N x N­
ma trix A by Av := J;(t0i + 1) if t0i ~ r; and Aii := M if t 0i < ri. We introduce the 
permutation game (N, w) defined by the matrix A i.e. 

w(S) := L A,i - min 2: Aia<O 
ieS GE fls ieS 

Notice that in the game w the jobs are allowed to take positions which are not 
feasible but they can only do so for large cost M. Since a coalition can always 
decide to hold the positions they initially had, no coalition will ever take an 
infeasible position. This means that the infeasible actions available in the defini­
tion of ware in fact never used: w = v. So, the game (N, v) is a permutation game 
and totally balanced by the main result ofTijs et al. (1984). QED 

3 I 0-Components Additive Games and o-0-Pairing Games 

In this section we introduce a class of cooperative games for which we can 
determine core allocations by an easy rule (the /3-rule). Next we show how cost 
allocation problems for certain one-machine scheduling problems lead to games 
in this class. Furthermore, we prove that sequencing games as defined by Curiel 
et al. (1989) form a subclass of our class and that the Equal Gain Splitting rule 
(cf. Curiel (1989)) is a special case of the /3-rule. The proofs of these theorem will 
appear in Curiel et al. (1993). 
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Let N be the player set and a0 : 1 -< 2-< 3-< · · ·-< n be a given order of the 
player set N. We call a cooperative game (N, v) a a0-components additive game1 if 

(a) v(i) = 0 for all i e N (b) vis superadditive (c) v(S) = L v(T) . 
TeS/a0 

In addition to the set P( a0 , i) of predecessors of i with respect to the permutation 
<To defined in section 1, we define the set F(a0 , i) of followers of i with respect to 
the permutation <T0 by F(a0 , i) := {j e Nl<T0 (i) < a0 (j)}. Let P(a0 , i) be the set 
P(a0 , i) together with i and let F(a0 , i) be the set F(a0 , i) together with i. For 
<T0-components additive games we define the [3-rule by 

/3;(v) := l/2(v(P(a0 , i)) - v(P(a0 , i)) + v(F(a0 , i)) - v(F(<T0 , i))) . 

Comparing the [3-rule with the Shapley value we see that while the Shapley value 
takes the average of all the marginal vectors l/J(v) of the game v, the [3-rule takes 
the average of two marginal vectors, the one belonging to the given order <To and 
the one belonging to the inverse order of a0 • In the following theorem we show 
that the allocation defined by the /3-rule is in the core for a0-components additive 
games. 

Theorem 3: The [3-rule gives a core allocation for <T0-components additive games. 

Proof: (see Curiel et al. (1993)). 

Sequencing games as studied in Curiel et al. (1989) are special cases of a0-

components additive games. Other examples of a0 -components additive games 
are given by the following situation. Let us consider the one-machine scheduling 
problem with ready times r; = 0 for all jobs i e N, arbitrary processing times 
Pi> 0 and weakly monotonic cost functions f;,: [p;, - ) -+ R+. A coalition S is 
only allowed to reorder the jobs inside components of S. Then 

v(S) := I, J;(t0 ; + p;) - min I, f;(t;" + p;) 
ieS 11ePc;0 ieS 

where t;,, is the starting time of job i e S under the permutation n. Theorem 4 
states that the cooperative game (N, v) is a a0-components additive game and 
hence, that the [3-rule gives a core allocation. 

Recently Potters and Reijnierse (1993) investigated the properties of I'-component additive 
games. These games satisfy the conditions (a) and (b) and (c') v(S) = Lresirv(T) wherein Tisa tree 
with node set N and S/ r is the set of components of S in r. 
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Theorem 4: Every one-machine job scheduling problem with an additive and regular 
cost criterion and ready times zero gives rise to a a0 -components additive cost 
saving game, and consequently, the /3-rule gives a core allocation of the game. 

Proof: (see Curiel et al. (1993)). 

Example: Let us consider a three-job one-machine problem with the following 
data. The initial order is given by the identity permutation and 

p1 = 1, p2 = 3, p3 = 2, d1 = 5, d2 = 3, d3 = 5, a 1 = 1, a2 = 2 and a3 = 2 . 

Note that in the initial order job 1 is on time and job 2 and 3 are tardy. The total 
penalty is 2 + 2 = 4. Coalition (1, 2) can decrease its cost by 2 by switching the 
two jobs causing them both to be on time: v( 1, 2) = 2. By switching the two jobs 
coalition (2, 3) can also decrease its cost by 2 while coalition (1, 2, 3) can decrease 
its cost by 3. The /3-rule yields the allocation (1/2, 2, 1/2) which is in the core. 

A cooperative game v is called a a0-pairing game if v is an element of the 
positive cone generated by the games { uw1• I a0 (i) < a0 (j) }. 

Sequencing games are a0 -pairing games0 but not every a0-pairing game is a 
sequencing game. 

Example: Let N consist of four players and let v = uc 121 + ul 131 + uc 141 + 
ul231 + ul241 + u[3 41 . Then v(l, 2) = v(2, 3) = v(3, 4) = v(l, 2, 4) = v(l, 3, 4) = 1, 
v(2, 3, 4) = v(l, 2, 3) = 3, v(l, 2, 3, 4) = 6 and v(S) = 0 for all other Sc N. It 
follows that for this to be a sequencing game the original order should be 
either 1 -< 2 -< 3 -< 4 or 4 -< 3 -< 2 -< 1. Assume that the second one is the case. 
From v(l, 2) = v(2, 3) = v(3, 4) it follows that g21 = g32 = g43 = 1. Because 
v(l, 2, 3) = 3 we have g31 = 1, and because v(2, 3, 4) = 3 we have g42 = 1. 
Finally, v(l, 2, 3, 4) = 6 implies g41 = 1. However, it is impossible to find pro­
cessing times P; and weights a; such that gii = 1 for all i > j. The same difficulty 
is encountered if we start with the first order. 

It is easy to verify that every a0-pairing game is a a0-components additive 
game but not every a0-components additive game is a u0-pairing game. In fact, 
since the games ul;n. , i < j are convex, every a0-pairing games is convex 
whereas a a0-components additive game need not be convex. 

Example: Let N be the set {l, 2, 3} and v(l, 2, 3) = 3, v(l, 2) = v(2, 3) = 2 and 
v(S) = 0 for all other coalitions. This is the game from the example directly after 
theorem 4. We saw that (N, v) is a a0 -components additive game with a0 the 
identity permutation. It is not convex, since v(l, 2) + v(2, 3) > v(l, 2, 3) + v(2), 
and hence it is not a a0-pairing game. Note that v = 2ul 121 + 2ul231 - u[l 31 . 
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The following theorem describes the /3-rule, the Shapley value and the r-value 
for a0 -pairing games in terms of the coefficients gii• i < j. For simplicity of 
notation we will assume throughout the theorem that a0 is the identity permuta­
tion. For any other permutation the proof proceeds similarly. 

Theorem 5. Let (N, v) be a a0-pairing game and v = Li<igiiu[iJ1" Then 

1) /3;(v) = 1;2(Ij<i9ji + Li<k9ik), 
2) <P;(v) = Li5;i5;k.i"k(k -j + W 1 gik> 
3) r;(v) = AMv(i) with A= (Li<k(k - j + l)gikr 1(L;,i9u). 

Comment: The number gii is the profit which the players i and} can make if they 
cooperate with the players between i and j. The /3-rule makes an equal division 
of the profit between i and j and the Shapley value distributes the profit equally 
among the player i, i + 1, ... up to j. 

Proof: 

1) By definition, f3;(v) = 1/2(v(P(a0 , i)) - v(P(u0 , i)) + v(F(u0 , i)) - v(F(u0 , i))) 
Since all these coalitions are connected we find 

After deleting common terms we find /3;(v) = 1/2(Li<i9ii + Li<k9ik). 
2) By the linearlity, symmetry and dummy-player property of the Shapley value 
we find 

I gjklk-J+W 1 

j 5;i 5;k,j *k 

where lu.kJ(i) = 1 if i E [j, k] and 0 otherwise. 
3) A u0-pairing game v is convex with v(i) = 0 for all i E N. Therefore, the 
r-vaiue is a multiple of the marginal vector M(v): r(v) = ).M(v) with ). = 
(LeN M;(v}( 1 v(N). Cf. Driessen and Tijs (1985). Further, 
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and therefore, 

I Mi(v) = L (k - j + l)gik . 
ieN j<k 

This finishes the proof of the theorem 5. QED 

With the expression for the P-rule given in theorem 5 it is easy to see that the 
EGS-value is a special case of the P-rule. 

Summarizing, we have done the following in this section. We have introduced 
two generalizations of sequencing games, namely 0'0-components additive games 
and 0'0-pairing games. The relationship between these games is as follows: every 
sequencing game is a u0-pairing game and every 0'0-pairing game is a 0'0-compo-

~ nents additive game. All the inclusions here are strict. Furthermore, we showed 
that every u0-components additive game is balanced and that the P-rule yields a 
core element. Using this result we showed that except for the weighted comple­
tion time criterion considered by Curiel et al., the penalties for tardiness criterion 
also gives rise to balanced games. Contrary to the sequencing games studied by 
Curiel et al. these games need not be convex. For 0'0-pairing games a concise 
description of the P-rule, the Shapley-value and the '!-value were given. 

4 Final Remarks 

In the sections 2 and 3 we associated with a one-machine scheduling problem a 
cooperative game and used this game to find a fair allocation of the minimal 
cost. The value of a coalition S was defined as the maximal cost savings which 
the coalition can reach by S-admissible rearrangements. In section 2 where all 
the processing times are equal, the set of S-admissible rearrangements of the jobs 
is the set of all permutations of the jobs in S, whereas in section 3 where the 
processing times differ, the set of S-admissible rearrangements is the set of all 
permutations of the jobs in S which respect the components of S (with respect 
to the original order). The rationale behind this is that if the processing times are 
equal the players not in S do not mind if jobs in S jump over them in the process 
of switching because each job has the same processing time anyhow. However, 
if the processing times are not equal, then a player not in Swill object to jobs in 
S jumping over him since he might end up with jobs in front of him that have a 
longer processing time than the jobs he had in front of him in the original 
order. But even if the processing times are not all equal, there may be more 
rearrangements which do not hurt the interests of the players outside the coali­
tion S or from which they might even benefit. Therefore we introduce in this 
sect~on larger classes of S-admissible actions. The first class of S-admissible time 
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tables can be described as follows: A time table ' is admissible if for every 
j t S tj = t0j and <J(j) = <J0 (j). So the jobs outside of S take their original posi­
tions and the number of predecessors of every job outside of S remains the same. 
Members of S are allowed to jump over non-members as long as these two 
conditions are satisfied. A wider class of actions can be given by tj s to,j for every 
j t S and a(j) = <J0 (j) for every j t S. Now some jobs outside of S may profit 
from the action of Sand some jobs in Smay take also indirectly advantage from 
the earlier completion of some jobs outside of S. Two other extensions of the set 
of S-admissible rearrangements are the set of rearrangements n satisfying tj = 
to.j and the set of rearrangements n satisfying tj s t 0 .i for all j f. S. In the first 
two sets of rearrangements the number of predecessors of a job not in S does not 
change whilee in the last two rearrangements this number might change as long 
as it does not cause a delay in the starting time of any job not in S. 

An example will clarify the distinction between these classes of actions. Let N 
consist of four jobs 1 -< 2-< 3-< 4 and let p1 = 5, p2 = 3, p3 = 2 and p4 = 1. 
Consider the coalition S = {l, 3, 4}. The components of Sare {1} and {3, 4}. 
Note that the only admissible action which respect the components is the switch 
(3, 4) with a semi-active timetable ' given by '!(l) = 0, '!(2) = 5, r(4) = 8 and 
'!(3) = 9. With our four new sets of rearrangements we get the following time 
tables (see figure). 

In the first class of actions it is possible to go to the time table 

'!(4) = 0, '!(2) = 5, '!(l) = 8 and '!(3) = 13 

In the second class we can go to the table 

'!(4) = 0, r(2) = l, r(l) = 4 and r(3) = 9 

In the third class the following time table is admitted 

'!(4) = 0, r(3) = 1, r(2) = 5 and r(l) = 8 . 

And finally, in the fourth class we can obtain the time table 

'!(4) = 0, r(3) = 1, r(2) = 3 and r(l) = 6 . 

The drawback of these classes of S-admissible actions is that admissibility 
depends on the data of the scheduling problem. An S-feasible action in one 
problem may be not feasible in an other problem. Further, the actions in the 
second and fourth class can only be performed if some players outside S are 
willing to shift forwards. This means that a mild form of cooperation with 
players outside Sis required. 
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5 10 11 

Initial time table: J 1 J 3 J 4 

13 15 

Possible time table after 
J 4 FREE J 1 J 3 

an action of type 1: 

11 
Possible time table after 
an action of type 2: J 4 J 1 J 3 

5 13 

Possible time table after 
an a::tion of type 3: J 4 J 3 FREE J 1 

3 6 11 

Possible time table after 
J 4 J 3 J 1 

a!'. action of type 4: 

Fig. I. 

In Veltman (1988) the games arising from the second relaxation are proved to 

be superadditive and balanced for n = 2 and 3. Hamers (1988) proved by ad-hoe 

methods that these games are balanced for n = 4. Further there are no results 
known. 

References 

Curiel IJ, Pederzoli G, Tijs SH (1989) Sequencing games. European 1 of Operational Research 
40: 344-351 

Curiel IJ, Potters JAM, Rajendra Prasad V, Tijs S, Veltman B (1993) Sequencing and cooperation. 
Forthcoming in Operations Research 

Driessen TSH, Tijs SH (1985) The -r-value, the core and semiconvex games. International 1 of Game 
Theory 14:229-247 

Granot D, Huberman G (1981) Minimum cost spanning tree games. Mathematical Programming 
21: 1-18 

Hamers H ( 1988) Wachtrijspelen. Master's thesis Mathematics, University of Nijmegen, The Nether­
lands (in Dutch) 

Kalai E, Zemel E (1982) Totally balanced games and games offlow. Math of Operations Research 
7:476-478 

Owen G ( 1975) On the core of linear production games. Math Programming 9: 358-370 

Potters JAM, Curiel IJ, Tijs SH (1992) Traveling salesman games. Mathematical Programming 
53: 199-21 l 



Cooperation in One Machine Scheduling 129 

Potters JAM, Reijnierse JH (1993) I'-component additive games submitted to SIAM J. of discrete 
mathematics 

Shapley LS (1953) A value for n-person games. Ann of Math Studies 28: 307-317 
Shapley LS (1971) The assignment game I: the core. Int Journal of Game Theory 1: 111-130 
Tijs SH (! 981) Bounds of the core and the r-value. In: Game theory and mathematical economics, 

Moeschlin 0, Pallaschke D (Eds) North-Holland Pub!. Cie, Amsterdam, 123-132 
Tijs SH, Driessen TES (1986) Game theory and cost allocation. Management Science 32: 1015-1028 
Tijs SH, Parrhasarathy T, Potters JAM, Rajendra Prasad V ( 1984) Permutation games: another class 

of totally balanced games. OR Spectrum 6: 119-123 
Veltman B (1988) Wachtrijspelen. Master's thesis Mathematics, University ofNijmegen. The Nether­

lands (in Dutch) 


