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Because a �xed prior is projected into the model space, over�tting cannot occur as modelorder is increased.The method is derived in x2. It is a basis function method using a Kalman �lter algorithm,in which the prior enters via an initialisation procedure. Several useful classes of priors areintroduced and discussed in x3. An illustration using synthetic data is presented in x4, andseveral tests on real data sets are presented in x5. The selection of priors for the real data setswould normally rely on domain knowledge. Data sets which are available over the Internetwere used, and these are usually supplied with little domain knowledge. However, reasonableresults were obtained by choosing priors in accord with the likely motives of people in generalwho make data sets available. This matter is discussed in x6. Conclusions are summarised inx7.2 Theory and AlgorithmTo avoid excessive notation we shall formulate the theory in the one dimensional case. Thegeneral case is quite similar, with more indices in the notation. The problem to be solvedis to �nd a function g : X ! Y as the regression of data set zk = [z1; : : : ; zk], whereX = Y = R and zi = [xi; yi], such that the expected mean squared error 
(g(xj)� yj)2�k isminimised on any test data (j > k). In the above the notation h�i and h�; �i denote mean andcovariance, respectively, conditional on zk when a subscript k is present, and unconditionalwhen unsubscripted or with subscript 0.In order that this problem has any solution at all, an underlying mechanism must be assumed.For this we assume that the data is generated by an unknown function f : X ! Y andindependent Gaussian noise �:yi = f(xi) + �i; h�ii = 0; h�i; �ji = �22�ij ; (2.1)where �ij is the Kronecker delta. The input x is assumed to be sampled from a distributionp(x) which remains the same for both the training and test data.Our algorithm will be based on the following decomposition of errorsD(yj � g(xj))2Ek = Dkf � bfkk2Ek + k bfk � gk2 + D�2E ; (2.2)where bfk := hfik is the posterior mean, and the norm k � k is de�ned bykfk2 := Z dx p(x)f(x)2: (2.3)This can be veri�ed by noting thaty � g(x) = (y � f(x)) + (f(x)� bfk(x)) + ( bfk(x)� g(x)); (2.4)and that conditional on zk, the three terms on the right hand side are independent. Thereforethe generalisation error is the sum of three terms, representing the lack of knowledge of f(the variance), the deviation of g from the mean bfk (the bias), and the intrinsic noise �. Theminimisation problem is equivalent to minimising k bfk � gk2 with respect to g. There is nobias/variance trade-o� as discussed in [2], since the generalisation error is already de�ned asthe expected error on test set. 2



The posterior of f also depends on the prior of f , ie. the unconditional distribution Pr(f). Itis shown elsewhere [14, 15] that no learning rule can be independent of a prior, either explicitlyor implicitly. We shall later explain how the explicit form of the prior can be written downfor practical problems. Here we assume that f is a Gaussian random �eld 1 with a mean bf0and a covariance kernel V0. That is,hf(�)i0 = bf0(�); hf(�1); f(�2)i0 = V0(�1; �2): (2.5)After a data set zk is observed we obtain a posterior P (f jzk), which is the distribution of fconditional on zk . It is a Gaussian random �eld with mean bfk and covariance kernel Vk.If we actually compute bfk and Vk, we shall be able to keep all the information in the posterior,which enables this process to carry on even if the data used to generate them is discarded[12]. They are called jointly su�cient statistics. Unfortunately, they can only be representedby vectors and matrices of dimension k, the size of the sample used to calculate them.In our approach to be described here, we only keep an approximation of them, bgk and Sk,within the model space M , which is a linear space of functions of �xed dimension m, spannedby a basis � = [�1; : : : ; �m], where each �i : X ! Y . That is, M = fPi �iwi : w 2 Rmg.The basis can be of any form, as long as on average the functions f in the prior Pr(f) can beapproximated by members of M reasonably well.If we knew the true bfk and Vk, then the best approximation bgk would be given by projectingthem onto M , but unfortunately, to do this we need to keep all the information necessary tocompute bfk . The projection operator is given by PM = �	TP , where 	 is the dual basisgiven by 	 = �H�1, H is the Hessian given by H = �TP�, and P is the inner productoperator de�ned by p(x). In greater detail, these arePMf(�1) =Xi �i(�1) Z d�2  i(�2)p(�2)f(�2); (2.6) j(�) =Xi �i(�)(H�1)ij ; (2.7)Hij = Z d� �i(�)p(�)�j(�); (2.8)P (�1; �2) = p(�1)�(�1 � �2); (2.9)where �(�) is the Dirac delta function.The regression �lter approach is to also \project" the likelihood function to the subspace, sothat all the calculations can be carried out directly within M . This has the advantage thatthe method can be implemented as a Kalman �lter and is very e�cient in terms of computingcost. The drawback is that there is an inevitable loss of information, in the sense of Fishere�ciency. In practical terms, an e�ciency � < 1 means that, given a data set of size k, theestimate given by this approximate method will be, on average, as accurate as that givenby the best method possible from a data set of size �k. The e�ciency depends on how wellthe functions in the prior are modelled by M on average. It increases towards unity as Mbecomes larger.The actual algorithm is simply a standard Kalman �lter algorithm [1] with a particularmethod for setting the initial mean and variance.1In one dimensional cases it is usually called a random process.3



1. Use prior knowledge to select a mean hfi0 = bf0, and covariance kernel Df; fTE0 = V0.2. De�ne model space M by selecting basis �. Compute its dual basis 	.3. Project the prior onto the weight space, represented by the mean bw0 = 	TP bf0 andweight space covariance S0 = 	TPV P	.4. Given a new data point zk = [xk; yk], update the posterior by the Kalman �lter, whichis equivalent to S�1k = S�1k�1 + ��22 �(xk)T�(xk); (2.10)S�1k bwk = S�1k�1 bwk�1 + ��22 �(xk)Tyk ; (2.11)where �(xk) = [�1(xk); : : : ; �m(xk)]. 2 The standard implementation of a Kalman �lteruses a more computationally e�cient version of these equations.3 Specifying the PriorOne requirement of the algorithm is the explicit speci�cation of priors. This should representthe knowledge or requirement of the smoothness of the function f before any data is observed.This therefore acts as a de�nition of \over-�tting". In practice, one would like to specify theprior which actually describes the distribution of problems the algorithm is to be applied to.Therefore it is of interest to supply some generally applicable forms of prior and study theirproperties. The e�ect of the prior mean is intuitively clear, so here we shall only consider thee�ect of the prior covariance kernel.Covariance kernels can generally be represented as V0(�1; �2). In practice, however, the mostimportant ones are \translation invariant",V0(�1; �2) = V0(�1 � �2): (3.1)Invariance means that the X space is parameterised so that before the arrival of data, wewould not expect the variability of functions drawn from the prior at one point of X to bestatistically di�erent from that at another point. This property is only preserved under lineartransforms. It can be shown that Dkfk2E = k bf0k2 + V0(0): (3.2)Denoting �21 := V0(0), and using a scaling parameter �0 on X space, we haveV0(�) = �21V 00 (�=�0); (3.3)where V 00 is normalised so that V 00 (0) = 1. Here �0 speci�es the X space correlation lengthof f , and �1 speci�es the Y space variability of f . For multidimensional X and Y , �0 and �1are in general matrices instead of scalars.The following are some of the most important covariance kernels: 32The points xk are not random at the time it is used.3The kernel, which might or might not be of the form of a Gaussian function, parameterises the prior, whichis always Gaussian random �led. 4



� The Gaussian kernel (Figure 1) V 00 (�) = exp(��2=2): (3.4)� The Laplace kernel (Figure 2) V 00 (�) = exp(�j�j): (3.5)� The Bachelier-Wiener Process [4] (Figure 3) has a covariance function which is usuallycalled the \hat" functionV 00 (�) = (1� j�j)+ = max f1� j�j; 0g : (3.6)The prior can also be de�ned in terms of �ltered white noise [4], which provides a convenientway to generate sample functions, thus assisting intuition about the prior. The �lter F isrelated to the covariance kernel V byV (�1; �2) = Z d�3F (�1; �3)F (�2; �3): (3.7)A sample from this prior can be generated from a white Gaussian noise process u byf(�1) = Z d�2F (�1; �2)u(�2): (3.8)A translation invariant F always corresponds to a translation invariant V , and for any trans-lation invariant V a corresponding translation invariant F can always be found. Either ofthe above implies that the Fourier transform of V is the square of the modulus of the Fouriertransform of F . This fact can be used to generate a suitable F from a given V .As a further example, a sample from a prior with Laplacian �lter (not kernel) F (�) =�1 exp(�j�j=�0) are shown in Figure 4. This provides one of many possible intermediatelevels of smoothness between the Gaussian and Laplacian kernels.4 Illustration using synthetic dataA one dimensional example illustrates the main features of the the method (Figure 5), par-ticularly the role of the parameters in the prior and the model order (Figure 6).The prior Pr(f) is a Gaussian random process on F with zero mean hfi = 0, and a Laplaciancovariance kernel V (�; �0) = �21 exp(j���0j=�0) with �0 = :5 and �1 = 1. Five randomly drawnsample functions from this prior are shown in Figure 5(a). The general variability reectedby these sample functions is all the prior knowledge.Further suppose that all the training data and test data are contained in the interval [�4; 4],with uniform distribution p(x), and that the noise � is an independent zero-mean Gaussianprocess with �2 = :5. The training data is then generated by y = f(x)+ �, using a particularf drawn from Pr(f), and is shown in Figure 5(b). This is all that is seen by the �lter.The approximation space M is chosen to be S10-splines, ie., continuous piecewise-linear func-tions. 4 The basis functions are shown in Figure 5(c).4Other basis functions such as harmonics or Gaussians, can also be used. They have been tested and giveno substantial di�erence. The present choice makes the e�ect of basis functions more visible on the plots inFigure 6 for small m. 5



The dynamic progress of the regression �lter is shown in Figure 5(d){5(f), together with threeerror bars, indicating the cumulative e�ects of the uncertainty about bgk, the approximation,and the additive noise in the test data, in that order. 5These results can be compared with those obtained by the method of MacKay [5]. It isimportant to note that in that method, the model size and smoothness are implicitly related,because a diagonal prior on the weight space is used with a basis function width inverselyproportional to the number of basis functions. Our results are tabulated for di�erent m and�0 in Figure 6. The diagonal sub-plots correspond to those allowed in MacKay's framework.It is obvious from these plots that the parameter concerned with under- or over-�tting is �0,instead of m.It might appear from a casual inspection of Figure 6 that increasing the dimensionality mwill not enhance the results beyond a point determined by �0. This is not true in general,since all the plots in Figure 6 are obtained from a �xed-sized sample (ie. training set). As thesample size increases, the models with larger m will do better, even when �0 is �xed. Thesmoothness speci�ed by �0 is only a preference. The �nal result is allowed to have any non-smoothness expressible in the approximation space, should the data provide strong evidence.On the other hand, the smoothness speci�ed by using only smooth approximation functionswill be such that only smooth curves are allowed, even when the data indicates otherwise.If one really believes that the underlying function f is always smooth, it is advisable to assumea prior with Gaussian covariance kernel, which will assign vanishingly small prior variance tohigh frequency components [4]. This has the e�ect that it requires a higher than exponentiallyincreasing amount of data to force the regression to have higher frequency components. Thisindeed makes a high-dimensional model redundant.5 Tests on real dataIt is widely held that the only objective way to measure the performance of a method is totrain and test the algorithm on data sets from a large number of applications. This type oftesting is not as \objective" as it might appear, since it risks blaming the method for whatis actually an inappropriate (often implicit) choice of prior. However, even in this situationwe can still apply the regression �lter by determining an appropriate prior for the ensembleof tasks.The method was tested on a selection of 13 publicly available data sets obtainable over theInternet. The choice of data sets was restricted by various considerations. For example, thisalgorithm is not designed for missing values, or non-Gaussian processes. We also want datasets for which the training sets and test sets can be mixed and resampled, partly because thealgorithm is derived under the assumption that the training set and test set come form thesame distribution, and partly because we need many simulation runs to measure an averageperformance. The selected datasets are shown in Table 3.For this \Internet game" we make the following observations:5The �rst two error bars are often practically indistinguishable, especially for plots with small numbers ofdata points and high model dimension. 6



� It seems reasonable to choose a prior which consists of a linear component which dom-inates the non-linear terms. 6� The data sets are usually supplied because there are some regularities contaminated byrandom noise, the ratio of which may be captured by �2=�1;� The data sets are usually generated by researchers with some understanding of theapplication so that the number of sample points is about right for describing the regu-larities;� The true regression is usually quite smooth so that a Gaussian kernel can be assumed;� We perform an a�ne transform on the input space so that the training data inputs havezero mean and unit variance. 7 We assume that after this input preprocessing all theinput dimensions are of comparable scale.Therefore we write V (�1; �2) = �21 exp(�j�1 � �2j2=2�20); (5.1)in terms of hyperparameters C0 and C2 whereCd0 = N�d0; �2 = C2�1; (5.2)where d is the dimension of the input space X , and N is the sample size. The value ofC0 describe roughly how many sample points there are for each \oscillation" of the trueregression. The value of C2 describes roughly the \noise/signal ratio".Table 1 shows the e�ect of C0 and C2 on generalisation performance for a particular data set,the \Boston house price" data. We choose to analyse this data set carefully partly becausethere are several results of other researchers which we can compare with, and partly becauseit is relatively small 8 so we could perform the following simulations requiring 5�5�20 = 500runs in reasonable time (several hours). We ran the algorithm on each combination of C0 =�0N1=d 2 f:75; 1:5; 3; 6; 12g and C2 = �2=�1 2 f:025; :05; :1; :2; :4; g. For each combination,we ran the algorithm 20 times, each time drawing a new partition into a training set and testset, and randomly selecting the basis centres from the training set. This produces 20 test setmean squared errors for each pair (C0; C2), for which the table gives the averages. Figure 7shows an interpolation of this table.A selection of results of other methods on the same data set is given in Table 2. Thesemethods make various assumptions at various levels of explicitness about priors. It is clearby comparing Table 1 and Table 2 that the regression �lter can perform better or worse thanany of these, depending on the choice of prior. However, by the following more extensiveexperiments, we are able to enter a particular MSE, 13, for regression �lter in Table 2.Assuming that Internet data sets are drawn from one grandiose distribution, we can measurethe hyperparameters of this distribution, C1 and C2, by inspecting an ensemble of data6For computational simplicity, an alternative but equivalent approach is adopted. We �rst perform a linearregression on the training data, and then only work on the residuals. We assume that it has a zero mean.7These operations involve little computational cost, and is always implicitly assumed in the sequel.8It has 13 inputs and 1 output, with 506 samples partitioned to 253 training samples and 253 test samples.Each run takes about half a minute. 7



C2C0 .02 .05 .1 .2 .4.75 24.7428 21.8528 21.4950 21.3076 21.28221.5 18.0275 17.9603 17.9672 17.9990 18.13513 13.9183 13.7582 13.5115 13.3436 13.86776 13.7740 12.7685 11.8671 12.8733 15.824912 14.0007 11.8116 14.2269 17.4118 19.7492Table 1: MSE for Boston housing data versus hyperparametersModel & learning rule, MSE on test setsRegression, constant function 83.4Regression, linear functions 28.9Monte Carlo, network with 8 hidden units 13.7Monte Carlo, network with two hidden layers 12.4Gaussian process regression 11.9Bayesian Regression �lter 13Table 2: MSE of di�erent methods on the Boston housing dataThe data in the �rst �ve rows are reproduced from [12]. The origin of the topfour rows is [9].sets. If the above assumptions about Internet data sets are correct, then this exercise shouldreveal a consistent range of values for these hyperparameters which could be expected to givereasonably good results for a randomly selected data set.We trained the network on K = 12 other data sets Dk; k = 1; : : : ; K, with various numberof runs. We always consider a data set as a whole, with the training sets and test sets beingrandomly sampled subsets. Since we know that this method always performs better withlarger m, we choose m as large as possible within reasonable computation constraints. 9 Theresults are shown in Table 3. For each data set Dk, the algorithm was run several times on aselection of hyperparameter values Ci in order to obtain a crude estimate of the optimal valuesCik. Since these are scale parameters, we work with their logarithms. The estimates and theiruncertainties are given in the form log10Cik � N(lik; sik2). The means li, uncertainty of themean si, and the standard deviation of the means among the data sets fDig are calculatedas li =Xk liksik�2=Xk sik�2; si�2 =Xk sik�2; (5.3)Si2 =X(lik � li)2=(K � 1): (5.4)9We usually choose m between 20 and 200. The data sets usually have dozens of input dimensions, a fewoutput dimensions, and have sample sizes ranging from a few hundred to a tens of thousands. A single runusually takes several minutes on a Sun Sparc 10 workstation. The algorithm is implemented as several matlabprograms. The basis functions are de�ned by choosing the centres randomly from the training inputs, andsetting the width to 1=m1=d on the transformed input.8



They are given in Table 4, with and without including the Boston house price data.k Data sets Dk C0 C2l0k s0k l2k s2kStatLib (CMU) data sets a0 boston 0.8 0.5 -1.2 0.51 bodyfat 1.0 1.0 -1.0 1.52 tecator 0.5 1.5 -1.5 1.53 polution 1.0 1.0 -0.5 1.04 cloud 0.0 3.0 0.0 2.0Data sets used in [10] b5 Mpg 0.5 2.0 -1.0 3.06 Cpu 1.0 1.0 -1.0 1.57 Aprce 0.0 1.5 -1.0 2.0UCI data sets c8 satim 0.5 1.0 -0.5 1.09 dna 1.0 1.5 -1.5 3.010 shuttle 1.0 2.0 -2.0 1.5Santa Fe data sets d11 santafeA 0.0 1.5 -1.0 1.512 santafeD 0.0 2.0 0.0 2.0aThese data sets can be obtained from ftp://lib.stat.cmu.edu/datasets.bWe obtained these data sets from J. Quinlan indirectly via G. Hinton in Toronto.cThese data sets can be obtained from ftp://ics.uci.edu/pub/machinelearning. They arealso used in the StatLog Project [7].dThese data sets can be obtained from ftp://ftp.santafe.edu/pub/TimeSeries. We use themto construct learning problems of predicting the next step from a window of 50 time steps.Table 3: Estimates of C0 and C2 for several data sets retrieved from InternetIt emerges that there is indeed a range of reasonable values for C0 and C2, for which thealgorithm performs well on most data sets. These are C0 � 5, C2 � :2, within a factorof about 2:5 up or down. Translating back to the familiar language of training radial basisfunctions, this means that the regulariser should be derived from a covariance kernel havingwidth of about 5 sample points in each dimension, and the prior should be about as importantas 1=:22 = 25 sample points.Choosing these averages (omitting the Boston house price results) for the hyperparameterswould give an MSE for the Boston housing data set of about 13, as entered for the regression�lter algorithm in Table 2. Considering the uncertainties in the hyperparameters, this MSEmight have been as little as 11.9 or as much as 19.7.6 DiscussionFigure 7 shows clearly that the choice of prior, or its \hyperparameters" is important. In afully consistent theory, neither the data nor the learning rule play any role in this, althoughproposals of this nature has been studied [5, 13, 6, 14]. The Bayesian regression �lter has theadvantage of using hyperparameters that express scales likely to be estimated from domain9



l0 s0 S0 l2 s2 S2Average without Boston datali; si; Si 0.68 0.39 0.47 -0.73 0.43 0.6610li ; 10si ; 10Si 4.83 2.44 2.98 0.19 2.70 4.60Average with Boston datali; si; Si 0.73 0.31 0.47 -0.87 0.33 0.6210li ; 10si ; 10Si 5.34 2.03 2.95 0.12 2.12 4.21Table 4: Average of estimates of optimal hyperparametersknowledge. This proved to be the case, to a reasonable extent, even in the domain of Internetdata sets. It would be interesting to attempt to con�rm this with a larger experiment.It can be seen that the best performance of the regression �lter algorithm with the \optimalhyperparameter" performs better than any of the other methods, on an average case bases.Such comparisons should be put in perspective, however. It is theoretically clear that withidentical conditions the regression �lter algorithm presented here cannot outperform the \re-gression with Gaussian processes" algorithm [12], since the latter keeps a su�cient statisticwhich is of the same size as the training set, and is always the optimal algorithm for anygiven prior. Considering the variability of the mean squared error expressed by Table 1, itcan be said that to the precision of these experiments, the regression �lter, which is a �xed�nite dimensional method, performs comparably with exact Bayesian algorithms which eithersample the posterior by a Monte Carlo method [8] or compute the posterior explicitly [12].It is important to point out that the \Internet game" is quite arti�cial, since in applicationsone really wants the algorithm to perform well on the problems which would arise in aparticular application area, rather than on average over many irrelevant problems. Thisshows a de�ciency in common practice for evaluating learning rules. Since our method isasymptotically optimal (as m increases), the competition is really on whether one �nds agood prior, which depends on the available computing resources and real world data sets,but not on the algorithm itself. From this point of view, tests on synthetic data with anexplicitly stated prior are more important, even to real-world users of the algorithm, becausethey circumvent this issue. Real-world users would normally have better domain knowledgethan in the \Internet game", and could therefore choose a prior which is better concentratedon problems from the particular application. This process is assisted by the intuitively clearinterpretation of the hyperparameters of the regression �lter algorithm, and �gures such asFigure 1-4, which can be compared to domain-based intuition to select an appropriate kernel.7 ConclusionsThe regression problem is analysed in a Bayesian framework, and approximately solved withina �nite-dimensional model space. By de�ning the prior directly in the function space andprojecting it into the model space, we are able to show that the accuracy of the algorithmalways increases with the complexity of the model, and approaches the true Bayesian posterior.The resulting algorithm is a straightforward Kalman �lter with the initial covariance matrixset by the prior. The prior is speci�ed in a form which is easy to relate to typical problem10
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A Figure LegendsFigure 1: E�ect of di�erent prior parameters for Gaussian covariance kernelsFive sample functions are drawn from each of the nine priors with Gaussian co-variance function and parameters given in the titles of sub-plots.Figure 2: E�ect of di�erent prior parameters for Laplace covariance kernelsFive sample functions are drawn from each of the nine priors with Laplaciancovariance function and parameters given in the titles of sub-plots.Figure 3: E�ect of di�erent prior parameters for Bachelier-Winer covariance kernelFive sample functions are chosen from each of the nine priors with \hat" covariancefunction and parameters given in the titles of sub-plots.Figure 4: E�ect of di�erent prior parameters for Laplace �ltersFive sample functions are drawn from each of the nine priors with Laplacian �ltersand parameters given in the titles of sub-plots.Figure 5: Numerical example of regression �lterPrior: V 00 = exp(�j�j), �0 = :5, �1 = 1. Sampling distribution: p(x) = uniform[�4; 4].Sampling noise: �2 = :5. Sample size: n = 160. Approximation dimension:m = 40. Basis: continuous piecewise-linear functions with nodes uniformly on[�4; 4].True function f : dashed line. Fitted curve: solid line. Error bars: dotted lines,from innermost outwards, that of PMf , of f and of y, respectively.Figure 6: E�ect of di�erent model complexity and prior smoothnessThe true prior, the noise and the model basis form are the same as in Figure 5.The sample size n = 100. The di�erent sub-plot uses di�erent model dimensionm and di�erent assumed �0, which may not be the same as that of the true prior.Figure 7: Mean squared error for Boston housing data versus prior parameters (interpolatedwith cubic spline) 13
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(i) �0 = 2; �1 = 2Figure 1: E�ect of di�erent prior parameters for Gaussian covariance kernel14
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(i) �0 = 2; �1 = 2Figure 2: E�ect of di�erent prior parameters for Laplacian covariance kernels15
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(i) �0 = 2; �1 = 2Figure 3: E�ect of di�erent prior parameters for Bachelier-Winer covariance kernels16
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(i) �0 = 2; �1 = 2Figure 4: E�ect of di�erent prior parameters for Laplacian �lters17
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