To appear in Neural Computation and Applications

Bayesian Regression Filters and the Issue of Priors

Huaiyu Zhu and Richard Rohwer
Neural Computing Research Group
Department of Computer Science and Applied Mathematics,
Aston University, Birmingham B4 7TET, UK
Fax: 0121 333 3215, Email: H.Zhu@aston.ac.uk R.J.Rohwer.ac.uk

November 9, 1995

Abstract

We propose a Bayesian framework for regression problems, which covers areas which
are usually dealt with by function approximation. An online learning algorithm is de-
rived which solves regression problems with a Kalman filter. Its solution always improves
with increasing model complexity, without the risk of over-fitting. In the infinite di-
mension limit it approaches the true Bayesian posterior. The issues of prior selection
and over-fitting are also discussed, showing that some of the commonly held beliefs are
misleading. The practical implementation 1s summarised. Simulations using 13 popular
publicly available data sets are used to demonstrate the method and highlight important
issues concerning the choice of priors.

Keywords: regression, Bayesian method, Kalman filter, approximation, prior selection,
radial basis functions, on-line learning.

Running title: Bayesian Regression filter.

1 Introduction

Neural network models such as multi-layer perceptrons or radial basis function networks are
used to approximate the regression of a data set. That is, the network output approximates
the mean of the distribution of possible outputs, given its input. This function is not well-
defined by the training data alone; prior information is also required to fully specify it.

It is a common practice to specify this prior implicitly by restricting the model order, which is
a practical necessity to some extent anyway, or more explicitly by using a regulariser. Neither
method is well-suited to expressing prior knowledge in a form likely to be familiar, such as
the scales on which the regression is expected to vary. Furthermore it is not obvious how
different models and regularisation terms should be compared.

These problems are addressed here by starting from the observation that the prior is best
defined as a distribution over a space of functions in which the various models define subspaces.
This prior can be projected into the model space where the calculations are carried out. Some
proportion of the information in the data is neglected by this procedure, but this proportion is
reduced to zero as the model complexity approaches that required to represent any function.

Because a fixed prior is projected into the model space, overfitting cannot occur as model
order is increased.

The method is derived in §2. It is a basis function method using a Kalman filter algorithm,
in which the prior enters via an initialisation procedure. Several useful classes of priors are
introduced and discussed in §3. An illustration using synthetic data is presented in §4, and
several tests on real data sets are presented in §5. The selection of priors for the real data sets
would normally rely on domain knowledge. Data sets which are available over the Internet
were used, and these are usually supplied with little domain knowledge. However, reasonable
results were obtained by choosing priors in accord with the likely motives of people in general
who make data sets available. This matter is discussed in §6. Conclusions are summarised in

§7.

2 Theory and Algorithm

To avoid excessive notation we shall formulate the theory in the one dimensional case. The
general case is quite similar, with more indices in the notation. The problem to be solved
is to find a function g : X — Y as the regression of data set z¥ = [2,..., 2], where
X =Y =R and z = [z;,y], such that the expected mean squared error {(g(z;) — yj)2>k is
minimised on any test data (j > k). In the above the notation () and (-,-) denote mean and
covariance, respectively, conditional on z* when a subscript k is present, and unconditional
when unsubscripted or with subscript 0.

In order that this problem has any solution at all, an underlying mechanism must be assumed.
For this we assume that the data is generated by an unknown function f: X — Y and
independent Gaussian noise n:

where 6;; is the Kronecker delta. The input z is assumed to be sampled from a distribution
p(z) which remains the same for both the training and test data.

Our algorithm will be based on the following decomposition of errors
(i = 9(esn?), = (Ilf = Fel®), + 1w = gl + (n?) . (2.2)

where f; := (f), is the posterior mean, and the norm || - || is defined by

1712 = [dopla)fe, (23)
This can be verified by noting that
y—g(z) = (y = f(2)) + (f(2) = fu(2)) + (file) - g(2)), (2.4)

and that conditional on zg, the three terms on the right hand side are independent. Therefore
the generalisation error is the sum of three terms, representing the lack of knowledge of f
(the variance), the deviation of g from the mean f; (the bias), and the intrinsic noise 7. The
minimisation problem is equivalent to minimising ka — ¢||? with respect to g. There is no
bias/variance trade-off as discussed in [2], since the generalisation error is already defined as
the expected error on test set.

The posterior of f also depends on the prior of f, ie. the unconditional distribution Pr(f). It
is shown elsewhere [14, 15] that no learning rule can be independent of a prior, either explicitly
or implicitly. We shall later explain how the explicit form of the prior can be written down
for practical problems. Here we assume that f is a Gaussian random field ! with a mean fg
and a covariance kernel V5. That is,

(F(O)) = fol&), (F(&1), F(&2))g = Vol&r, E2). (2.5)

After a data set ¥ is observed we obtain a posterior P(f|z¥), which is the distribution of f

conditional on z*. It is a Gaussian random field with mean fk and covariance kernel V.

If we actually compute fk and V}, we shall be able to keep all the information in the posterior,
which enables this process to carry on even if the data used to generate them is discarded
[12]. They are called jointly sufficient statistics. Unfortunately, they can only be represented
by vectors and matrices of dimension k, the size of the sample used to calculate them.

In our approach to be described here, we only keep an approximation of them, g; and 5y,
within the model space M, which is a linear space of functions of fixed dimension m, spanned
by a basis ® = [¢1,...,0,], where each ¢; : X — Y. That is, M = {3, d;w; : w € R"}.
The basis can be of any form, as long as on average the functions f in the prior Pr(f) can be
approximated by members of M reasonably well.

If we knew the true fk and Vi, then the best approximation g would be given by projecting
them onto M, but unfortunately, to do this we need to keep all the information necessary to
compute fk The projection operator is given by Py = ®UT P, where ¥ is the dual basis
given by ¥ = ®H ', H is the Hessian given by H = ®7P®, and P is the inner product
operator defined by p(z). In greater detail, these are

Parf(1) = Y 0n(6r) [dée vi(&Ipl) f(&2), (2:6)
¥;(€) = Z¢i(£)(ﬂ_l)ija (2.7)

;= [de€n()s5(6), (28)

P(&1,&) = p(&1)é(&r — &), (2.9)
where §(&) is the Dirac delta function.

The regression filter approach is to also “project” the likelihood function to the subspace, so
that all the calculations can be carried out directly within M. This has the advantage that
the method can be implemented as a Kalman filter and is very efficient in terms of computing
cost. The drawback is that there is an inevitable loss of information, in the sense of Fisher
efficiency. In practical terms, an efficiency ¢ < 1 means that, given a data set of size k, the
estimate given by this approximate method will be, on average, as accurate as that given
by the best method possible from a data set of size ¢k. The efficiency depends on how well
the functions in the prior are modelled by M on average. It increases towards unity as M
becomes larger.

The actual algorithm is simply a standard Kalman filter algorithm [1] with a particular
method for setting the initial mean and variance.

'Tn one dimensional cases it is usually called a random process.

1. Use prior knowledge to select a mean (f), = fo, and covariance kernel <f, fT>0 =W.

2. Define model space M by selecting basis ®. Compute its dual basis V.

3. Project the prior onto the weight space, represented by the mean wy = \IJTP]?O and
weight space covariance So = U7 PV PV,

4. Given a new data point zp = [2, yr], update the posterior by the Kalman filter, which
is equivalent to

Sit =81 4 02 0(ak) T @(a), (2.10)
Sk_l@k = Sk__llﬁk—l + Uz_zq)(wk)Tyk, (2.11)

where ®(2y) = [¢1(2g), ..., dm(2k)]. * The standard implementation of a Kalman filter
uses a more computationally efficient version of these equations.

3 Specifying the Prior

One requirement of the algorithm is the explicit specification of priors. This should represent
the knowledge or requirement of the smoothness of the function f before any data is observed.
This therefore acts as a definition of “over-fitting”. In practice, one would like to specify the
prior which actually describes the distribution of problems the algorithm is to be applied to.
Therefore it is of interest to supply some generally applicable forms of prior and study their
properties. The effect of the prior mean is intuitively clear, so here we shall only consider the
effect of the prior covariance kernel.

Covariance kernels can generally be represented as Vp(£1,&2). In practice, however, the most
important ones are “translation invariant”,

Vo(&r,&2) = Vo(& — &2). (3.1)

Invariance means that the X space is parameterised so that before the arrival of data, we
would not expect the variability of functions drawn from the prior at one point of X to be
statistically different from that at another point. This property is only preserved under linear
transforms. It can be shown that

P = 1ol + Vo(0). (3.2)
Denoting o} := V(0), and using a scaling parameter oo on X space, we have

Vol€) = o2V2(E/o0). (3.3)

where V{ is normalised so that VY(0) = 1. Here oq specifies the X space correlation length
of f, and oy specifies the Y space variability of f. For multidimensional X and Y, op and oy
are in general matrices instead of scalars.

The following are some of the most important covariance kernels: 3

°The points zj are not random at the time it is used.
?The kernel, which might or might not be of the form of a Gaussian function, parameterises the prior, which
is always Gaussian random filed.

o The Gaussian kernel (Figure 1)
V5'(§) = exp(=¢7/2). (3.4)
e The Laplace kernel (Figure 2)
V5'(§) = exp(=[¢]). (3.5)

o The Bachelier-Wiener Process [4] (Figure 3) has a covariance function which is usually
called the “hat” function

Vo(€) = (1 = [¢]); = max {1 — [¢],0}. (3.6)

The prior can also be defined in terms of filtered white noise [4], which provides a convenient
way to generate sample functions, thus assisting intuition about the prior. The filter F is
related to the covariance kernel V' by

V(&,6) = /d&’)F(flva)F(f%fS)- (3.7)
A sample from this prior can be generated from a white Gaussian noise process u by
16 = [dar@.guie). (3.8)

A translation invariant F always corresponds to a translation invariant V', and for any trans-
lation invariant V' a corresponding translation invariant I’ can always be found. FEither of
the above implies that the Fourier transform of V' is the square of the modulus of the Fourier
transform of F. This fact can be used to generate a suitable F from a given V.

As a further example, a sample from a prior with Laplacian filter (not kernel) F(£) =
o1 exp(—|£|/og) are shown in Figure 4. This provides one of many possible intermediate
levels of smoothness between the Gaussian and Laplacian kernels.

4 Tllustration using synthetic data

A one dimensional example illustrates the main features of the the method (Figure 5), par-
ticularly the role of the parameters in the prior and the model order (Figure 6).

The prior Pr(f) is a Gaussian random process on F with zero mean (f) = 0, and a Laplacian
covariance kernel V(£,£") = 0% exp(|€—¢'|/0¢) with 0g = .5 and oy = 1. Five randomly drawn
sample functions from this prior are shown in Figure 5(a). The general variability reflected
by these sample functions is all the prior knowledge.

Further suppose that all the training data and test data are contained in the interval [—4, 4],
with uniform distribution p(z), and that the noise 7 is an independent zero-mean Gaussian
process with o = .5. The training data is then generated by y = f(z)+ 7, using a particular
f drawn from Pr(f), and is shown in Figure 5(b). This is all that is seen by the filter.

The approximation space M is chosen to be Si-splines, ie., continuous piecewise-linear func-
tions. * The basis functions are shown in Figure 5(c).

*Other basis functions such as harmonics or Gaussians, can also be used. They have been tested and give
no substantial difference. The present choice makes the effect of basis functions more visible on the plots in
Figure 6 for small m.

The dynamic progress of the regression filter is shown in Figure 5(d)-5(f), together with three
error bars, indicating the cumulative effects of the uncertainty about gj, the approximation,
and the additive noise in the test data, in that order. ®

These results can be compared with those obtained by the method of MacKay [5]. It is
important to note that in that method, the model size and smoothness are implicitly related,
because a diagonal prior on the weight space is used with a basis function width inversely
proportional to the number of basis functions. Qur results are tabulated for different m and
op in Figure 6. The diagonal sub-plots correspond to those allowed in MacKay’s framework.
It is obvious from these plots that the parameter concerned with under- or over-fitting is og,
instead of m.

It might appear from a casual inspection of Figure 6 that increasing the dimensionality m
will not enhance the results beyond a point determined by og. This is not true in general,
since all the plots in Figure 6 are obtained from a fixed-sized sample (ie. training set). As the
sample size increases, the models with larger m will do better, even when g is fixed. The
smoothness specified by o is only a preference. The final result is allowed to have any non-
smoothness expressible in the approximation space, should the data provide strong evidence.
On the other hand, the smoothness specified by using only smooth approximation functions
will be such that only smooth curves are allowed, even when the data indicates otherwise.

If one really believes that the underlying function f is always smooth, it is advisable to assume
a prior with Gaussian covariance kernel, which will assign vanishingly small prior variance to
high frequency components [4]. This has the effect that it requires a higher than exponentially
increasing amount of data to force the regression to have higher frequency components. This
indeed makes a high-dimensional model redundant.

5 Tests on real data

It is widely held that the only objective way to measure the performance of a method is to
train and test the algorithm on data sets from a large number of applications. This type of
testing is not as “objective” as it might appear, since it risks blaming the method for what
is actually an inappropriate (often implicit) choice of prior. However, even in this situation
we can still apply the regression filter by determining an appropriate prior for the ensemble
of tasks.

The method was tested on a selection of 13 publicly available data sets obtainable over the
Internet. The choice of data sets was restricted by various considerations. For example, this
algorithm is not designed for missing values, or non-Gaussian processes. We also want data
sets for which the training sets and test sets can be mixed and resampled, partly because the
algorithm is derived under the assumption that the training set and test set come form the
same distribution, and partly because we need many simulation runs to measure an average
performance. The selected datasets are shown in Table 3.

For this “Internet game” we make the following observations:

®The first two error bars are often practically indistinguishable, especially for plots with small numbers of
data points and high model dimension.

e It seems reasonable to choose a prior which consists of a linear component which dom-

inates the non-linear terms. °

e The data sets are usually supplied because there are some regularities contaminated by
random noise, the ratio of which may be captured by o3/0y;

e The data sets are usually generated by researchers with some understanding of the
application so that the number of sample points is about right for describing the regu-
larities;

e The true regression is usually quite smooth so that a Gaussian kernel can be assumed;

e We perform an affline transform on the input space so that the training data inputs have
zero mean and unit variance. © We assume that after this input preprocessing all the
input dimensions are of comparable scale.

Therefore we write
V(&1,&2) = af exp(—|& — &2[*/208), (5.1)
in terms of hyperparameters Cy and €'y where
CdINO'g, g9y 2020'1, (52)

where d is the dimension of the input space X, and N is the sample size. The value of
Cy describe roughly how many sample points there are for each “oscillation” of the true
regression. The value of Cy describes roughly the “noise/signal ratio”.

Table 1 shows the effect of C'y and C'5 on generalisation performance for a particular data set,
the “Boston house price” data. We choose to analyse this data set carefully partly because
there are several results of other researchers which we can compare with, and partly because
it is relatively small ® so we could perform the following simulations requiring 5 x 5 x 20 = 500
runs in reasonable time (several hours). We ran the algorithm on each combination of Cyy =
ooNVe € {75,1.5,3,6,12} and Cy = o2/0y € {.025,.05,.1,.2,.4,}. For each combination,
we ran the algorithm 20 times, each time drawing a new partition into a training set and test
set, and randomly selecting the basis centres from the training set. This produces 20 test set
mean squared errors for each pair (Cp, Cy), for which the table gives the averages. Figure 7
shows an interpolation of this table.

A selection of results of other methods on the same data set is given in Table 2. These
methods make various assumptions at various levels of explicitness about priors. It is clear
by comparing Table 1 and Table 2 that the regression filter can perform better or worse than
any of these, depending on the choice of prior. However, by the following more extensive
experiments, we are able to enter a particular MSE, 13, for regression filter in Table 2.

Assuming that Internet data sets are drawn from one grandiose distribution, we can measure
the hyperparameters of this distribution, €7 and (s, by inspecting an ensemble of data

6For computational simplicity, an alternative but equivalent approach is adopted. We first perform a linear
regression on the training data, and then only work on the residuals. We assume that it has a zero mean.

"These operations involve little computational cost, and is always implicitly assumed in the sequel.

81t has 13 inputs and 1 output, with 506 samples partitioned to 253 training samples and 253 test samples.
Each run takes about half a minute.

&

Co .02 .05 1 2 4
75| 24.7428 0 21.8528 21.4950 21.3076 21.2822
1.5 | 18.0275 17.9603 17.9672 17.9990 18.1351
3 | 13.9183 13.7582 13.5115 13.3436 13.8677
6 | 13.7740 12,7685 11.8671 12.8733 15.8249
12 | 14.0007 11.8116 14.2269 17.4118 19.7492

Table 1: MSE for Boston housing data versus hyperparameters

Model & learning rule, MSE on test sets
Regression, constant function 83.4
Regression, linear functions 28.9
Monte Carlo, network with 8 hidden units 13.7
Monte Carlo, network with two hidden layers 124
(Gaussian process regression 11.9
Bayesian Regression filter 13

Table 2: MSE of different methods on the Boston housing data

The data in the first five rows are reproduced from [12]. The origin of the top
four rows is [9].

sets. If the above assumptions about Internet data sets are correct, then this exercise should
reveal a consistent range of values for these hyperparameters which could be expected to give
reasonably good results for a randomly selected data set.

We trained the network on K = 12 other data sets Dy, k = 1,..., K, with various number
of runs. We always consider a data set as a whole, with the training sets and test sets being
randomly sampled subsets. Since we know that this method always performs better with
larger m, we choose m as large as possible within reasonable computation constraints. ® The
results are shown in Table 3. For each data set Dy, the algorithm was run several times on a
selection of hyperparameter values C'; in order to obtain a crude estimate of the optimal values
. Since these are scale parameters, we work with their logarithms. The estimates and their
uncertainties are given in the form log;, Cix ~ N (I, sikQ). The means [;, uncertainty of the
mean 3;, and the standard deviation of the means among the data sets {D;} are calculated
as

L= lsin 2D s 2 & 2= sl (5.3)
P P P
Siz = Z(llk — Zi)z/(ff — 1). (5.4)

®We usually choose m between 20 and 200. The data sets usually have dozens of input dimensions, a few

output dimensions, and have sample sizes ranging from a few hundred to a tens of thousands. A single run
usually takes several minutes on a Sun Sparc 10 workstation. The algorithm is implemented as several matlab
programs. The basis functions are defined by choosing the centres randomly from the training inputs, and
setting the width to l/ml/d on the transformed input.

They are given in Table 4, with and without including the Boston house price data.

k | Data sets Dy Co Cy

lok S0k | lok S2k
StatLib (CMU) data sets *

0 | boston 0.8 05 |-1.2 0.5

1 | bodyfat 1.0 1.0 |-1.0 1.5

2 tecator 05 15 |-1.5 1.5

3 | polution 1.0 1.0 |-0.5 1.0

4 | cloud 0.0 3.0 | 00 2.0

Data sets used in [10]

5 | Mpg 0.5 20 |-1.0 3.0

6 | Cpu 1.0 1.0 |-1.0 1.5

7 | Aprce 0.0 1.5 |-1.0 20

UCI data sets ©

8 | satim 05 1.0 |-05 1.0

9 | dna 1.0 1.5 |-1.5 3.0

10 | shuttle 1.0 2.0 |-20 1.5

Santa Fe data sets ¢
11 | santafeA 0.0 1.5 |-1.0 1.5
12 | santafeD 0.0 20] 0.0 20

“These data sets can be obtained from ftp://1ib.stat.cmu.edu/datasets.

“We obtained these data sets from J. Quinlan indirectly via G. Hinton in Toronto.

“These data sets can be obtained from ftp://ics.uci.edu/pub/machinelearning. They are
also used in the StatLog Project [7].

9These data sets can be obtained from ftp://ftp.santafe.edu/pub/TimeSeries. We use them
to construct learning problems of predicting the next step from a window of 50 time steps.

Table 3: Estimates of Cy and (5 for several data sets retrieved from Internet

It emerges that there is indeed a range of reasonable values for Cy and Cy, for which the
algorithm performs well on most data sets. These are Cy = 5, Cy ~ .2, within a factor
of about 2.5 up or down. Translating back to the familiar language of training radial basis
functions, this means that the regulariser should be derived from a covariance kernel having
width of about 5 sample points in each dimension, and the prior should be about as important
as 1/.22 = 25 sample points.

Choosing these averages (omitting the Boston house price results) for the hyperparameters
would give an MSE for the Boston housing data set of about 13, as entered for the regression
filter algorithm in Table 2. Considering the uncertainties in the hyperparameters, this MSE
might have been as little as 11.9 or as much as 19.7.

6 Discussion

Figure 7 shows clearly that the choice of prior, or its “hyperparameters” is important. In a
fully consistent theory, neither the data nor the learning rule play any role in this, although
proposals of this nature has been studied [5, 13, 6, 14]. The Bayesian regression filter has the
advantage of using hyperparameters that express scales likely to be estimated from domain

‘ 70 S0 So ‘ 72 S9 S9
Average without Boston data
L,_EZ', S 0.68 0.39 0.47 |-0.73 0.43 0.66

10%,10%,10% | 4.83 2.44 298| 0.19 2.70 4.60
Average with Boston data
L’,_EZ', S 0.73 0.31 0.47 | -0.87 0.33 0.62

10%,10%,10% | 5.34 2.03 2.95| 0.12 2.12 4.21

Table 4: Average of estimates of optimal hyperparameters

knowledge. This proved to be the case, to a reasonable extent, even in the domain of Internet
data sets. It would be interesting to attempt to confirm this with a larger experiment.

It can be seen that the best performance of the regression filter algorithm with the “optimal
hyperparameter” performs better than any of the other methods, on an average case bases.
Such comparisons should be put in perspective, however. It is theoretically clear that with
identical conditions the regression filter algorithm presented here cannot outperform the “re-
gression with Gaussian processes” algorithm [12], since the latter keeps a sufficient statistic
which is of the same size as the training set, and is always the optimal algorithm for any
given prior. Considering the variability of the mean squared error expressed by Table 1, it
can be said that to the precision of these experiments, the regression filter, which is a fixed
finite dimensional method, performs comparably with exact Bayesian algorithms which either
sample the posterior by a Monte Carlo method [8] or compute the posterior explicitly [12].

It is important to point out that the “Internet game” is quite artificial, since in applications
one really wants the algorithm to perform well on the problems which would arise in a
particular application area, rather than on average over many irrelevant problems. This
shows a deficiency in common practice for evaluating learning rules. Since our method is
asymptotically optimal (as m increases), the competition is really on whether one finds a
good prior, which depends on the available computing resources and real world data sets,
but not on the algorithm itself. From this point of view, tests on synthetic data with an
explicitly stated prior are more important, even to real-world users of the algorithm, because
they circumvent this issue. Real-world users would normally have better domain knowledge
than in the “Internet game”, and could therefore choose a prior which is better concentrated
on problems from the particular application. This process is assisted by the intuitively clear
interpretation of the hyperparameters of the regression filter algorithm, and figures such as
Figure 1-4, which can be compared to domain-based intuition to select an appropriate kernel.

7 Conclusions

The regression problem is analysed in a Bayesian framework, and approximately solved within
a finite-dimensional model space. By defining the prior directly in the function space and
projecting it into the model space, we are able to show that the accuracy of the algorithm
always increases with the complexity of the model, and approaches the true Bayesian posterior.
The resulting algorithm is a straightforward Kalman filter with the initial covariance matrix
set by the prior. The prior is specified in a form which is easy to relate to typical problem

10

domains.

Using a real-world data set, the algorithm was shown to perform comparably to other Bayesian
methods which require either Monte Carlo simulations or the maintenance of a sufficient

statistic.

Acknowledgements:

This work was inspired by earlier joint work with C. Bishop, C. Qazaz, and C. Williams [11].
We would like to thank C. Williams for many interesting discussions and providing comparable

data. The work of H. Zhu is supported by EPSRC Grant GR/J17814.

References

[1]

[2]

[10]

[11]

C. K. Chui and G. Chen. Kalman Filtering with Real-Time Applications. Springer Series
in Information Sciences. Springer-Verlag, Berlin, 1987.

S. Geman, E. Bienenstock, and R. Doursat. Neural networks and the bias/variance
dilemma. Neural Computation, 4(1):1-58, 1992.

S. J. Hanson, J. D. Cowan, and C. Lee Giles, editors. Advances in Neural Information
Processing Systems, volume 5, San Mateo, CA, 1993. Morgan Kaufmann.

G. M. Jenkins and D. G. Watts. Spectral Analysis and its Applications. Holden-Day, San
Francisco, 1968.

D. J. C. MacKay. Bayesian interpolation. Neural Computation, 4(3):415-447, 1992.

D. J. C. MacKay. Hyperparameters: Optimize, or integrate out? In G. Heidbreder,
editor, Mazimum Fntropy and Bayesian Methods, Santa Barbara 1993, Dordrecht, 1995.
Kluwer.

D. Michie, D. J. Speigelhalter, and C. C. Taylor. Machine Learning, Neural and Statistical
Classification. Prentice Hall, Englewood Cliffs, NJ, 1994.

R. M. Neal. Bayesian learning via stochastic dynamics. In Hanson et al. [3], pages
475-482.

R. M. Neal. Bayesian Learning for Neural Networks. PhD thesis, Dept. of Computer Sci-
ence, University of Toronto, 1995. ftp://ftp.cs.utoronto.ca/pub/radford/thesis.
ps.Z.

Quinlan J. R. Combining instance-based and model-based learning. In P. E. Utgoff, edi-
tor, Proceedings of the Machine Learning Conference “93, San Mateo, CA, 1993. Morgan
Kaufmann.

C. K. I. Williams, C. Qazaz, C. M. Bishop, and H. Zhu. On the relationship between
Bayesian error bars and the input data density. In Fourth International Conference on
Artificial Neural Networks. IEE Conference Publications no. 409, pages 160-165, 1995.

11

[12]

[13]

[14]

[15]

C. K. I. Williams and C. E. Rasmussen. Regression with gaussian processes. In M. Mozer
D. Touretzky and M. Hasselmo, editors, Advances in Neural Information Processing
Systems 8. MIT Press, 1996. (To appear).

D. H. Wolpert. On the use of evidence in neural neworks. In Hanson et al. [3], pages
539-546.

H. Zhu and R. Rohwer. Information geometric measurements of generalisation. Technical
Report NCRG/4350, Aston University, 1995. ftp://cs.aston.ac.uk/neural/zhuh/
generalisation.ps.Z.

H. Zhu and R. Rohwer. Measurements of generalisation based on information geometry.
Mathematics of Neural Networks and Applications Conference (MANNA), Oxford. Ann.
Math. Artif. Intell.(to appear) ftp://cs.aston.ac.uk/neural/zhuh/generalisation-
manna.ps.Z., 1995.

12

A Figure Legends

Figure 1: Effect of different prior parameters for Gaussian covariance kernels

Five sample functions are drawn from each of the nine priors with Gaussian co-
variance function and parameters given in the titles of sub-plots.

Figure 2: Effect of different prior parameters for Laplace covariance kernels

Five sample functions are drawn from each of the nine priors with Laplacian
covariance function and parameters given in the titles of sub-plots.

Figure 3: Effect of different prior parameters for Bachelier-Winer covariance kernel

Five sample functions are chosen from each of the nine priors with “hat” covariance
function and parameters given in the titles of sub-plots.

Figure 4: Effect of different prior parameters for Laplace filters

Five sample functions are drawn from each of the nine priors with Laplacian filters
and parameters given in the titles of sub-plots.

Figure 5: Numerical example of regression filter

Prior: Vi = exp(—|£|), 00 = .5, 01 = 1. Sampling distribution: p(z) = uniform[—4,4].

Sampling noise: o9 = .5. Sample size: n = 160. Approximation dimension:
m = 40. Basis: continuous piecewise-linear functions with nodes uniformly on
[—4,4].

True function f: dashed line. Fitted curve: solid line. Error bars: dotted lines,
from innermost outwards, that of Pysf, of f and of y, respectively.

Figure 6: Effect of different model complexity and prior smoothness

The true prior, the noise and the model basis form are the same as in Figure 5.
The sample size n = 100. The different sub-plot uses different model dimension
m and different assumed oy, which may not be the same as that of the true prior.

Figure 7: Mean squared error for Boston housing data versus prior parameters (interpolated
with cubic spline)

13

sample function

3k 3k 3k

2F 2F 2F

1+ 1E 1+
-1F -1F -1F
-2f -2 -2

-3F -3F -3F

-5 -4 -3 -2 -1 0 1 2 3 4 5 -5 -4 -3 -2 -1 0 1 2 3 4 5 -5 -4 -3 -2 -1 0 1 2 3 4 5

(a) oo =.5,00=.5 (b)oo=1,010=1.5 (¢)oo=2,00=1.5

sample function

(d) oo =.5,01=1 (e)oo=1,01=1 f)oo=2,00=1

sample function sample function

sample function

(g) 00 =.5,00=2 (h) oo =1,01 =2 (i) oo =2,00 =2

Figure 1: Effect of different prior parameters for Gaussian covariance kernel

14

Figure 2: Effect of different prior parameters for Laplacian covariance kernels

15

Figure 3: Effect of different prior parameters for Bachelier-Winer covariance kernels

16

Sample function

S T R R

sample function

S T I B

sample function

(b)oo=1,010=1.5 (¢)oo=2,00=1.5

(a) oo =.5,00=.5

sample function

S T B B R

sample function

sample function

(e)oo=1,01=1 f)oo=2,00=1

(d) g = .5,0’1 =1

sample function

sample function

sample function

(h)00:1,0'1:2 (i)0'0:2,0'1:2

(g) 00 =.5,00=2

Figure 4: Effect of different prior parameters for Laplacian filters

17

(a) 5 samples from prior

Basis Phi

i

(¢) The basis functions

0.

©

0.

®

0.

S

0.

>

0.

o

0.

=

0.

©

0.

>

0.

2

data size 40

4 T T T T T T T T

(e) At data size 40

The data points as seen by the fiter

4 T T T T T T
o]
A]
«
L x x X3]
1 . o %
% x X X x % x
F U EEE g ¥ wXakex
" = SNl AR
ok x " X % %
r Xéi& x X X ;§< ><>< 1
«
o S]
o
i
_al XK 1
-5 -4 -3 -2 -1 0 1 2 3 4 5
(b) Data set of 160 points
data size 10
4 T T T T T T T T T
o]
A]

(d) At data size 10

data size 90

(f) At data size 90

Figure 5: Numerical example of regression filter

18

dimension=05, sgm0=2 dimension=20, sgm0=2

dimension=80, sgm0=0.5

x

-5 0 1 2 3 4 5 -1 0 1 2 3 4 5 -4 -3 -2 -1 0 1 2 3 4 5
(dy m=5,00=.5 () m=20,00=.5 (f) m=80,00=.5
dimension=05, sgm0=0.125 dimension=20, sgm0=0.125 dimension=80, sgm0=0.125
<
«
%
2F X,

Figure 6: Effect of different model complexity and prior smoothness

19

MSE for boston2

25
20+
[
1%
£
‘\
154 X 7
R TSR RSSO SSS5e77
SR SNSRI SSSSSe 7%
\:}:&‘}ttt\\\\xtt\\‘:off,’/’/
S SIS
333 “\‘o,gll;///
2

log10 c2

log10 cO

Figure 7: Mean squared error for Boston housing data versus prior parameters (interpolated
with cubic spline)

20

