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CONTROLLED MARKOV PROCESSES ON THE INFINITE
PLANNING HORIZON: WEIGHTED AND
OVERTAKING COST CRITERIA

Emmanuel Fernandez-Gaucherand, Mrinal K. Ghosh

and Steven I. Marcus

SUMMARY

Stochastic control problems for controlled Markov processes models with an infinite
planning horizon are considered, under some non-standard cost criteria. The clas-
sical discounted and average cost criteria can be viewed as complementary, in the
sense that the former captures the short-time and the latter the long-time perfor-
mance of the system. Thus, we study a cost criterion obtained as weighted combi-
nations of these criteria, extending to a general state and control space framework
several recent results by Feinberg and Shwartz, and by Krass et al. In addition,
a functional characterization is given for overtaking optimal policies, for problems
with countable state spaces and compact control spaces; our approach is based on
qualitative properties of the optimality equation for problems with an average cost

criterion.






1. Introduction

Controlled Markov Processes (CMP), or Markov decision processes, with an
infinite planning horizon are a very important class of stochastic sequential decision
processes, with numerous applications in many diverse disciplines; see Bertsekas
(1987), Ross (1983), Tijms (1986), and White (1985)-(1987)-(1988). Two important
performance criteria usually associated with such problems are the total expected
discounted cost (DC), and the long-run expected average cost (AC). When a DC
criterion is used, and the one-stage cost function is bounded, the corresponding
dynamic programming operator exhibits nice contractive properties which enable
the development of a rather complete theory, under very general conditions; see
Bertsekas/Shreve (1978), Dynkin/Yushkevich (1979), Hinderer (1970), Herndndez-
Lerma (1989). In this situation, future costs are discounted at a rate 0 < 8 < 1, and
therefore, if 8 is not sufficiently close to 1, the asymptotic behavior of the state/cost
process may not be important at all. Quite the opposite is the case with the AC
criterion, under which all decision epochs are given equal weight and one takes the
limit of time-averaged expected costs. Therefore, the finite time evolution of the
state/cost process is completely irrelevant in this case, and some sort of asymptotic
stable behavior 1s desired. Thus, this case is mathematically much more involved
than the DC case (see Arapostathis et al. (1992)).

Therefore, the AC and DC can be seen as two opposite extremes in the spectrum
of possible criteria that can be considered, in the sense that the first one captures the
performance of the process at the present and near future, and the second captures
the performance at the distant future solely. However, situations often arise where
past, present and future are all relevant, and thus it is desirable to introduce a cost
criterion which offers a reasonable compromise between the above two criteria. One
possibility of accomplishing this is by combining these two criteria in a weighted
sum. As an application of more general results, a similar approach was studied by
Feinberg (1982), who gave existence results for nearly optimal policies, for various
weighted cost criteria in a general setting. In addition, problems with weighted
discounted criteria have been studied by Feinberg and Shwartz (1992), for models
with countable state space.

Recently, Krass et al. (1992) have studied CMP with a weighted cost (WC),

given by a convex combination of the AC and DC criteria, the corresponding weights
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being selected depending on whether short-term or long-term behavior of the pro-
cess is to be emphasized. In Krass et al. (1992), attention is restricted to problems
with finite state space and finite action set, and with only one cost function com-
mon to both the AC and DC criterion. However, many important applications,
for which the WC criterion would constitute a very meaningful measure of per-
formance, cannot be modelled within the framework of Krass et al. (1992). For
example, in various problems related to stochastic networks both the AC and DC
criteria are of interest, as studied by Borkar (1983) and Stidham (1988), and thus
the WC criterion presents itself as a way to capture both aspects of the behavior of
the process which are individually measured by the former criteria. These problems
are naturally formulated in terms of countable state spaces, e.g. queue lengths,
and uncountable action spaces, e.g. service rates taking values in an interval in IR.
In addition, there are many other problems that are best formulated in terms of
general (Borel) state spaces (e.g., see Dynkin/Yushkevich (1979), Herndndez-Lerma
(1989)), for which the WC criterion should prove useful. For example, conditional
probability distributions are used as information states for problems with incom-
plete state information; see Arapostathis et al. (1992), and Bertsekas (1987). Also,
in water resource management problems, e.g. reservoir operation, the quantities
of interest take values in continua (see Yakowitz (1982)), and both DC and AC
criteria are of interest. Furthermore, possibly different one-stage cost functions are
discounted at different rates to account for, e.g. water release and power generation,
and an average criterion is used to account for, e.g. reservoir level regulation and
recreational lake uses.

In this paper, we study CMP with a generalized WC criterion, with general
state and control spaces and with several one-stage cost functions being discounted
at different rates. Thus, we combine and extend to a much more general context
many of the results of Feinberg/Shwartz (1992) and Krass et al. (1992)

In many situations it is of interest to look for control policies that induce an
adequate undiscounted total cost. Although an optimal policy for the average cost
criterion yields minimal growth rate for finite horizon undiscounted total expected
costs, this criterion is totally insensitive to the finite time evolution of the process.

The use of the overtaking criterion is one way to incorporate such sensitivity, while

yielding results about the minimal growth rate of the cost flow. Under this crite-

rion, one looks for policies that yield a smallest finite horizon cost, for all horizons



large enough; this type of policy is called overtaking optimal, since for horizons
large enough, it overtakes the cost due to any other policy. The overtaking cost
(OC) criterion was introduced in the economics literature by Gale (1967) and Von
Weizsacker (1965); Leizarowitz (1987) has studied this problem for finite state CMP.
In this paper, we study this problem for countable state space and compact action
space. Our approach is entirely different from that of Leizarowitz (1987). In this
latter reference, the original stochastic control problem is transformed into a de-
terministic one, under a restrictive controllability assumption. Then using known
results from deterministic control systems, the author has shown existence and char-
acterized a stationary deterministic OC optimal policy for the stochastic problem.
Our approach follows that of Ghosh/Marcus (1991) and Leizarowitz (1988), and is
based on the qualitative properties of the optimality equations for the AC criterion
studied by Borkar/Ghosh (1991); see also Arapostathis et al. (1992).

The paper is organized as follows. In section 2 we present the notation used
and some preliminaries. The (generalized) WC criterion is treated in sections 3-5.

The OC criterion is studied in section 6. We end with some conclusions

2. Notation and Preliminaries

Given a topological space W, its Borel o-algebra will be denoted by B(W);
measurability will be always understood as Borel measurability henceforth. A
(discrete-time) controlled Markov process is a stochastic dynamical system de-
scribed by the quadruplet (X, U,U, P), where the state space X is a Borel space, i.e.
a Borel subset of a complete separable metric space; U denotes the control or action
set, also taken as a Borel space. To each # € X, a nonempty compact set U(z) €
B(U) of admissible actions is associated. Let K := {(z,u) : z € X,u € U(z)}
denote the space of admissible state-action pairs, which is viewed as a topological
subspace of X x U. The evolution of the system is governed by the stochastic kernel
P on X given K, i.e. P(B|-) is a measurable function on K, for each B € B(X),

and P(-|z,u) is a probability measure on B(X), for each (z,u) € K.
In addition, to assess the performance of the system, measurable one-stage cost
functions ¢ : K — R are chosen. Thus, at time ¢ € INg := {0,1,2,...}, the system

is observed to be in some state, say = € X, and a decision u € U(z) is taken. Then
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a cost c¢(z,u) is incurred, and by the next decision epoch ¢ + 1, the state of the
system will have evolved to some value in B € B(X) with probability P(B|z,u).
The available information for decision-making at time ¢t € INg is given by the history

of the process up to that time h; := (29, v0, 21,1, ..., us—1,2¢) € Hy, where
H, := X, H,;:=H, ; x (U x X), H., = (X x U)*>,

are the history spaces. With respect to their corresponding product topologies,

the above are Borel spaces; see Bertsekas/Shreve (1978), Hernandez-Lerma (1989).

An admissible control policy, or strategy, is a sequence m = {Wt}te]No of stochastic

kernels 7; on U given Hy, satisfying the constraint my(U(z)|h,) = 1, for all hy =
(ht=1,u,z) € Hy. The set of all admissible policies will be denoted by II. A policy
7 € Il is called a Markov randomized policy if wy(- | (hs—1,u,2)) = m:(- | (R—1, T, 2)),
for all ht_l,ﬁt_l € H;,_y, u,u € U, and t € IN. Thus, a Markov randomized

policy only depends on the “current” state of the process, and hence we will simply
write, e.g. m¢(-|x). The set of all Markov randomized policies is denoted as Il/p.
The policies © € Il g for which my(-|z) = me(-| ), for all t,£ € Ny, are called

stationary randomized policies; we will simply write, e.g. (- | ) for these policies,

and set of all such policies is denoted as I1gg. Furthermore, if given 7 € Ilgr there

exists a measurable (decision) function f : X — U such that f(x) € U(z), for all

z € X, and 7({f(z)}|z) =1, then = is said to be a statronary deterministic policy,
and we simply write 7(z) for the action chosen by such a policy at * € X. The
set of all stationary deterministic policies is denoted as IIgp. Similarly, Markov
deterministic policies are defined in the obvious way, and its set denoted as Il p.
Note that IIsp C Illsg € Iy g CII, and Hsp C Iy p C g C IL

Given the distribution p of the initial state, and a policy = € II, the corre-
sponding state, control and history processes, {X;}, {U;} and {H;} respectively,
are random processes defined on the canonical probability space (Hoo, B(Ho),
P7) via the projections X¢(heo) 1= x4, Ug(hoo) := us and Hy(hs) := hy, for each
hoo = (To, %0, -+, Tt, U, . ..) € Heo, where P is uniquely determined; see Arapos-
tathis et al. (1992), Bertsekas/Shreve (1978), Hinderer (1970), Hernandez-Lerma
(1989). The corresponding expectation operator is denoted by IEZ When u is

concentrated at a point z € X, we simply write, e.g. IET.

—6—



For a measurable function v : W — IR, where W is a topological space, we

define

[o]l == sup {[v(w)[}.
weEW

Correspondingly, the vector space of bounded, measurable functions v : W — R is

denoted by
My(W):i={v: W = R | v is measurable, ||v]| < co}.

Hence for v € My(W), ||v|| gives the supremum norm. Also, L{W) will denote

the collection of lower semicontinuous bounded below functions f : W — IR, and

,Cb(W) = ﬁ(W) N Mb(W)
3. The Generalized Weighted Cost Criterion

The following two assumptions will be used subsequently, and are in effect
throughout, the second of which is made to guarantee the existence of “measurable
selectors;” see Arapostathis et al. (1992), Section 7.5 in Bertsekas /Shreve (1978),
and Rieder (1978).

Assumption 3.1: There exists M € R such that |c(z,u)| < M, for all (z,u) € K.

Assumption 3.2: For each z € X, ¢(z) is a nonempty compact subset of U, and K
is a Borel subset of X x Uj also ¢(x,) € Ly(U(z)), and [ f(y)P(dy|z,-) € LU(z))
for each f(:) € L(X).

Remark 3.1: If for all @ € X, U(z) is a finite set, then the semicontinuity
conditions in Assumption 3.2 are trivially satisfied. In addition, the condition
that [ f(y)P(dy|z,-) € L(U(zx)), for each f(-) € L(X), is equivalent to P be-

ing weakly continuous, i.e. [¢(y)P(dy|z,-) is a continuous function on U(z), for

all continuous and bounded functions ¢ : X — R (see Dynkin/Yushkevich (1979),
p. 52). Also, the assumption that K € B(X x U) is equivalent to the multifunction
& +— U(z) being measurable; see Arapostathis et al. (1992), Rieder (1978), and

references therein.



The following are commonly used criteria to measure the cost incurred by using

a policy m € II, when the initial state of the system is = € X.

Finite Horizon Total Cost (FC): Let T € INg; for a policy « € II, the total cost for

the finite horizon T is given by

T

Jr(z,7):=E] {Z (X4, Uy)

=0

(3.1)

Infinite Horizon Total Cost (T'C): The total cost incurred by 7 € IT over the entire

planning horizon is given by

o0

T(z,7):=E] [Zc (X, Uy } (3.2)

=0

Discounted Cost (DC): For a discount factor 0 < 3 < 1, the DC incurred by 7« € IT

is given by

Jﬂ(xvﬂ') = 1112—7]20 IE’Ir [Z ﬂtc(XbUt)} ) (33)

t=0

and the optimal g-discounted value function is defined as

Ji(r) = z'nf{Jﬂ(;v,n)}. (3.4)

eIl

Note that, due to Assumption 3.1, we have that

M M
/67

T S Jalem) < 5 Vze X, Vrell (3.5)

If, given z € X and ¢ > 0, a policy 7 is such that Jg(z, ) < J3(z) + ¢, then 7 is
sald to be DC e-z-optimal; if 7 is DC e-z-optimal for all z € X, it is simply called
DC e-optimal, and if furthermore it is DC c-optimal for all € > 0, it is said to be

DC optimal. Similar terminology will be used for other criteria.
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Average Cost (AC): The long-run expected AC incurred by 7 € IT is given by

N
. ]' ™ e 4
J(z,7) = lznm_’.so'l;p N 1]EI [tz:; o Xy, Ut)}, (3.6)
and the optimal AC is defined as
J*(z) = inf{J(z,7)}. (3.7)

rell

Remark 3.2: In view of Assumption 3.1, with no loss in generality, costs may be
taken as nonnegative when considering either the DC or AC criterion. Furthermore,
when simultaneously considering different one-stage cost functions in the sequel,

explicit notation will be used as needed, e.g. Jg(z,,c).

As mentioned before, the AC criterion gives a measure of the long-run perfor-
mance of the state/cost process {Xt, c( Xy, Ut)}, but completely neglects any finite
time behavior of this process. Contrary to this, the initial evolution of the process
above 1s crucial when using a DC criterion, for which the asymptotic behavior is
unimportant. On the other hand, the TC criterion gives equal weight to every
decision epoch, but in most problems every policy leads to an infinite TC, render-
ing this criterion useless in order to discriminate among different policies. This,
and our previous discussion, motivates the definition of the following criterion; c.f.
Feinberg/Shwartz (1992), and Krass et al. (1992).

Generalized Weighted Cost (GWC): Let K € IN and 0 < o < 1 be given, and let
0 < Br < Pp—1 < ...< By < By <1 be given discount factors. In addition, for
E=1,2,...,{+1,let ¢(-,-) be given one-stage cost functions, each one satisfying
a boundedness condition as in Assumption 3.1. The generalized weighted cost

incurred by 7 is given by
Wo(z,n) :=a(l — B1)Is,(z,m,c4) + (1 — ) J(z, 7, cxt1), (3.8)

where, for ¢t € INy,

K . t
ci(z,u,t):= Z (%—:—%) (%ii) cp(x,u), (3.9)

k=1



and the optimal GWC is defined as

Wiz) = inf{Wy(z,7)}. (3.10)
nell

Remark 3.3: Note that c4(z,u,t) is (uniformly) bounded in ¢ € INg, and

K

Jg (x,7,¢q) = Z(l — Br)d g, (z, 7, cr), (3.11)

k=1

and thus the first term on the right-hand side of (3.8) gives a weighted combination
of dicounted cost criteria; furthermore the factors (1 — fi) give a DC per unit time,
and hence the combination of this with J(z,7) is more meaningful. Note that

ca(,,+) is nonstationary, i.e. it depends explicitly on time ¢. However by consider-

ing an augmented state space X x INg, the DC problem using c4(+, -, ) falls within

our original model formulation.

Remark 3.4: When a = 0, we recover the criterion in Feinberg/Shwartz (1992);
Feinberg (1982) showed, as an application of more general results, that for a given
initial state distribution and policy = € II, there is a policy #' € Il p yielding
the same or better GWC performance. When K = 1 and ¢i(+,-) = ¢a(-,-), we
recover the criterion in Krass et al. (1992). Moreover, for our results on the GWC
criterion in the sequel, cx41(+, ) need not be bounded above; the corresponding AC
stochastic control problem with unbounded cost function could then be analized
as in Hernandez-Lerma/Lasserre (1990), Ritt/Sennott (1992), and Schél (1992).
Solely for ease of exposition, we will continue to assume a uniform boundedness

condition on all one-stage cost functions.

The weighted criterion can be interpreted from a different perspective as well.
A decision-maker may wish to find a policy which simultaneously minimizes DC
and AC criteria. One can give concrete examples (see Feinberg/Shwartz (1992) and
Krass et al. (1992)) to show that such a desire is utopian and will not be realized in
most situations. Therefore the least the decision maker should look for is a Pareto-

optimal solution taking these criteria as multiple objectives. Such a solution will be
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unimprovable in the sense that one cannot have strictly better performance relative
to both criteria. An optimal policy for the GWC is obviously Pareto-optimal in the
above sense. Thus the GWC optimal solutions will give a family of Pareto-optimal
solutions, parameterized by «, in the above multi-objective optimization problem;
see Ghosh (1990) for relalted work.

Nafurally, in order to study the GWC criterion, we must first establish the
basic results concerning the AC and DC criteria, which we do next. Let c(:,-) be

a (generic) one-stage cost function; the undiscounted dynamic programming map

T : L(X) — L£(X), is defined as

T(f)(z):= inf {c(:c,u)—l—/xf(y)P(dy]x,u)}, Ve € X, (3.12)

uw€U(x)

and for 0 < f < 1,the discounted dynamic programming map T : L(X) — L(X) is
given as ‘

Ty(f) := T(B1). (3.13)

These maps, as well as their iterates, are well defined; see Arapostathis et al. (1992),
and Bertsekas/Shreve (1978). The following is a well known result; see Arapostathis
et al. (1992), Bertsekas/Shreve (1978), Dynkin/Yushkevich (1979), Hernandez-
Lerma (1989).

Theorem 3.1: Under Assumptions 3.1 and 3.2, we have that:
(i) The discounted cost optimality equation (DCOFE) holds,

Ji(z)= 1 clz,u)+ J3(y)P(d :z:,u}
)= inf {ete)+5 [ TitPaste) -

= Tp(J3)(x), VoeX.

(ii) Furthermore, a stationary policy 7 € Ilsp is DC optimal if and only if 7(z)
attains the infimum in (3.14), for all x € X, i.e. 7 is a measurable selector in (3.14),
and at least one such policy exists;

(iii) Also, J} is the unique fixed point of T in L4(X). a

~11-



Remark 3.5: Note that when the one-stage cost function is nonstationary, e.g.
cd(+,-,-) in (3.9), then the resulting optimal policy in Theorem 3.1 is Markov (and

deterministic).

If there are measurable real-valued functions p and h on X, with h € £(X),
such that

o)+ 1e) = inf {eta)+ [ ) Playle.

ueu(z) (3.15)

=T(h)(z), VzeX,

then the pair (p, k) is said to be a solution to the average cost optimality equation

(ACOE); see Arapostathis et al. (1992). The interest in (3.15) derives from the

following result.

Theorem 3.2: Suppose that (p, ) is a solution to the ACOE, and that for each
admissible policy 7 € IT the following holds:

WX
lim B} [ (t t)} =0, VYeeX. (3.16)
Then (i)
N
li}?\zzsup -] [Z p(X)| < J(z,7), (3.17)
—e t=0

and if 7 € Ilgp is such that 7(z) attains the infimum in (3.15), equality is attained
in (3.17);

(i1) If p(z) = p* € R, for all z € X, then p* = J*(x), for all » € X, any 7* € Ilsp
such that 7*(z) attains the infimum in (3.15) is AC optimal, and one such policy

exists. U

The proof of Theorem 3.2 is a simple extension of, e.g. Theorem 2.2 in
Hernandez-Lerma (1989), and will not be given here. Note that (3.17) above says
that if p(-) is taken as the one-stage cost function for the CMP (X, U, U, P) then,
for any = € II, the average cost assessed under the cost function p(-) does not

exceed that under cost function ¢(-,-). Given the results above, naturally there has
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been considerable interest in finding conditions which guarantee the existence of a
bounded solution (p*, h) to the ACOE, with p* € R and h € L4(X), for then (3.16) is
satisfied trivially, and (ii) applies, see Arapostathis et al. (1992). Given a bounded
solution (p*,h) to the ACOE, properties of policies #* € Ilgp attaining the in-
fimum have been investigated by Yushkevich (1973) (see also Arapostathis et al.
(1992)), and it has also been shown by Ferndndez-Gaucherand et al. (1990) that a
boundedness condition, uniform in the discount factor, of differences of discounted
value functions is a necessary condition for a bounded solution to the ACOE to

exist.
4. GWC -Optimal Policies

In general, AC optimal policies need not exist (see Ross (1983)). However, for
CMP with finite state and finite action spaces, there exist policies in IIgp which are
optimal for the AC criterion, and the same is true for the DC criterion; see Derman
(1970) and Ross (1983). Furthermore, for this situation, Blackwell optimal policies
also exist, i.e. policies in II1gp which are both AC optimal and DC optimal, for all
B in a neighborhood of 1. However, even for this simplest of situations, Feinberg
and Shwartz, and Krass et al. have given examples which show that: (i) GWC
optimal policies need not exist (see Example 2 in Krass et al. (1992)]), and (ii) the

strict inequalities

inf {Wy(x,m)} > inf {W’g(m,w)} > Wy(z), (4.1)

ncllsp nellsp

may hold (see Example 2 in Krass et al. (1992)). Thus the simple structure of
optimal policies and, as shown in the sequel, of optimality equations is not inherited
by the weighted problem from the standard problems. From (3.8) and (3.10), we

clearly have
T/Vg*(:c) > ol - ﬁl)ng(a:,cd) +(1—-a)J*(z,cKx+1), VeeX. (4.2)

The term on the right in (4.2) is, in general, an ideal yet unachievable level

of performance, as mentioned above; for this reason, Krass et al. (1992) call this

~13-



term the utopian lower bound. As a direct consequence of the definition of W (z),
it follows that there exist e-z-optimal policies, for each z € X, 0 < « < 1, and

0 < B < 1. To expand on this result, we will use the following assumptions.

Assumption 4.1: There exists an AC optimal policy 7} € Ilsp.

Assumption 4.2: There exists a constant p* € IR such that J*(z,cn41) = p*, for
all z € X.

Remark 4.1: By Theorem 3.2(ii), if there is a bounded solution (p*,h) to the
ACOE with p* € R and h € £(X), then Assumptions 4.1 and 4.2 are satisfied; see
Arapostathis et al. (1992) and references therein.

Theorem 4.1: Let Y € IN and 0 < o < 1 be given, and let 0 < fx < fr-1 <
... < B2 < 31 < 1 be given discount factors. In addition, for £ =1,2,..., K +1, let
ck(+,-) be given one-stage cost functions, each satisfying a boundedness condition
as in Assumption 3.1. If Assumption 4.1 holds, then

(i) For each ¢ > 0 there exists N(¢) € IN, such that for all + € X there is a GWC

g-z-optimal policy 7%, with 77" = =%, for all t > N(¢).
If, in addition, Assumption 4.2 holds, then

(i1) For each € > 0 there exists N(¢) € IN, such that if 7} € IIyp is a
DC optimal policy for the one-stage cost function cg4(-,-,-) of (3.9), then for any
N > N(g), the policy ¢ given by

. 7y HO0SE<N,
7y = :
¢ o if N <t

a’

is GWC e-optimal.

(iii) The utopian lower bound is attained, i.e.

Wy(e) = a(l - pA1)J; (z,ca) + (1 — a)p”, Vo € X.

Proof: (i) We need to consider only the cases when 0 < a. Let ¢ > 0 and z € X be

given, and without loss of generality, assume that 0 < c4(z,u,t), cpqi(z,u) < M,

14—



for all (¢,u) € K and all ¢ € IN (see Remark 3.2). Let T € II be a GWC (¢/2)-
z-optimal policy. By the boundedness assumption, there exists an N(¢) € IN such
that

0<pBiM < Vt > N(¢).

SE

Let N > N(¢), then for any 7 € II:

T (0,7, c4) = Ez{z Bled( X, Ut,t)}

t=0

N-1 M
S E:{ Z ﬂ]fcd()(taUtat)} + ﬂlNl _ ﬂl
t=0

N—-1
&

< E;{ ; Biea( X, Ut,t)} + Sa(l—p1)

T

Now, define a policy 7% as follows:

Tt x* N <t

a?

€,I__{ﬁt? 1f0§t<N,

Therefore,

c

N-—1
Jﬂ1($77r€’z>cd) < ]Ej{ Z ﬁ{cd(Xta Utat)} +

+=0 2&(1 - ﬂl)
€
< 7 __° 4.
- Jﬁl(x77r7 Cd) + 2@(1 _ ﬂ]) Y ( 3)
and since J(y, 7%, cx41) = J*(y,cx+1), for all y € X, then
J(ZC,WE’I,CK_}_l) < .](.’17,77 C[\'+1). (44)

Therefore,

Wy(z,79%) = a1~ B1)Jg, (2, 75%, ¢q) + (1 — ) J (2, 75%, cxq1)
S 04(1 - ﬂl)']ﬂl(:%ﬁa cd) + (1 — CU)J(.’L',?, CI’\'—f—l) -+ %

_ &

= g(CIZ‘,ﬂ')—l— ";

S Wye) +e,
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where the first inequality is obtained from (4.3) and (4.4), and the second inequality
follows from 7 being GWC (&/2)-z-optimal.
(i1) Let N(g) € IN be such that

BIM<Z,  Wt>N(e),
«

and let 7€ be as in the statement of the Theorem. Similarly as before, we have that

[

J “ca) < T4 — Ve e X 4.5
/Bl(l.’ﬂ- ,Cd)__ ﬂL(xvcd)+a(1_ﬂl)a T e X, ( )

and since J*(z,cx41) = p*, for all z € X, then
J(z, 7% cxy1) = p¥, Ve € X. (4.6)

Therefore, for each xz € X,
Wy(z,7%) < a(l - B1)J5 (2,¢q) + (1 —a)p™ +¢
< Wi(z) +e, (4.7)

where (4.2), (4.5) and (4.6) have been used. Thus 7° is GWC e-optimal.
(iii) From (4.2) and (4.7) we have that, for each z € X,

a(l = pi)Jg (7, ca) + (1 — a)p” < Wy(w,7%)

< a(l— )Tz ca) + (1 - a)p* +e,

from which the result follows. O

Remark 4.2: The structure of the ¢-optimal policy obtained in (ii) above is intu-
itively appealing: use the best policy for the weighted DC criteria long enough at
the beginning, and then switch to the policy which is best in the long run. Likewise,

(i) above simply says to eventually use the policy which is best in the long run.
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5. WC ¢-Optimality Equations

In this section, we consider only a simpler weighted criterion, as in Krass et
al. (1992). To this effect, we consider the simpler situation when K = 1, and
c1(+,+) = c2(+, ), and will denote the resulting WC criterion as W, g(x, 7), making
explicit the values of the discount and weight factors. From the definition of the AC,
DC, and WC criteria, given # € X and 7 € I, it is easily seen that {IE][c(Xy, Ut)]}

determines the corresponding costs, e.g.,

11—«

N
= lim su afl - t (X, Up)l.
W p(,m) = lin p;{ (1= 9B + == VB [e( X0, U]

s N +1

For cost criteria of this type, it can be shown that Il g 1s suffictently rich, in the

sense that, given any 7 € Il, a policy 7' € Il g can be found such that
ET[e(X:,U))] = ET [e(X,, Up)], (5.1)

for each t € INy. This result follows from an extension of a theorem by Derman and
Strauch (1966), and is based on the following fact: given = € II, the probability

measure v¢[7| on B(K) defined as
vi[m)(K) := P {(X,Uy) € K}, K € B(K),
can be decomposed as
vi[r|(de, du) = vi[r](dw)my[r](du]z),

where 7y[n] is the marginal of v[r] on X, and my[n] is a measurable stochas-
tic kernel on U given X, satisfying my[r|(U(z)|z) = 1 (see Dynkin/Yushkevich
(1979), pp. 88-89). Then, for ' := {mg[r],m1[r],...} € g, (5.1) is satis-
fied (see Dynkin/Yushkevich (1979), pp. 96-97 for more details). We thus con-
clude that when considering any cost criterion, the value of which is determined by
{EZ[c(Xy, Uy}, like the AC, DC, and WC criterion, then the largest set of policies

that needs to be considered is Il g.
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We will need the following notation: given = = (mg, 71, 72,...) € Ilyr, we let
= (w1, 72, W3,...) € g, and for 7* € Isg, we let 7% - 7 := (7%, m, m1,...) €
IIarr. For oy, a9 nonnegative numbers, such that aq + ag > 0, we write

Wz, 7 a1, as,8) = ai(1 - B8)Js(z,n) + azJ(z, ), Ve € X.

Note that
Wz, m; a1, oz, B) = (a1 + aZ)Wa,g(w,w),

where @ = ay/(a; + az). Also, W*(z,7; a1, as, ) will denote that corresponding

imfimum over Il R.

Theorem 5.1: Let © € I1;g. Then for each z € X, we have that:
(i) W(z,m;ay,0q,8) =ay(l - ﬂ)/ ez, u)mo(du | x)
U
n / / Wiy, 7 Bas, an, B)P(dy | 2, u)mo(du |2).  (5.2)
X JU

Also, if Assumption 4.2 holds, then:

(ii) There exists 7* € Ilgp, such that 7*(z) attains

inf {a1<1 ~ Bela,u) + /X Wi, w;ﬂal,az,ﬂw(dy!:c,u)} ;

u€U(z)

(ii1) Furthermore, if for some ¢ > 0

W(z,m; Bax, ag, ) < W*(z; Bar, az, B) +¢,
for all € X, then

Wz, n* m a5, as,8) <WH(z;a1,a2,8) + ¢,
for all z € X, i.e. 7*- 7 is WC e-optimal.
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Proof: (i) Let € X; then by Assumption 3.1, Fatou’s lemma and the dominated

convergence theorem, we obtain

Jﬂ(:c,w):/Uc(:c,u)no(dulx)—{—ﬁ/x/UJﬁ(y,vr")P(dylac,u)wo(du|:1c),

and

J(m,7r):/X/UJ(y,vr")P(dylx,u)no(du|:c).

Hence,
Wz, 7 a1,a7,8) = a;(1 — ﬂ)/U ez, u)mo(du|z) + /X /U [ﬂal(l — B)Jp(y,©7)
+ ayJ(y, r_)} P(dy|z,u)mo(du | z)
=ay(l - ﬂ)/U e(z,u)mo(du | )
T /X /U W(y, 7™ B, a, 8)P(dy |2, u)mo(du | ).

(ii) If for cach z € X, U(z) is a finite set, then the result follows trivially. In more
generality, we note that Jg(-,7) € £4(X), for any = € II, due to our Assumption
3.2 (i) (see Chapter 9 in Bertsckas/Shreve (1978)). Then, by Assumption 4.2,
W(,m a1, az,B) € Ly(X), for any positive ay, ay, and 0 < B < 1. The result then
follows by Proposition 7.33 in Bertsekas/Shreve (1978).

(iii) Let 6 € IIp g be arbitrary, then for each z € X

Wz, 7" - mar, az, )

=a1(1—ﬂ)C(wm*(w))+/XW(y,7r;ﬂa1,az,ﬁ)P(dylfvm*(w))

= anf {041(1"ﬂ)c(l‘vu)+/XW(?J,mﬂal,O%ﬂ)P(dy|3?a“)}

u€U ()

S an {al(l—ﬂ)c(:c,u)+/XW(y,5_;ﬂa1,oz2,B)P(dyI:L',u)}+6

uwEU(x)

~19-



< aq(l—p) /Uc(w,u)éo(du | z)

+ / / W(y,67; Bar, ag, 8)P(dy | ¢, u)o(du | z) + ¢
X JU

= W(:E?(S;alaa%ﬂ)_i—g? (53)

by (i) above, the definition of 7*, and the e-optimality of 7. Since § € Il g was
arbitrary, and by the sufficiency of Il /g, the result follows. O

Remark 5.1: Note that (5.2) resembles the standard (Bellman’s) equation satis-
fied by the value function Jg(-,7); see Bertsekas (1987), Bertsekas/Shreve (1978).
However, note that the DC weight is a; on the expression on the left, but it is fay

on the right. Also, from (5.3) we see that if 7* € IIgp is such that
W(z,x* - maq,a, )

= inf {al(l~—ﬂ)c(x,u)+/)(W'(y,ﬂ;ﬂal,az,ﬂ)P(dy[:c,u)}, (5.4)

u€l ()

then 7* - m inherits the e-optimality properties of w. Thus (5.4) can be seen as an

g-optimality equation for WC.
6. Overtaking Criterion

Consider now the FC problem; every policy 7 € II therefore gives rise to a cost
flow T v Jp(z, r). Typically Jr(z,7) — oo, as T — oo, and therefore one attempts
to minimize, e.g. the (limiting) average cost to evaluate the performance of the
system under a particular policy. Although an optimal policy for the average cost

criterion yields minimal growth rate for Jy(x,-), this criterion is totally insensitive

to the finite time evolution of the process. The use of the overtaking criterion is
another way to incorporate such sensitivity, while yielding results about the minimal
growth rate of the cost flow.

We say that a policy 71 € IT overtakes another policy my € II if

JT(J?,W]) S ']T(ma F?)a
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for all + € X, and for all T sufficiently large; note that what is meant by T
being “sufficiently large” may depend on the choice of z. A policy is called

overtaking aptimal if it overtakes every other policy. Clearly, overtaking optimality

implies average cost optimality, but the converse is not true in general. We take

X =N, U(-) = U, and work under the following additional assumptions.

Assumption 6.1: The one-stage cost function ¢(-,-) is bounded and continuous,

and U is compact.

Assumption 6.2: The stochastic kernel (transition law) P(z' | ,-) is continuous,

for each pair (z,z') € IN x IN.

Assumption 6.3: Under every © € Ilgg, the corresponding chain is irreducible

and aperiodic.

Remark 6.1: Every OC optimal policy is also AC optimal. Under Assumption
6.3, if the ACOE has a solution (p*, h) satisfying (3.16) and p* € R, then if a
policy m € Ilgp is average optimal and the corresponding controlled process {X}
is positive recurrent, equality is attained in the ACOE (3.15); see Arapostathis et
al. (1992).

Suppose that (p*, k) is a solution to the ACOE, as in Remark 6.1. Let Msp C
ITsp be the set of all stationary deterministic policies for which equality is attained
in the ACOE. Let # € Ilgp and 7 € II. Then due to Theorem 3.2, # overtakes
7. Therefore, the search for OC optimal policies can be restricted to Igp. Let
T E ﬁg‘D, then due to Remark 6.1 i1t follows that

Jr(z,7) = p*T + h(z) — EF{h(X1)}. (6.1)

From (6.1), it follows that # would be overtaking optimal if E¥{i(X7)} has the

maximal growth rate, as T' — oo. Under a Lyapunov stability condition (see As-

sumption 6.4 below), we will show the existence of a policy 7 € IIsp as in Remark

6.1, and also having the maximal growth mentioned above.

Assumption 6.4: There exists w : X — R, a finite set A C X, and an € > 0
such that:



(i) 0 € A, and the set {z € A°| P(y | z,u) > 0, for some y € A,u € U}, is finite.
(ii) limg—oo w(z) = 0.

(iii) Under any = € I1, and any u € IP(X)
IE:: {[’LU(XH_l) — w(Xt) + 6] 1 {Xt ¢ A} ‘ ft} S 0, ,P: — a.S8.,

where F; is the o-algebra generated by the history process { H¢} under w, and 1{A}
denotes the indicator function for the set A.

(iv) There exists a random variable Z and an scalar A > 0 such that E [exp(AZ)] <
0o, and for all b > 0

'PZ{{[ w(Xip1) —w(Xy) |>b| F} S P(Z>0).

Under the above Lyapunov condition and Assumption 6.3, all policies 7 € I1gg
are stable: the corresponding controlled Markov chain {X,} is positive recurrent;
see Arapostathis et al. (1992), Borkar (1991). Let w € Ilgp, and let n(7) denote
the invariant probability distribution of {X;} under n. The following results are
proved by Borkar/Ghosh (1991).

Theorem 6.1: Under Assumptions 6.1-6.3, the following holds:
(i) For any = € I1gp

tlirgzo E {w(X,)} =0, Z w(z)n(T)(z) < oo
reX

(i1) The ACOE has a unique solution (p*, h) such that

h(0) =0, h() = O(w);

(iii) A policy m € Igp is AC-optimal if and only if it attains equality in the ACOE.
O



The following stability result will play an important role in the sequel.

Lemma 6.1: Let h(-) be as in Theorem 6.1. Then under Assumptions 6.1-6.4, we
have that

Jim BI{A(X)} = Y h(y)n(r)(y) < oo, (6.2)
yeX

for all # € llgp, = € X.

Proof: By (i) in Theorem 6.1,

E(r) =Y w(y)n(m)(y) < 0. (6.3)

yeX

Let {t,} € IN be a sequence such that t,, T oco. Let

((m,z) := liminf EL{w(X:,)}. (6.4)

n—0o

We claim that ((m,z) = £(7), for all ¢ € X. By Fatou’s Lemma,

€)= > yIn(m)(y)- (6.5)

y€EX

Next, let w, : X — R4 be a sequence of functions with finite support such that

wy, T w pointwise. Then for any m > 1, we have that

liminf Bj{w(Xy,)} > iminf EJ{wm(X,)}

n—oo n—o0

=Y waly)n(r)(y).

yeX

Letting m — oo in the equation above, and using the Monotone Convergence The-

orem, it follows that

E(m) < ((m,2),Vz € X. (6.6)
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From (6.5), (6.6), and Assumption 6.3 {, it follows that
&(m) = ¢(m,z), Vo € X.

Therefore, we have that

lim Ef{w(X)} = ) w(y)n(r)(y). (6.7)

yeX

Under Assumptions 6.1-6.3, the law of X, will converge to n(r) in total variation
norm, e.g. see Theorem 3.3, Chapter 1 in Borkar (1991). Now, using the fact
that k() = O(w), (6.7) and a Generalized Dominated Convergence Theorem as in
Royden (1968), p. 232, it follows that

lim ET{h(X)} = ) hly)n(r)(y).

t—r00
yeX

In view of the above result, define a function ¥ : Isp — R as follows:

¥(m) = 3 hym(m(). (6.8)

yeX

Then, the proof of Lemma 3.8 in Borkar/Ghosh (1991) can be easily modified to

yield:
sup 3 | h(y) | n(m)(@) < oo,
n€llsr yeX
and thus,
sup U(m):=¥* < oo, (6.9)
m€llsp

and thus we have the following.

Lemma 6.2; There exists a 7* € fISD such that ¥(7*) = ¥*,

T The aperiodicity in Assumption 6.3 is actually not required here.



Proof: Let {r,} C Ilsp be a sequence such that ¥(7}) T ¥. The set Ilspis easily
seen to be compact, where IIsp is endowed with the product topology. Thus for
some subsequence {7, }, we have that 7, — 7% € Igp, as n' — oo; we claim that

U(7*) = ¥*. It can be shown, as in Lemma 3.8 of Borkar/Ghosh (1991), that

sup > | A(y) |* n(m)(z) < oo.

n€llsp yeX

Therefore, h(-) is uniformly integrable with respect to the class of measures {n(7) :
7 € lsg}. Again, since m,y — m*, it can be shown (see Chapter 5 in Borkar (1991))

that n(7, ) — n(7*), in total variation norm. Hence

> hlyn(ma)(y) — > hly)n(a*)y),

yeX yeX
and therefore we obtain that ¥(7*) = ¥*. O

Finally, we show existence of an overtaking optimal policy, and give a functional

characterization for this policy.

Theorem 6.2: Let Assumptions 6.1- 6.4 hold. Let 7* € I:ISD be such that
U(n*) =T

Then 7* is overtaking optimal.

Proof: Let 7 € IIsp be arbitrary. Then using the ACOE, it follows that
Tr(r,2) = 9T + h(z) — EX{h(X1)},

where h(+) is as in Theorem 6.1. The desired result then follows by applying Lemmas
6.1 and 6.2. 0

Remark 6.2: Here we have worked under a Lyapunov stability condition. We can

derive analogous results under a geometric ergodicity condition.
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Conclusions

We have studied in this paper CMP with a (generalized) WC criterion, ex-
tending (and combining) to our more general setting several results by Feinberg
and Shwartz (1992), and by Krass et al. (1992). Even for the case when opti-
mal stationary deterministic policies exist for the AC criterion and and each DC
criteria, and the optimal average cost does not depend on the initial state, only
e-optimal policies have been characterized. To give general conditions under which
the existence of an optimal GWC stationary deterministic policy can be proved is
difficult. This can be intuitively explained due to the complementary properties
that such a policy would have to exhibit: it should induce optimal performance
both in the short-term and in the long-term performance of the system. Also, the
minimization of GWC can also be viewed as a multiobjective problem, as we have
observed earlier. The lack of convexity of the feasible domain of policies makes
the problem very difficult. If, instead, we have a multiobjective problem where all
evaluation criteria are of the same type (e.g., DC or AC), then it can be shown
that the feasible domain is convex and the set of all Pareto-optimal solutions can
be completely characterized; see Ghosh (1990). Related to this observation is the
fact that the AC criterion does not possess certain convexity properties, as studied
by Feinberg (1982).

In addition, a functional characterization was given for overtaking optimal
policies, for problems with countable state spaces and compact control spaces; our
approach is based on qualitative properties of the ACOE, and extends to a much

more general setting previous results available in the literature.
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