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Abstract

We introduce, analyse and optimize the class of Bernoulli random polling systems. The
server moves cyclically among N chanuels (queues), but Change-over times between
stations are composed of walking times required to ‘move’ from one channel to another
and switch-in times that are incurred only when the server actually enters a station to

render service. The server uses a Bernoulli random mechanism to decide whether to serve

a queue or not: upon arrival to channel z, it switches in with probability p;, or moves
on to the next queue (w.p. 1 — p;) without serving any customer (e.g. packet or job).
The Cyclic Bernoulli Polling (CBP) scheme is independent of the service regime in any
particular station, and may be applied to any service discipline. In this paper we analyse
three different service disciplines under the CBP scheme: Gated, Partially Exhaustive and
Fully Exhaustive. For each regime we derive expressions for (i) the generating functions
and moments of the number of customers (jobs) at the various queues at polling instants,
(ii) the expected number of jobs that an arbitrary departing job leaves behind it, and
(iii) the LST and expectation of the waiting time of a customer at any given queue. The
fact that these measures of performance can be explicitly obtained under the CBP is an
advantage over all “parameterized” cyclic polling schemes (such as the k-limited discipline)
that have been studied in the literature, and for which explicit measures of performance are
hard to obtain. The choice of the p;’s in the CBP allows for fine tuning and optimization of

performance measures, as well as prioritization between stations (this being achieved at a low
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computational cost). For this purpose, we develop a Pseudo-conservation law for a mixed
system comprised of channels from all three service disciplines, and define a Mathematical
Program to find the optimal values of the probabilities {p;}¥; so as to minimize the expected
amount of unfinished work in the system. Any CBP scheme for which the optimal p;’s are
not all equal to one, yields a smaller amount of the expected unfinished work in the system
than that in the standard cyclic polling procedure with equivalent parameters. We conclude
by showing that even in the case of a single queue, it is not always true that p; = 1 is the

best strategy, and derive conditions under which it is optimal to have p; < 1.

Keywords: Random Cyclic Polling, Walking times, Switch-in times, Optimization.

1 Introduction

Polling systems are used to model an abundant set of systems, such as computer networks,
telecommunications or flexible manufacturing systems, repairman applications, and alike. In
polling systems one is often interested in using acyclic visiting order of the server to the different
channels. This enables flexible prioritization of the different queues which is desired either for
optimization purposes, such as minimizing a weighted sum of waiting times in the different
queues, or for obtaining fair service among the various queues. Acyclic visit order have been
obtained by using a polling table (see [3], [6]), by using random polling ([7, 12, 13]), or by
following a dynamic procedure derived by optimization consideration [8, 19]. Unfortunately, in
many communication networks, modelled by a polling system (e.g. Local Area Networks based
on a token ring protocol) the visit order has to remain cyclic, and the server can not choose in
an arbitrary way which queue to visit next. In such cases one may still prioritize among the
queues by using the following random access mechanism: when the server arrives to queue ¢ it
switches in to render service to jobs awaiting there with probability p;, or it moves on to the

next queue (with probability 1 — p;) without serving any jobs in that queue.

In this paper we study such a random cyclic visit mechanism which we call “Cyclic
Bernoulli Polling” (CBP). Whenever the server attends a queue and renders service, either a
gated regime, or a partially exhaustive scheme, or a fully exhaustive service discipline is assumed

to be used. (These service disciplines will be explicitly defined in the sequal).

We assume that switching times between the queues are composed of two parts: walking

times required to ‘move’ from one station to another, and switch-in times that are incurred



only when the server enters a station to render service.

It is also possible to prioritize queues by following a simple cyclic visit order while
giving service in each queue to only a partial number of the jobs there, according to some
parameterized service discipline, e.g. the limited or the Bernoulli service discipline [16, 17, 19].
In that case, however, since the server visits each station on every hamiltonian tour, switch-
in times are always incurred. In an effort to save such waisted times, we propose the above
described CBP mechanism. An interesting feature of the cyclic Bernoulli polling is that it yields
explicit expressions for quantities such as the expected waiting times in the different queues,
which are not achievable in many mechanisms of partial service such as limited, Bernoulli or

threshold service disciplines [1, 16, 17].

The paper is structured as follows: after introducing the model and notation, we present
in Section 2 the evolution equations of the system for the case of Gated service discipline.
We then derive implicit expressions for the generating functions of the number of jobs in the
different queues at polling instants. This allows us to obtain the first moments of these quantities
explicitly, as well as a set of N2 linear equations to calculate their second moments. Based on
these moments, we obtain formulae for the expected waiting times of jobs in the various queues.

(The method of “station times”, which enables in other models the calculation of the expected
waiting times by solving considerably less than N2 linear equations [9], is not applicable here.

This follows from the fact that those station times do not form in our case a Markov Chain).

In Section 3 we analyse the Partially Exhaustive and Fully Exhaustive cases. In Section
4 we obtain an explicit expression for the total expected workload in the system under mixed
strategies, and formulate a Mathematical Program to choose the optimal values of the proba-
bilities p;, ¢ = 1,..., N, so as to minimize that workload. Thus any CBP scheme for which the
optimal p;’s are not all equal to one, yields a smaller amount of the expected unfinished work
in the system than that in the standard cyclic polling procedure with equivalent parameters.
We solve the Program explicitly for the case of a single queue, and show, surprisingly, that even
in such a restricted case, it is not always optimal to choose p; = 1, a phenomenon which we

explain by using an alternative avenue of analysis.

Model and Notation

Consider a polling system with N independent channels, where channel 7 (i = 1,2, ..., N)
is modeled as an M /G/1—type queueing station. The jobs’ arrival stream to station ¢ is Poisson

with rate A;, and service times are distributed as B;, having Laplace-Stieltjes Transform (LST)



)

bl (s), and first and second moments b; and 622 , respectively. B;(n) will represent the total

service time of n jobs in station i. Denote by p; def Asbi, and by p def Z-]\Ll p; the traffic offered

to channel ¢, and to the system at large, respectively. {2; denotes a typical length of a standard
M/G/1 queue busy period that starts with one job in queue 7, and w(s) denotes the LST of ;.

It is well known that w; def E[Q;] satisfies w; = b;[L — p;]~!. Finally, let Q;(n) be the duration

of n independent regular M/G/1 busy periods in queue 1.

The time it takes between the end of service to the ¢th station and the polling instant at

the next station is called the tth walking time, and is denoted by D;. We assume that walking

times are independent, with LST d}(s), and first and second moments d; and d§2)7 respectively.

Let D = Ef\il D; be the total walking time in a cycle, and denote by d, d?® and d*(s) the

expectation, second moment and LST of D, respectively.

The time it takes from the moment the server arrives at the ith station (i.e. the polling
instant) till service can be started to jobs in that station is called the ith switch-in time and is
denoted by R;. We assume that the switch-in times are independent, with LST 7} (s), and first
(2)

and second moments r; and r,”’, respectively. These times, the walking times, the inter-arrival

times and the service durations are mutually independent.

In a Cyclic Bernoulli Polling the server moves cyclically between the different queues,
switching-in to actually give service in queue ¢ with probability p;, or moving on to the next
channel with the complementary probability 1 — p;,. We analyse three service disciplines under
the CBP scheme; (i) a gated regime, by which only jobs present in the queue at the momoent
of server’s arrival will be served. (However, before service starts in that queue, a switch-in time
is required.) (ii) the partially exhaustive regime, where the server, upon finding n jobs, say,
at the moment of arrival to a queue, and ‘deciding’ (by the Bernoulli mechanism) to switch in,
stays there (after switch-in time is incurred) for the duration of n M/G/1 busy periods. Hence,
if service is actually given to a queue, the number of jobs left there when the server leaves is
equal to the number of jobs that arrived during the switch-in time. (iii) the fully exhaustive
regime, where the server leaves a queue only after it is empty, where upon serving all the jobs
that were present there before the switch-in time, plus all those that have arrived during its

sojourn (switch-in and visit) time in that queue.

Let X;g denote the number of jobs in station 7 at the nth time that a queue is polled.

Without loss of generality, we shall assume that queue 1 is the first to be polled. It is easily seen



that the vector {X},..., X¥}, n =1,2,... is a Markov chain. We shall assume that this Markov
chain is ergodic and XZH:N? 1<1¢5 <N, k=0,1,... converges in distribution to a random
variable X ;Z, denoting the number of jobs at station j at a polling instant to queue ¢ when the

system is in steady-state. (It can be seen from the expression for the expectation of XZ given
below that p < 1 together with p; > 0,7 =1,.., N is a necessary condition for ergodicity. Using
same technique as in [2], one can prove that these are also sufficient conditions for stability. A
detailed analysis of the sufficient conditions for stability is however beyond the scope of this

paper. We shall assume throughout that the polling system is ergodic.
and it seems also to be a sufficient one, see [2]).

Let A;(7T") denote the typical number of arrivals to station j during a time interval of
length T. Hence, A;(B;(X})), A;(D;), and A;(R;) denote, respectively, the number of arrivals
to station j during the service of XZZ jobs at, the walking time from, and the switch-in time to,

station z.

2 The Gated Discipline

Evolution Equations

Let a; be equal to one if the ith queue is to be served when the server arrives, and zero

otherwise. a;, 1 = 1,2, ..., N are independent random variables, with F[a;] = p;. Set a; = 1—a;.

Denote by D; def D; + a;R; the total switching time related to queue ¢, and by D =
Ef\il D; the total switching times in a typical cycle. Set d; and dfg) as the first and second

moments of D;, and set d and d® as the first and second moments of D.

The evolution of the state of the system (in steady state) is described by

. . Xi + Az (ak[Rk + BI\(XII:)] + Dk) ? 7é k
XZ‘,—&-I =

(1)
X,]f(ik-i-Ak (ak[Rk-FBk(X,]f)]-l-Dk) 1=k

where 1 <1,k < N, and the symbol «d» means equality in distribution. (We shall understand

N +1 in the evolution equations above to be equal to 1).



Generating Functions

We define a set of multi-dimensional joint generating functions, describing the vector-
state of the system at a polling instant of queue k.

Let Fy(z) “p [ i1 ] Let dp & dE (XN, Mi(1 - 2)) and define similarly b, and 7. Using

the evolution equations we obtain

N v
ar XAk (o (B +Br(XP))+ D 11 X +A; (ax[Ry+Br(XE) +Dy,
Frii(z) = E{ 2" ¥+ Ay (ar[Ry+Bi(X[)]+Dy,) . [+ 4; (ax[Ry+ By (X])]+Dy)

1=1
i1 £k

N ) ‘
=FE [H zjfie—)w(l—z;)(ak[Rk-I-Bk.(X,f‘f)]—&-Dk)ZkakX£‘|
i=1

= dyE {m <ax Do hi(l- zz>> (H 7 ) E (e—ak 3 M=z Br(X])

=1 =1

l‘v
k —ap Xy
X, ak) 2, }
Xk

) N N N K .
=dpyE <, (ak Z Ai(1— z,j)> (H z; "”) by, <ak Z Ai(l1— z7)> PR
= =1

=1

N N
= dkE {’I"; (ak Z AZ(]- - Z,)) Fy, <217z2a <ery Rk—1, bz (ak Z )‘Z(]- - ZZ)) szazk—&—la "'72]\7) } .
=1 =1

Thus
Fiy1(2) = prediin Fy, (21722, ooy Zh 1y Dhoy Zh 1 oo ZN) + (1 — pp)di Fi(z) (2)

We assume throughout the paper that Fj have first and second derivatives. We shall also

assume that the system of implicit equations (and also (15) and (16)) have a solution.
Moments of number of jobs at polling instants

The first and second moment of the number of jobs at polling instants are obtained by

differentiating the generating functions Fj(z). We calculate

 def O*Fy(2)
(1 =
827, :{1 1}7 fk( 71) 8Z182l

geery

fo(i et OF(2) 0F(z)

It follows that fi(i) = E[Xi], fr(l,i) = E[X!X}] if k,l,i are not all equal, and f;(i,7) =
BIX}(X{ - 1)].



By differentiating (2) we obtain the following set of N+ N (N —1) = N? linear equations:
fk+1(k) = )\kJA + [Pkl)k + (]- - Pk)]fk(k), k= 1L,2,..,N (3)

Fror1(i) = Nidie + fr(@) + pedibefr(k), 4 k=1,2,.,N, i #k (4)

(where dj, = dj,+pjr1,)- Explicit expressions can now be derived for fi,(k) following the method
in [15]. From (4) we obtain for ¢ # k

1 (i) = fu(@) = Xildy, + pibefi (k)]
Summing from k = j to 1 — 1 we get
=1 1—1
k=j k=j

Substituting j = ¢ + 1 in the above expression, and using (3) for f;;1(¢) we have

N N
pil—p) fi()) =X | D di+ > prbifi(k) (5)
k=1 k=1
k#i

Let fi(7) o pi(1 — p;) fi(?). Then, from (5)

bk

) N N
fili) =\ dy +
kz:zl kZ=:1 L=r

ki

Fi(k) (6)

which is the same equation that satisfies fi(k) in the cyclic (nonrandom) ezhaustive service

discipline (see [15]). Hence

fi(3) = M (7)
P
and thus
o nd

That is, the expected number of jobs, present at queue i when it is polled, is [p;(1 — p;)] %
times greater than that in a regular cyclic exhaustive regime for which d = d, and is p;l times

greater than that in a regular cyclic gated regime (with d = d).



The second moments are obtained by solving the following set of N2 linear equations:

frn() = prlNdY + 2dir + 70T + (A + ) Dadr(6) + A fa (D)) (9)
o fR)NN2(dr + ri)bg 4 B+ £y D) 4 b fu(ky ) + b £k, 1) + B2 A F (e, )}

+ (L —p){ind? = Dife@) + Mfe(Dldi+ fu(i 1)} kA, i £l

frir1(k, 1) = Pk{/\k/\l[d( )4 2dyry + L N4 (di + i) e fi(D)
+ Fel)MN[2(dy + i) br + BT + b i (B, 1) + B3NN i (k, )}

+ = p)and? = D) + MfuR)di + ik, D} k£

frnrlho k) = pefAF[dY + 2diry + D]+ fu(R)AZI2(dy + )by, + 0]+ BEAT fi(k, &)}
+ (1- Pk){/\%df) = 2\di fr (k) + fr(k, k) }
For the efficient solution of the equations above, one may refer to [14].

Cycle duration

Let us define a cycle C to be the typical time in steady state between two consecutive
arrival instants of the server to some given queue (say queue 1). Then the expected cycle

duration E[C] in steady state satisfies

E[C] = %p

(see [2] Proposition 5.2 or [10] Proposition 3). An alternative derivation of E[C] can be obtained
through

N
Cl=d+ > pibifi(i)

=1

Waiting Times

Following Takagi [15], we define the following random variables (in system’s steady-

state):

L;i(n) 4 umber of jobs that the nth departing job from station i (counting from the moment



that the station was last polled) leaves behind it, and

L; def L umber of jobs that an arbitrary departing job from station z leaves behind it.

Also, let T; be the (random) number of jobs served in queue i in a typical cycle, C.

We shall obtain below explicit expressions for the expected waiting times in the different
queues in steady state (at an arbitrary time) in terms of f;(¢,7) and f;(7), and we shall express
the LST of the waiting times (in steady state) in the different queues in terms of F;(z) (which

are the solutions of the implicit equations (2)). To obtain this we use the moment generating

function Q;(z) g [ZL2:| As the distributions of number of jobs in the system at epochs of

arrivals and epochs of departures are identical (see c.f. Kleinrock [11] pp. 232) then, by the well
known PASTA (Poisson Arrivals See Time Averages) phenomenon (see c.f. Wolff [18]), Q;(2)
also stands for the moment generating function of the number of jobs at station ¢ in steady
state regime at an arbitrary point in time. We have, as in Takagi [15] pp. 77-79, 109, and
Khamisy et al [10]

E (233;1 zLi("‘)) pili <Efil i)
CO=Tmy piB (X) T B

2

a; = 1> E <Ei(i1 ZLi(m)

With some abuse of notation, denote F;(z) = F;(1,1,...,1,2,1,...,1) where z stands in the ith

def

place. Set b; = bf(\; — A\;z). The evaluation of the expression for Q;(z) is almost the same as

in [15] p. 109. In our case we have L;(n) = X! + A;(R;) — n + A;(B;(n)) (for the case a; = 1),
whereas in [15] p. 109. L;(n) = X! —n + A;(Bi(n)). Thus the result defers from the one in

[15] by an extra term that expresses the number of jobs that arrived during the switch-in time.

Hence

@@)z———ﬁ—fs{EFﬂkffq}x@uxy—@) (10)

E(X}) (>~ b
= pi(l_p)[;i . (h. % ¥ (1 —
= Ny i) = B} xri (a1 = 2)),

from which, by differentiation, we derive

(BLXH — LX) (L+ pi)
2B[X])

fi(1, 1) (L + pi)

E[L] = pi + 2fi(@)

+ ALT’L

+A,‘T¢ = P4 +

where f;(7,7) is obtained by solving equations (9).
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The LST and expectation of the waiting time W; of an arbitrary job at queue ¢ are

obtained using the relations
VV?*()\L — )\,‘Z)b;?()\,‘ — )\,‘Z) = QL(Z)7 AiE[Wi] + A;b; = E[LL]

This finally yields
Qi(1—s/Xi)
(8) = —F—

Wi(s) = b (s) (11)
E[W;] = ELL] —~ b; (12)

3 The Exhaustive Discipline

We analyse two versions of the exhaustive regime: (i) the partially exhaustive (PE) regime,
where the server, upon switching into queue ¢ (with probability p;) stays there (after switch-
in time is incurred) for the duration of X! busy periods. In terms of number of jobs, this is
equivalent to serving the X! jobs that were present there before the switch-in time, plus all
those that have arrived during the service in that queue, whereas jobs that arrive during the
switch-in time are not served during the current visit; (ii) the fully exhaustive (FE) regime,
where the server leaves a queue only after it is empty (where upon serving all the jobs that
were present there before the switch-in time, plus all those that have arrived during its sojourn
time in that queue). In this case, jobs that arrive during the switch-in time are served during

the current visit.

With the same notation used in the previous section, the evolution of the state of the

system (in steady state) is given by

| X+ Ai (an[Re + Q(XF)] + D) ik
PE: X 2 (13)
X,{fc_zk—i-Ai (ar Ry + Dp.) 1=k
oy Xi+ 4 (ak[Rk+Qk(Ak(Rk)+X1]§)]+Dk) i#k
FE: Xji = (14)
X,f&k—l—A?;(Dk) 1=k

where 1 <17,k < N.



Let Fi(z), 71, and d; be as in the previous section, and define &y, def wy (

and Ff def T <)\k — AWy, + Z]zv;l Ai(1— ZL)> . Using the evolution equations we obtain

PE :

_ N
= d,E {r,’; (ak oAl —z)

i=1

N
=d,E ], <ak2/\,~(1 - ZL)) Fy | 21, 20, .
=1

Thus, we have for PE:

Fri1(2)

= prdiT P (21, 22, -

For the FE case we write

vy Zk—1s Why 2415 -

ik
Fi(z) = E ZakX]ﬁ"!‘Ak(“rkRk‘FDk)
=) = k
1=1
1 £k

i#k

) N ) ok
xi —ay i=1 Ai(1=—2)Qp (X))
z; L) E <e Ei#k g

itk

=1
ik

N )
arXk+AL(Dy, :
FE: Fi(z)=FE Z;CLXk+Ak(DL) H zj(k
1 =1
i1 £k

=1

N
= czkE exp | —Rpap Z A

N
(1 —2z) (H z;

i=1
ik

N i N
(H ZX;) e M==0D | TT e

)E( ~on gy MO-m) (R XD

N
zh-1,wi | ak Y Al —2) | 2p%, zpgn, o

wrzn) + (1= pr)d Fr(2)

Xi(1=25) (ar [R 4+ (AR (R )+ X E)+ Dy )

11

zg (1 — ))

ﬂ Z‘X’H_Ai (tlk[Rk ‘|‘Qk(X]I;)]+Dk)
K3

N
, k
) e M(l—z )(ay Ry +Dy) I I e N (1- Zz) tlk [Rie+Qp (X} )]+Dk) Z}:a'ka
i=1

)

5 N N xi N
i=1 = i

, —ap Xk
X,];,ak) zp "}

k
Xk

70,le{:‘
“k

s ZN

(15)

'+ A (ar [Re+ Q0 (Ar(Re)+XF)]+Dy)

k
—apXF
Zk

—HkX;'
XL 7ak>




Ap(Rp)+ X}
5 Y N xi Y —ap X}
=diE{ exp | —Rpay Z Ai(1 = z) (H z; ‘) wy | ag Z Ai(1 = z) 2, kg
ik =1 ik
; N N
= dkE exrp —Rkak Z )\2(1 - Zz) - Rk )‘k - Asz ag Z /\1(1 - Zz)
= a
N —
X Fy, | 21,22,y 211, w, | a Z N(1—z) | 225, 2ht1y ooy 2N
iz
Thus, for FE:
Fi1(2) = prdiif Fi, (21,22, ooy 2k 15 @hy 2 15 -y 28) + (1 = p1) di Fi (2)

12

(16)

With the same definitions of f3.(7) and fi(l,7), as in the previous section, we get by

differentiating (15) and (16) the following set of N2 linear equations. For PE:
frri(k) = \d + (L= pi) fr(k),  k=1,.,N

Sop1(d) = Nidp + fu(0) + prriwpfe(k), k=1, N, i #k

For FE:
feri(k) = Mede + (1= pr) fr(k), k=1,..,N

Frr1(0) = Nidi + fr(@) + prdhiwrOere + fr(k)), i, k=1,..,N, i #k

(19)

(20)

(where dj, = dj, + pyry,). Following the same calculations as in the previous section, we obtain

N N
PE: pifi()) =X | di+ > prwrfu(k)
k=1

k=1
k#i
N N
FE: pi(hiri+ £i(D) =X [ D de+ Y, prwr(Qere + fr(k))
k=1 k=1

k#i

(21)

(22)
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Define f;(7) o pifi(i) for PE, and f; (i) def pi(Air; + fi(i)) for FE. Equations (21) or (22) yield
again equation (6), from which, by the same argument as in the previous section, the explicit

expression (7) for f;(i) results. This leads to

() = Xid(1 = pi)
PE:  fi(i) =) (23)
FE - f.(i):M_)\,r. (24)
' pi(1—p) o

It is clear from standard balance arguments that E[C] = d/(1 — p) in the two exhaustive cases
as well, and thus the interpretation of expressions (23) and (24) is straightforward.
Conclusion: the expression for fi(i) for PE is exactly p{l times larger than the one obtained

in the standard erhaustive model, with purly cyclic service (for which d = d). For FE it is

further smaller by A\;r;.

The second moments are obtained by solving the following set of N3 linear equations.

For PE:

fena(il) = pi {ml[dﬁf’ +2dirs + ) (di ) i (6) + Aifi(D)] (25)

(dk + T‘k)bk i bf)

2
+  fr(k)AiN l 1= TEAE

] + fk(i’l)

by, , ‘ bAid Sk, k)
1 — ok [Alfk(k77“) + )\Lfk(kal)] + (1 — pk)g }

+ (=) PN = DafeD) + Mfe@)lde+ (6D} k£ i A

fk(k))‘lbk]}

fo(kD) = pr {Akxl[dﬁf’ + 2dgr + D]+ (di + ) [fk(l) g

+ (1= p)fandY = DafeD) + Mfu(B)di + fulk, DYk #1
fror(k k) = ped3[d? + 2dgry, + 7]

+ (1= p){A2d® —2dpfi(k) + frlk, k)}

Similar equations are obtained for FE.
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Next we compute the waiting times for PE. Define Y; to be the number of jobs served in
queue ¢ during the visit of the server there. With the same definition of ;(z) as in the previous

section, we have

E (22;1 zLi(”)> _ p B (Zz‘:l 2L g, = 1) _ (1-p)E (E};l ?Li(”)
E(T;) piE (Yila; = 1) E(X})

2

aizl)

(26)

Qi(z) =

The evaluation of the expression for Q;(z) is done similarly to the one in [15] p. 79, where
we have, as in the previous section, an extra term that corresponds to the number of arrivals
during the switch-in time. This term stems from the fact that those arriving jobs are seen by

every leaving job, since they are not served in the current cycle. Hence, with b defined as above,

bi(1—p;) i «
Q) = g g (B —1) xriut - 2) 27
_pi(l=p)bi £y (1 .
T NGy T =)

from which, by differentiation, we derive

AZp(?) A

E[Li] = pi + 201 —p;)  2fi(4)

+ A7y (28)

fi(,4) is obtained by solving equations (25).
The LST and expectation of the waiting time W; of an arbitrary job at queue ¢ are

obtained using the relations (11) and (12).

For FE, the first two equalities in (26) still hold. However, Y;, given a; = 1, is equal to
the jobs served during X! + A;(R;) busy periods. Hence

_ B(XD) + Nirg

B(Yla; =1) = =72
?

?

and instead of (27) we have (using result (24))

_ '51'(1 —Pi)
[E(XZZ) + )\ZT‘Z](Z — bz)

Qi(2) (B [%] x rini(1=2)) - 1) (29)

_pil=p)bi (1 — 2)) —
- m (FL(Z) X T ()‘L(l Z)) 1) ’
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Note that the reason for the term r} in (29) is different than in (27). In the FE case it is due
to the fact that the server stays in the queue XZ + A;(R;) busy periods (rather than XZ as in
the PE case). By differentiation, we obtain

A2 fi(,1) 4 2 (D) Ay + AZD)
2(1 - pi) 2 (fi(3) + Xiri)

E[L;] = pi + (30)

4 Pseudo-conservation law and optimization

We consider below a mixed system, where some queues may have the gated service discipline
and others follow one of the exhaustive regimes. Of interest is the optimization problem of
choosing the switch-in probabilities p;, ¢ = 1,..., N, so as to minimize the expected work-
load in the system, Y b,E[L;] = >N, p; E[W;]. To this end, we use the expression for
the decomposition of the workload in polling systems given by Boxma [4] and Boxma and

Groenendijk [5], known as pseudo-conservation laws. From these references

N N oy 1(2) 7(2) 2 _ N2 N
i1 Aib d P~ = s P (1)
]=pZist ey O | P sl P gy N gyt (31)
i-1 2(1 = p) 2d 2(1 =) i=1

where EMZ-(l) is the expected unfinished work in the ¢th queue at an arbitrary instant of de-
parture of the server from that queue. In our case, a departure instant from the i¢th queue
is the time at which the server starts moving from that queue to the next one, regardless of
whether service was actually given there or not. For the case of Gated service, with probability
p; the jobs present at such instant are those that arrived during the period comprised of the
switch-in time plus the service time devoted to that queue. The expectation of this number is
Ai(r; + b; fi(7)). In the Partially Exhaustive case, with probability p; the jobs present at such
instant are only those that arrived during the switch-in time, the expectation of which is A;7;.
For the FE case, this term is zero. With probability 1 — p; the number found at departure
instant is the same number of jobs found at the moment of server’s arrival to the station (both

in the gated and in the exhaustive case). Thus

EM(Gated) = b; [pidi(ri + bifi() + (1 — pi) fi()] = pi [pm - 11__/ZCZ+ il = p)] (32)
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_1_piJ+J(1_pi)

1)
—ri(1—pi)| = EMV(PE) — pir;
1—p  pl—0p)

EMM(FE) = b;(1 - pi) fi(3) = pi

(34)
Let G (PE, FFE) denote the set of queues that are served according to the Gated (Partially
Exhaustive, Fully Exhaustive) discipline, respectively. Substituting (32) (33) and (34) in (31)

yield the following conservation law:

2 -
g:pE[W] _ z’l\il /\ibg : pd(o) 4 /72 — Efil p?g
B 2(1-p) 2d 2(1 - p)
— pi 5 1—pi - d(l—p;
+ sz[pzrz_ pd+ +szlpzrz_ pd+ (1 P)
€@ _p pz( icPE _p pz( _p)
1—p; - d(1l—p;
+ Y pi l— gy U= p) — (1 —Pi)] (35)
e l—p  pi(l-p)

We wish to express the latter as a function of the parameters p;. To do so, we note that

B N
d:Zd + pir t
=1

N N N
7 2
d(2) = d(2) + 2d E pir; + E pﬂ‘?(; ) + E DiP;jTiTy

i=1 i=1 =1
i
and hence
def al
€
Z(p) = D pik[Wi] (36)
=1
2
_ ¥
2(1 - p)

2
d? +2d2 1pm+Z =1 D7 )+ZN_1 PipyTiTy
i

25N (di + pirs)

2

P~ 2= 1p1

——="> (d; +pir;
taTeo Z( +piri)

+ Dp pm-FEJ 1(d; + p73) (——(1 ))]

icG (1 - p) Pi
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. Y (dj +piri)(1— pi) 1 ]
i ieZP:EpZ _pm " (1 —P) (pi 1)

r N
i (di +piri)(1— py
R ¥j=1(dj +pjri) (1 = pi) <l _1> _m]

Now, the optimization becomes the following Mathematical Program (see also Section 4
in [6]:

Find a vector p = {p1,p2,...,pn} that minimizes Z(p) subject to 0 <p; <1, i =1,...,N.

Since for every 1,

[p%—(l—m)] > [(1—;01‘) <2%—1>] > [(1—/%) (pli—l) —n]

it readily follows from Eq. (36) that for any fixed vector of switch-in probabilities {p;}, and for
each station, independently of the others, the expected workload when using PE is smaller
than when using G; and this performance-measure is even smaller when applying the FE regime.
This is also a direct consequence of (32), (33) and (34). As aresult, the best performance among
all choices of service disciplines in different stations and of switching probabilities is obtained
when the Fully Exhaustive service regime is applied in all stations and the optimal switch-in

probabilities obtained through the respective Mathematical Program are used.

Clearly, for all ¢ satisfying p; > 0, the optimal p; has to be greater than zero. It seems
reasonable to expect that for a queue with a low arrival rate we would get p; < 1, so as to
avoid the switch-in time to a queue that might be empty. This would allow the server to be
more frequently available for queues with higher arrival rates. We could also expect that p; =1
for that queue ¢ whose arrival rate A;, or whose p;, is the highest. However, as we show in the
sequal, even in the case when there is only a single queue, it is not always advantageous to have

p1=1.
Optimization of a single queue

In the case of a single queue, (36) reduces to

Ab(2) d® + 2drp + pr® rp+d
EW, = —d+ —- 37
Wawred = 50—+ 2@+ pm) fap S

B Ab(2) n d? —2d? + pr(® rp+d
2(1—p) 2(d + pr) p(1—p)
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and similarly

Ab(2) d? 4 2drp + pr rp+d
EWpg| = + —d+ 38
W = T ) » )
B Ab(2) n d? —2d% 4+ pr®  rp+d
2(1 - p) 2(d +pr) p
Ab(2) d® + 2drp + pr® d
EWrg| = + —d+ - 39
N A TR b 5
Ab(2) d? —2d> + pr d
= + + - =EWpg|—r
W—p) T 2t T

where the index 1 has been omitted. Set ¢ o p~L. The various E[W] are now written as

d? g —2d%q + 1

EW(L(: - t+ +
Wiatea] = cons 2dg+ 1) =7

dq (40)

and similarly

d?q —2d%q +

EW = i
[WpEg] = const + g+ 1)

+dgq (41)

Since E[Wrg| = E[Wpg|—r, E[WFg] it is clearly expressed by (41) too. The results described

below for PE thus hold for FE too. Define pguteq def p that minimizes F[Wyazeq) and ppg def P

that minimizes E[Wpg|. Further define

. 1] | +®d + 242 — d@)r ]
an,te(l = 5 |4 1 -r (42)
d N 2(1—/))d
and
. 1 rDd 4 2d2r — d2r
deaxh = 3 |:\/ 2d -r (43)

proposition 1 If q;ated s a real number and satisfies q;ated > 1 then pyated s given by Pyated =

[q;ﬁated]il' Otherwize pyateq = 1. The same holds for the PE case.

Proof: Consider first the Gated case. Looking for a real number ¢* that achieves

aE[Wgutcd]

St =0 (44)
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we get

aE[Wgated] _ d(Z)r — 2d2r o r(2)d 1

= +
5y 2dg+n? T (-p)
Condition (44) then yields
@ d 4 2d%r — d?
2(dq*+r)2:r + 1Td r
(1-p)
and the proposition readily follows. The PE case is obtained similarly. [ |

If we choose p = 1 (i.e. ¢ = 1) we shall say that a “non-idling policy” is being used,
whereas “idling policy” will stand for any choice of p < 1 (hence ¢ > 1). In the following

Corollaries we present conditions for the optimality of idling and non-idling policies.

corollary 2 If the Gated discipline is used, then the optimal policy s idling iff both conditions
are satisfied:
(i) r2d +2d%r — dPr >0, and

2d(r + d)?
r(2)d + 2d2%r — d2)r

(i1) p<l1l

If the PE discipline is used, then the optimal policy is idling iff

12 > 2d% + 202 + 2dr + dPr/d

Proof: From (42) it is easily seen that ¢* > 1 is equivalent to

, 2d

r@d 4 2d%r — dDr > (d+7r) il
—p

(45)

(note that (45) implies that the term inside the square-root is positive). (45) is easily seen to

be equivalent to the conditions of the proposition. The PE case is obtained similarly. [ |

corollary 3 (i) In the case of gated service discipline, a sufficient condition for the optimal

policy to be non-idling is that 2r> + 2d% + 2dr > r®) — dPr/d. (ii) Under either the Gated
or the PFE service discipline, if R is either deterministic or exponentially distributed, then the

optimal policy s non-idling.
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Proof: If the sufficient condition is fulfilled then

2d(r + d)?
r(2d + 2d2r — dDp

hence by corollary 2, p < 1 only if p < 0, which can never happen. (ii) then follows from (i) for

the Gated case, and from Corollary 2 for the PE case, since r(2) = r2 in the deterministic case

and r(2) = 2r2 in the exponential case. [

Interpretation of corollary 2 and the conservation law:

It can be seen from (45) (and corollary 3) that p is less than one if the variance of R
is large enough. To understand the fact that p = 1 may not be optimal, we present another
viewpoint on the system (with a single queue), which allows the derivation of E[W] in an

alternative way.

Define a “generalized cycle” as the time between two consecutive visits of the server
to the queue, at which it ‘decides’ to switch in and give service. A generalized cycle is thus
composed of a switch-in period R, service of jobs (if the queue is not empty), and a geometric

number of walking times, all distributed like D. A “generalized vacation” is then defined as

= Efil D'+ R, where K is geometrically distributed with parameter p, and D*,i = 1,2,..., K

are i.i.d. versions of D. It then follows that

EU] = g +r (46)
E[U?] = ? + %d [7(1 _pp)d + 7‘] +r2 (47)

By standard balance arguments, the expected duration of a generalized cycle (for all three

service disciplines) is given by

E[U] _ d+pr

E[Ogeneralized] - 1—0p B p(l - P)

One can then use standard decomposition for obtaining the expected waiting time E[W]

(e.g. [4, 5]):

) — L B | Blm]

2-p FaEm T, (48)
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2
The second term above, %, is the expected residual time of a generalized vacation; note that

E[U2  d® — 242 4+ 2 d
T rrpL e (49)
2E[U] 2(d +pr) P

E[M] is the total expected work at the departure instant of the server from the queue (after it

decided to serve it). Hence
E[Mgatcd] = sz[Cgcne’ra,lized] + ro, E[MPE] =rp, E[MFE] =0 (50)

(for the gated case, note that pE[Cyeperalized) is the expected time that the server is busy during
a generalized cycle, and PzE[Cgcnemlized] is thus the work that arrives to the system during the

service time in a generalized cycle. The second term, rp, is the work that arrives during a

switch-in time).

Substituting (49) and (50) into (48) yields the same expressions for E[W] as obtained
in (37), (38) and (39).

When the variance of the switch-in time R is large enough, it can be seen from (49)
that by taking p < 1 we may diminish the expected residual time of a generalized vacation (in
comparison to the case where p = 1), and hence diminish E[W] if p is not too large (see (48)).

This (partially) explains the conditions presented in corollary 2 for p < 1.
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