Skip to main content
Log in

Self-dual bases in\(\mathbb{F}_{q^n } \)

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

We characterize weakly self-dual bases of the field extension\(\mathbb{F}_{q^n } \) over\(\mathbb{F}_q \), examine the existence of weakly self-dual polynomial bases, and use duality to analyze normal basis multiplication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E.R. Berlekamp, Bit-serial Reed-Solomon encoders,IEEE Trans. Inf. Th., IT-28, (1982) pp. 869–874.

    Google Scholar 

  2. E.R. Berlekamp,Algebraic coding theory, Revised Edition, Aegean Park Press, Laguna Hills, CA (1984).

    Google Scholar 

  3. T. Beth and W. Geiselmann, Selbstduale Normalbasen inGF(q), Archiv der Mathematik, Vol. 55, No. 1, (1990), pp. 44–48.

    Google Scholar 

  4. T. Beth and D. Gollmann Algorithm Engineering for Public Key Algorithms,IEEE JSAC, Vol. 7, No. 4, (1989) pp. 458–466.

    Google Scholar 

  5. W. Fumy, Über orthogonale Transformationen and fehlerkorrigierende Codes. Dissertation, Universität Erlangen, (1986).

  6. S. Gao and H.W. Lenstra, Jr., Optimal normal bases, to appear inDesigns, Codes and Cryptography.

  7. W. Geiselmann and D. Gollmann, Symmetry and Duality in Normal Basis Multiplication,Proc. of AAECC-6, Rome, (T. Mora, ed.), LNCS 357, Springer: Berlin, (1989) pp. 230–238.

    Google Scholar 

  8. I.S. Hsu, T.K. Truong, L.J. Deutsch, and I.S. Reed, A comparison of VLSI architecture of finite field multipliers using dual, normal, or standard basesIEEE Trans. Comp., Vol. C-37, No. 6, (1988) pp. 735–739.

    Google Scholar 

  9. I. Imamura, On self-complementary bases of GF(q n) overGF(q), Trans. IECE Japan (Section E), Vol. 66 (1983) pp. 717–721.

    Google Scholar 

  10. G. Seroussi and A. Lempel, Factorization of symmetric matrices and trace-orthogonal bases in finite fields,SIAM J. Comput., Vol. 9, (1980) pp. 758–767.

    Google Scholar 

  11. R. Lidl and H. Niederreiter, Introduction to Finite Fields and Their Applications, Cambridge University Press, (1986).

  12. F.J. MacWilliams and N.J.A. Sloane, The Theory of Error-Correcting Codes, North Holland: Amsterdam (1977).

    Google Scholar 

  13. J.L. Massey and J.K. Omura,Computational method and apparatus for finite field arithmetic U.S. Patent, Number 4 587 627, (1986).

  14. M. Morri, M. Kasahara, and D.L. Whiting, Efficient bit-serial multiplication and the discrete-time Wiener-Hopf equation over finite fields,IEEE Trans. Inf. Th., IT-35, (1989) pp. 1177–1184.

    Google Scholar 

  15. R.C. Mullin, I.M. Onyszchuk, S.A. Vanstone, and R.M. Wilson, Optimal Normal Bases inGF(p n),Discrete Applied Mathematics, Vol. 22, (1988/1989) pp. 149–161.

    Google Scholar 

  16. C.C. Wang, An algorithm to design finite field multipliers using a self-dual normal basis,IEEE Trans. Comp., Vol. 38, No. 10, (1989) pp. 1457–1460.

    Google Scholar 

  17. M.Z. Wang and I.F. Blake, Bit-Serial Multiplication,SIAM J. Disc. Math., Vol. 3, No. 1, (1990) pp. 140–148.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by D. Jungnickel

Rights and permissions

Reprints and permissions

About this article

Cite this article

Geiselmann, W., Gollmann, D. Self-dual bases in\(\mathbb{F}_{q^n } \) . Des Codes Crypt 3, 333–345 (1993). https://doi.org/10.1007/BF01418530

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01418530

Keywords

Navigation