
Acta Informatica 28 : 511-538 (1991)

i . mrmatma
�9 Springer-Verlag 1991

PROCOL
A concurrent object-oriented language
with protocols delegation and constraints

Jan van den Bos 1 and Chris Laffra 2 .

1 Department of Computer Science, Erasmus University, P.O. Box 1738,
3000 DR Rotterdam, The Netherlands
2 SERC - Software Engineering Research Center, RO. Box424, 3500 AK Utrecht,
The Netherlands

Received April 9, 1990 / March 15, 199l

Abstract. PROCOL is an object-oriented language with distributed delegation.
It strongly supports concurrency: many objects may be active simultaneously,
they execute in parallel unless engaged in communication. An object has
exported operations, called Actions. Only one Action can be active at a time,
however special interrupt Actions may interrupt regular Actions. Communica-
tion is performed via remote procedure call, or via a one-way synchronous
message with short-time binding. In communications both client and server
can be specified, either by object instance identifiers, or by type. Therefore client-
server mappings may be 1 - 1 , n - 1 , or l - n , though only 1 message is trans-
ferred. PROCOL controls object access by an explicit per-object protocol. This
protocol is a specification of the legality and serialization of the interaction
between the object and its clients. It also provides for client type checking.
The use of protocols in object communication fosters structured, safer and poten-
tially verifiable information exchange between objects. The protocol also plays
an important role as a partial interface specification. In addition it acts as a
composition rule over client objects, representing relations with the client objects.
PROCOL's communication binding is dynamic (run-time); it functions therefore
naturally in a distributed, incremental and dynamic object environment. PRO-
COL also supports constraints, without compromising information hiding. An
implementation is available in the form of a C extension.

1. Introduction

Objects provide self-contained state spaces and a collection of public operations
on data private to that space. They were first introduced in Simula [7]. Smalltalk

* This author is supported by the Dutch Science Organization NWO

512 J. van den Bos and Ch. Laffra

/-28] further refined objects as language constructs and made object-oriented
languages (OOL) popular. Actors [10] as well as CSP [11] offer computation
models that try to provide 'laws' for communication. Because of their data
and procedure encapsulation properties, objects are a natural construct for
abstract data types, as in CLU [-14] and Alphard [18]: The information hiding
properties of abstract data types are considered very important in software
engineering. They allow natural modular boundaries between weakly connected
pieces of program. As a consequence, OOLs provide an attractive tool for pro-
gramming projects.

Communication in general may be characterized by the type and duration
of the binding between sender (client) and receiver (server). A coarse distinction
is synchronous versus asynchronous communication. To be more precise, we
distinguish 6 types of binding. In the first two, the operation (method, Action)
executed is the basis of synchronization. The latter four use the message as
the basis of synchronization (if any). Listed in order of decreasing binding time
and thus increasing parallelism, they are:

�9 Rpc: remote procedure call bound from the time of call until processing
in the server completes and a result is returned: Smalltalk [28];
�9 Rpc- : early return to client, with post-processing in server: Ada [12], Pool
[-2], PROCOL;
�9 Ss Rs: Synchronous send and receive: CSP [11], PROCOL;
�9 Sa Rs: Asynchronous send with synchronous receive: Plits [8];
�9 S~ R a: Synchronous send with asynchronous receive;
�9 S.R.: Asynchronous send and receive.

It is hard to find examples of the last two categories, because in programming
systems the asynchronous receive does not appear to be a very practical way
to read messages, except perhaps in a polling situation. Ironically, the national
Mail system operates under regime S, Ra. Perhaps, there is a lesson to be learned
here.

1.1 Access control

Controlling communication is the weak point of parallel programming. For
OOLs this translates into a lack of explicit access control mechanisms to public
operations used by client objects. In general, not all operations may be called
at any time, or by any client. It often happens that one operation in an object
must precede some other operation in the same object. For example, a file
handler requires a file to be opened first before any read or write operation
may begin. It may also happen that once a particular operation has been execut-
ed, access to some other operation is (temporarily) disallowed. It should be
prevented that faulty or premature communication be the cause of erroneous
situations. To better protect an object against unscheduled actions, some form
of explicit access control is needed.

The lack of access control mechanisms in existing OOLs is directly connected
to the lack of symmetry between sending and receiving. Whereas in the send
operation the target object and its public operation must be specified, the role
of the receiver is a passive one1. Its operations can apparently be accessed

In the non-OOL area, CSP [11] and Plits [8] allow identification of both sender and receiver

PROCOL 513

indiscriminately, and at any time. The receiver is not even aware of the identity
of the client, hence the appropriate name Server for the receiving object. This
asymmetric situation, usually based on the rpc, introduces an undesirable master-
slave relation between client and server. Such an artificial relationship is inconsis-
tent with the OO paradigm in which (at least in first order) all objects are
equal. Access control is a natural element of the autonomy of an object: it
should therefore be exercized by the object itself.

2 The P R O C O L model

2.1 Concurrency

Most present OOLs [28, 15, 20, 6, 17] are sequential languages. Their structure
does not seem to cater for elegant concurrency extensions. This is unfortunate:
as self-contained pieces of program, objects are natural constructs for parallel
and even distributed processing. In principle, each object can be assigned its
own (micro) processor with memory, to be run as a largely independent sequen-
tial process. A software system would in that case consist of a number of cooper-
ating objects, with communication between objects performed on the basis of
message exchange. Concurrency ought to be a basic requirement for an OOL,
rather than an ad hoc added feature. This demand precludes the use of the
regular rpc as the only communication primitive: in systems with one root
object [28, 15, 20, 6, 17J its use leads by definition to a sequential language.
An exception is Pool [-2]. Its object instances may contain a permanently active
body. However, in practice this body plays the role of object initialization as
well as embedded protocol parser (see Sect. 2.5 and 4), blocking whenever a
Pool method becomes available for access.

PROCOL (for PROtocol-controlled Concurrent Object Language), presented
in this paper, is a parallel and distributed language based on objects. Brief,
preliminary versions of PROCOL have been published elsewhere [25, 26, 27].
This paper presents a complete overview of the language. It adds language
syntax, protocol syntax and semantics, a new communication primitive (request),
parallel delegation as a dynamic reuse facility, parallel protocols and a language
construct to define constraints, while persistent objects are being considered.

PROCOL's communication primitives are the one-way send, and the round-
trip request, short for request-with-reply~ Both primitives transfer messages be-
tween objects. Both primitives allow for concurrency, the send more than the
request.

Internally an object executes sequentially. Externally, in relation to other
objects, objects run in parallel, as long as they are not engaged in communica-
tion. The channeling of information from one object to another is accomplished
by message exchange. As a. mental model, it is perhaps best to consider each
PROCOL object as being assigned its own processor-memory pair. A communi-
cation facility then provides the means to send synchronous messages between
the processor-memory pairs.

For the sake of the following discussion an object is defined as an instance
of an object type. This object type is similar to an abstract data type. The
object contains local data structures and procedures, as well as public operations
here called Actions. These Actions are similar to the Smalltalk methods [28]

514 J. van den Bos and Ch. Laffra

or Eiffel routines [15]. Furthermore an object type may carry attributes which
are part of the local data. An object possesses a local state, defined by the
local data. The values of the local data are preserved from one invocation
of an object Action to another one. Communication excepted, objects are com-
pletely self-contained. Thus there exist no facilities for importing or exporting
data types, data structures, or procedures, except in an indirect way via messages.
Only through message transfer and the internal computation it triggers in an
Action, can the state of the object be changed. Furthermore, only one copy
of an instance exists, avoiding complex synchronization problems such as in
Orca [3].

2.2 Delegation

Many OOLs offer inheritance, a facility to inherit and thus reuse methods and/or
data structures. Inheritance, by its nature, exposes internals of an object. So
in principle, it runs counter to the idea of information hiding. In addition,
general reuse implies multiple inheritance, a feature that seems hard to accept
to many OOL builders.

An alternative for reuse is delegation [-1, 21, 19]. One approach is to start
with a number of so-called prototype objects. Incarnations of prototype objects
may contain additional methods. New incarnations may be added in a hierarchi-
cal way. But different from inheritance all these objects co-exist. An incarnation
can handle both messages for its prototype methods, as well as for methods
it possesses itself. In fact the messages for the prototype methods are delegated
to the prototype, rather than processed by the incarnation itself. In the literature
[,19] inheritance and delegation are often equated; we will not enter into this
discussion, since we are only interested in the reuse of methods.

We decided to use delegation in PROCOL for two reasons. The first one
is better hiding of information. The second is that in a dynamic object environ-
ment contacts between objects, and thus reuse, are short-lived. Inheritance has
a static nature. It is usually a compile-time feature: once inherited stays inherited.
Delegation is more like dynamic linking and delinking, and therefore much
more suitable to a dynamic object environment.

PROCOL may delegate entire Actions, acting as a kind of replacement be-
havior, such as in Actors [1]. But it also allows the delegation of parts of
Actions. In other words PROCOL offers a form of distributed delegation. Dele-
gation may be nested, and different parts of Actions may be delegated to different
delegates. Whatever way it is used, the client is not aware of delegations in
servers. Moreover, delegated Actions run in parallel with possible Actions in
the delegating object.

2.3 Protocol

Few existing OOLs offer ways to explicitly control access to the object's Actions.
Some control may be exercized in languages such as Sina [21] and Pool [2].
Implicit control may be effected by inspecting local switches or booleans, or
by more or less explicit preconditions [15, 3], but by then it is already too

PROCOL 515

late: the client has in effect accessed the object, possibly causing it to block.
Explicit controls would regulate access to the object without first letting a client
'in'. It would keep a client for a certain Action pending, as long as the Action
was not available for whatever reason (e.g. wrong object state, illegal client
type). This would not only provide for cleaner code, but more importantly,
it would give extra protection in the quest for information hiding.

PROCOL introduces a Protocol per object. It provides facilities for access
control. The protocol offers the tools to (partially) order and restrict possible
communications, and thus access to the object's Actions. It is specified in the
form of augmented regular expressions. The protocol is influenced by the state
of the object and the history of communication. The protocol is not an executable
part of an object, but it functions as a declarative specification rule for legal
communication between a server and its clients. At execution time the protocol
is parsed. Thes t a t e of the protocol determines the Actions that may be legally
accessed at a particular time. Matching a client request to an object Action
changes the state of the protocol. Thus the protocol provides the means to
support the safe proceeding of accessing objects. However, the system designer
exercizes his own discretion to what extent he uses these means. The protocol
section of an object is an orthogonal addition: without it the object would
be usable just as well, but the onus of access control would be on the client,
rather than on the server where it should be under the object paradigm.

2.4 Object types

An object type is defined by means of a piece of (program) text. Its definition
consists of the following parts:

obj
Description
Declare
Protocol
Init
Cleanup
Actions
IntActions
EndObj

Name Attributes
natural language description
local data, procedures, type definitions
(sender-message-action)-expressions
section executed once at creation
section executed once at deletion
definition of public Actions
definition of public interrupt Actions
Name

Objects are created (allocated) by means of the new primitive, with the object
variable as an argument, as follows 2:

Declare z: 0BJA;
newz (attrl, attr2, ...)

in which z is an object variable of the type 0BJA, and the a t t r l , a t t r 2
are attributes of 0BJA. After executing the statement, the variable z contains
the identity of the object. Copying of object identities can be done via assignment.

z Henceforth capitals will be used to indicate object and other types, instantiations will have
names written in mixed or lower case

516 J. van den Bos and Ch. Laffra

PROCOL knows one special object type to indicate any from the universe
of object types. The type has the name ANY. Variables of this type may not
be the subject of a new operation.

An object may possess optional attributes, to tailor a particular object. Attri-
bute types can be basic (real, int, etc.) or object types, including ANY. The attri-
bute list is passed to the object as part of the new primitive. Creation also
implies the (one-time only) execution of the Init section. The attributes may
of course be used to tailor the initialization desired; this provides similar flexibili-
ty as multiple 'create ' routines in some other OOLs.

The object issuing the new primitive is known as the C r e a t o r to the object
created. The literal C r e a t o r may be used wherever an object type variable
is allowed. Object removal is accomplished by the d e l primitive, to be issued
by the C r e a t o r only. Before the object is physically removed the Cleanup
section is executed (only once). Object creation imposes a certain hierarchy
between objects. Originally, the identity of the created object is only known
to its C r e a t o r . The identity may however be passed to other objects as part
of an attribute list or a message. The primitives new and d e t are actually
builtin requests.

The Declare section contains the declarations of local variables, object instan-
tiations, constants, and procedures. The message component variables are also
declared here, and not in the Actions. The Actions themselves do not contain
(local) declarations.

The Protocol section regulates access to the object. It is discussed in Sect. 4.
Actions and IntActions define the public operations of the object. They can

be called by the send, delegate and request communication primitives. For further
details see Sects. 3 and 5.

The entire language PROCOL could be built exclusively on object types.
However, we preferred to have PROCOL coexist with some set of basic types
as present in most languages. This avoids the quirky notation when a pure
object orientation is adopted. It also makes it possible to graft PROCOL on
a standard imperative language such as C (the host language of our current
implementation, see Sect. 8), or Pascal, in order to use facilities like procedures,
expressions, and assignments.

In summing up, the salient points of PROCOL are the following:

�9 high degree of concurrency and distribution;
�9 object is the grain of parallelism;
�9 communication primitives are send and request;
�9 communication is 1 - 1, 1 - n , o r n - 1 ;

�9 for send, objects are only bound during message transfer;
�9 per object only one Action (method) can be active at a time;
�9 access is controlled by a per-object protocol;
�9 protocols allow for client type, identity checking;
�9 protocols provide a serialization mechanism.

2.5 Semantics

When the new primitive is executed on a variable of object type O, an instance
of that type is created. Let us assume that the identity of this instance is Oi.

PROCOL 517

This identity is returned to the issuer of the new primitive. Creation may fail
for a number of reasons. The system may not be able to find the definition
of 0, or there may be insufficient storage for a new instance. In that case a
reserved identity is returned. If creation is successful, the identity is returned.
Then the list of attributes specified as part of the new primitive is passed by
value to 0 i and there copied to a local attribute list. Next the Init section
of 0 i is executed. Subsequently, the protocol parser is given control. It deter-
mines which Actions are available for access by other objects. The parser remains
in control until a legal communication (see Sect. 4) arrives. The message is p r o -
cessed by the Act ion specified in the communication. When processing is fin-
ished, control returns to the protocol parser, which determines the next legal
communication(s) by inspecting the protocol. Parser and Actions execute in
turn until the C r e a t o r issues the d e l primitive on 0 i . First any Action execu-
tion in progress in 02 has to complete. Subsequently 02 executes its Cleanup
section. Finally 02 is deleted.

All executable sections of a PROCOL object (Init, Cleanup, Actions and
IntActions) consist of code derived from some imperative host language, the
Declare section contains the declarations of variables and constants of the host
language. In other words, PROCOL is not a completely new language, but
rather an extension of an existing imperative language.

3 PROCOL actions

Both the Actions and the IntActions section in a PROCOL object contain defini-
tions of public Actions: Actions to which other objects may send messages.
The names of the Actions are known externally. Execution of an Action is
triggered when the correct type of message, aimed at this Action, is received
from the right source object, as specified in the protocol. Messages to other
objects may be sent from within Actions, but also from the Init and Cleanup
sections.

An Action has the following syntax:

ActionName = body

The body may contain any executable code. In particular it may include commu-
nication or constraints (see Sect. 6).

Actions are not mandatory. Sometimes the only thing an object does is
to create other objects in its Init section.

3.1 Communication

The send primitive obeys the communication regime SsRs (see Sect. 1). The
sender of the message waits until the message has been accepted by an intended
receiver. The potential receiver is likewise suspended until it acquires the required
message. Receipt of the message consists of copying the values of the message's
components to variables local to the object, as specified in the message part
of the protocol. Immediately after receipt of the message the receiver starts
the execution of the Action indicated, while the sender resumes execution. In

518 J. van den Bos and Ch. Laffra

other words Action execution starts (immediately) after the sender has been
released. This (restricted synchronous) binding is identical to the communication
binding in CSP [-11]. Relaying messages for processing by other objects is quite
possible. In contrast to most OOLs, communication mapping in PROCOL can
be 1 - 1 , as well as 1 - n and n - 1 , although in all cases only one message
is exchanged. So strictly speaking, n refers to the number of potential senders
or receivers.

The requeSt primitive belongs to communication type rpc- (see Sect. 1). It
is comparable to the type of communication in ADA [12] and Smalltalk [28].
Sender and receiver are bound until a result is returned. In Smalltalk this implies
that the execution of the method be completed. In Ada early return from the
method is possible, while the server continues with post-processing. In PROCOL
the result is returned by means of a send. This send may occur at any place
in the Action where the result is known. This is analogous to early return.
But in addition, only the client knows whether the server Action was triggered
by a request or by a send, another contribution to information hiding.

Sending a message to an object, via a send, uses the syntax:

TargetObject. ActionName msg

ActionName is the name of the Action in TargetObject to which message msg
is sent for processing.

The request uses a generalization of the send syntax:

TargetObject. ActionName msg ~ rues

The result values returned by the request are deposited in the variables indicated
in the list (message) mes. They must originate from a single send in the server.

Both msg (in its evaluated form) and rues are messages consisting of an
ordered list of variable names. The variables may be of arbitrary type, including
object types.

The send has to be matched by a receive (see Sect. 4.1). If this is not the
case, the send eventually times out, as indicated by a return code.

In most cases TargetObject is an object variable containing the identity of
the receiving object. However, in contrast to conventional OOLs, a receiver
may also be selected from an indicated set of receivers. In PROCOL, the set
is specified by the name of the object type. Although a single communication
primitive always transfers only one message from sender to receiver, using a
type name amounts to 1 - n communication mapping. So in general, TargetOb-
ject can be the following:

- a variable containing the identity of a particular object;
- one of the constants C r e a t o r , R e c e i v e r or S e n d e r ;
- - the name of an object type, indicating any instance of that type;
- ANY, indicating any instance from the universe of object types.

The first two cases correspond with 1 - 1 communication mapping, the latter
two with 1 - n mapping. Re c e i v e r [22] is the primitive which yields the name
of the object that actually received the latest message from the object issuing
the primitive, while S e n d e r is the primitive yielding the name of the object
that sent the latest accepted message accepted by the object issuing this primitive.

PROCOL 519

C r e a t o r , R e c e i v e r , and S e n d e r may be assigned to an object variable
of the proper type.
ActionName can be the following:

- the name of an Action in TargetObject;
- empty: in this case the receiving object will dynamically bind the message
to an appropriate Action, in conformance with the state of the protocol (see
Sect. 4.1);
- a variable of type s t r i n g , containing the name of an Action.

Only one Action per object can be in execution at a time. Normally the object
processing an Action first completes it before it can receive any new message.
However, interrupt Actions, if present, may temporarily interrupt an ongoing
(non-interrupt) Action (see Sect. 5).

When an object is deleted by its C r e a t o r , the Cleanup section is executed.
Among other things, the section may take care of the release of resources
acquired in Actions and/or in the Init section.

For details on the syntax of these sections, see the Appendix.

3.2 Delegation

An Action may be delegated in its entirety or in part to one or more Actions
in another object. This allows simple forwarding of messages. But messages
may also be altered before forwarding. Moreover, the Action may be distributed
over several delegates. The delegation primitive belongs to the communication
type Ss Rs (see Sect. 1). As a consequence, all distributed delegations may run
in parallel. The delegation primitive uses the syntax:

@ DelegateObject. ActionName msg

in which msg is not necessarily identical to the message received by the delegating
Action. For the client delegation is transparent. Its server (Re c e i ve r) remains
the object that it communicated with initially. Analogously, for the delegate
object the client (S e nde r) remains the original requestor. Technically, delegation
is a send in which the sending object is disguised as the original client. The
implication is that as soon as the message has been transferred, control returns
to the delegating Action. Multiple levels of delegation (nesting) may occur.
Request type delegation is not needed, because th e physical server (the delegator)
does not know whether the client triggered it by a request or by a send (see
Sect. 3.1). There are no protocol consequences (see Sect. 4.1).

4 P R O C O L p r o t o c o l

4.1 Interactions

Every object with Actions requires an internal Protocol section. This section
specifies a (possibly compound) protocol. A compound protocol consists of one
or more (simple) protocols. A protocol in a object regulates the message traffic
to the object by ordering access in time, and by allowing/disallowing messages.

520 J. van den Bos and Ch. Laffra

Syntactically, a protocol is an expression over interaction terms. An interac-
tion term couples the reception of a message (receive) to an Action 3. To that
end it specifies the client (sender), the message involved, and the Action to
be executed. The expressions are regular expressions augmented by state con-
trolled predicates called guards. The expressions provide for sequencing, alterna-
tives, and (conditional) repetition of interactions. The state of the object and
the type of communication and communicators influence the protocol. Variables
in the protocol are set from the Init section or Actions, or from attributes
or message fields; but, as stated earlier, a protocol is a declarative section and
there is no such thing as executing a protocol.

The form of an interaction term is:

SourceObject rues -~ ActionName.

The semantics is that upon receipt of mes from SourceObject, the Action with
name ActionName will be executed. ActionName has the same syntax as in
the send primitive (see Sect. 3.1), and rues serves to elaborate the message compo-
nents.

SourceObject can be a variable of the appropriate object type, or one of
the constants Creator, Sender or Receiver. These four cases correspond
with 1 - 1 communication mapping. But SourceObject may also be the name
of an object type, or ANY. Use of ANY indicates that any sender will satisfy
this interaction. In the latter cases SourceObject indicates a set of potential
senders, hence this corresponds to n - 1 communication mapping, even though
only a single message is received (cf. the discussion of TargetObject in Sect. 3.1).

External communication with an object is allowed when the communication
matches the current interaction term in one of its protocols. Matching occurs
when the sending object and the Action requested correspond with the entities
SourceObject and ActionName as specified in the interaction term in the protocol.
The current interaction term in a protocol is determined by the protocol expres-
sion and the history of communications pertaining to this protocol. A compound
protocol acts for the object as a number of parallel protocols.

The protocol is (repeatedly) traversed. The state of the protocol, and therefore
of the object, changes whenever an interaction has been matched, and as a
consequence a new term (interaction) in the protocol becomes the current one.
This is analogous to the parsing process of a compiler with the protocol playing
the role of grammar. Each (simple) protocol may be considered equivalent to
a single grammatical production.

If the identity of the sending object is unknown (when ANY or the name
of an object type is specified), the receiver may obtain it by issuing the S e n d e r
primitive from the Action, e.g. C u s t omer = S e n d e r , assuming that Cus torne r
is an object variable of the proper type.

Delegation is transparent to the protocol, in other words the protocol always
specifies the physical source object.

Finally, when an object is deleted by its C r e a t o r , its protocol is interrupted
after the present interaction has been completed.

The protocol plays a number of roles in an object:

3 Only receives occur in the protocol; for a not entirely satisfactory experiment with sends
and receives, see [24]

PROCOL 521

�9 it is an interface specification to other objects;
�9 it sequences interactions between objects;
�9 it controls access to the Actions of the object;
�9 it may perform type, identity checking on clients;
�9 it functions as a composition rule, because it specifies relations with client
objects.

The serializing properties of protocols strongly depend on synchronous message
exchange without queues, and the fact that access to the object is locked when
an Action in the object is executing.

The protocol allows Client sends and requests that do not specify the name
of the desired Action: the state of the protocol determines the Action accessible.
This could promote further information hiding in the server object.

Interactions in the protocol and communication primitives provide potential
symmetry between sending and receiving: both can name their communication
partner. In a world of autonomous objects, this symmetry appears to be a
logical requirement.

4.2 Express ions

The protocol consists of expressions constructed with 4 operators: selection + ,
sequence ;, repet i t ion*, and guard: (in increasing precedence). Given interaction
expressions E and F,, and guard % their meaning is as follows:

E + F selection: E or F is selected
E ; F sequence: E is followed by F
E �9 repetition: Zero of more times E
~o : E guard: Eonlyifq) istrue

Evaluation of the expressions is from left to right, unless operators of higher
precedence are encountered. Parentheses may be used to delimit subexpressions
for reasons of clarity or precedence. The repetition operator is the equivalent
of the Kleene star. The expressions are syntactically similar to the path expres-
sions discussed in [5], and to the input expressions for human-computer interac-
tion control proposed in [22, 23]. Semantically the expressions differ from [-5]
(but less from [22, 23]) in that they specify (ordered) communication patterns
between senders and receivers.

An interaction may be indicated by s k i p . This means that the resulting
expression is in effect empty and can therefore be skipped.

We will illustrate the expression operators with a few simple examples. Let
us assume that we specify the protocol in a server object S with Actions
a e t i o n A and a c t i o n] 3 triggered by messages msgl and msg2. There also
exist clients A and 13. Then the following protocol in S

ANY(msgl) -* act i onA + ANY(msg2) -* act ion13

522 J. van den Bos and Ch. Laffra

is equivalent to no protocol as far as access control is concerned, because it
specifies that any client may send msg I to trigger ao t i onA, or msg2 to trigger
a e t 2 on13. The protocol does however play a role as interface specification for
the outside world.

The following protocol in S

A(msg I) -+ act i onA + 13 (ms g2) -~ act i onB

specifies that only clients A and t3 have access to object S; A can send a message
that triggers a c t 2 o nA and]3 can send a message that triggers a c t i on]3. This
with the exclusion of any other access patterns.

The following protocol in S

A(msg I) -+ acti onA ; A(msg2) -+ act ionB

specifies that only client A is allowed access to object S; furthermore A first
has to send a message S. a o t i o n A (m s g l) to trigger a e t i o n A , before it can
send a message S. a e t i o n t 3 (m s g 2) to trigger a e t i o n B . Since the protocol
repeats this doublet of messages repeats as well.

A slight change in the S protocol

A(msgl) -+ actionA ; B(msg2) -* actionB

specifies that first client A is allowed access to object S; once A has sent a
message S. a o t i o n A (m s g l) that triggered a e t i o n A , 13 obtains access rights
to a c t i o n 1 3 of S, to be effectuated by the message S. a o t i o n] 3 (m s g 2) .

Although the protocol as a whole repeats, it is sometimes necessary to repeat
a subexpression in it as well. The following protocol accomplishes that:

A(msgl) -+ actionA* ; B(msg2) -* act ionB

It specifies that client A may trigger a c t i o n A zero or more times, and that
such a repetition always must be concluded b y B triggering a c t i ont3 once.
Hence the interaction with object B serves as a terminator in this example.

Given interactions V, X, Y, Z, (the components of which do not interest
us here). Then a protocol

V ; Z + X ; Y

specifies that interactions always occur in pairs V followed by Z, or X followed
by Y. For example, over a period of time the sequence V Z V Z X Y is legal,
while V Z X Z X Y is illegal, and can therefore not take place.

A compound protocol consists of two or more (simple) protocols separated
by the II operator. All constituent protocols are simultaneously active. As an
example take an object that performs interactions 0penR , R e a d , C l o s e R ,
0penW, W r i t e , and C loseW, for reading and writing files. By using the
following compound protocol:

0penR; Read.; Closer

II
0penW; Write* ; CloseW

read and write operations may occur interleaved, as long as each of them main-
tains the usual open, read/write, close temporal order.

PROCOL 523

4.3 Guards

To extend the power of the (so far regular) expressions predicates or guards
may be used. The guard is a test preceding an interaction term or an interaction
expression. This test may include any variable local to the object (i.e. occurring
in the Declare section or attribute list). It is evaluated before any actual commu-
nication as specified in the interaction expression subjected to the guard takes
place. A guard's evaluation yields true or false. It can be used to receive a
message conditionally, and thus to execute the corresponding Action condition-
ally. If more than one guard occurs in a selection they are all evaluated. In
general a guard is a function without side-effects, testing some aspect of the
state of the object.

The form of a guard is a test expression followed by a colon (:). As an
interaction expression operator, the guard operator has the highest precedence.

As an example, assume interactions X and u and two guards ~o and ~;
then the protocol

q) :X+~:Y

specifies that those interactions are legal of which the guards are true. The
guards are set from inside Actions. A ping-pong game may be played by alterna-
tively setting one guard true and the other one false, and vice versa. Note
that this is similar to the protocol X;Y, though not identical, since the guarded
ping-pong protocol may start with an interaction u Clients which issue requests
that cannot be honored remain pending, until they can be satisfied due to a
change of state of the object that makes the corresponding guard true. Any
Action that completes causes a re-evaluation of the pertinent guards.

Further details on protocol syntax and semantics may be found in the Appen-
dix.

4.4 Discussion

The regular expressions of the protocol, augmented by guards, can specify quite
complex access restrictions. However, the protocol is intended as support for
access control and temporal ordering. It was not meant as an exhaustive restric-
tion language. For instance, it does not allow the acceptance of a message
to depend on the value of a message. It is also not possible to inquire after
the number of senders waiting to be served by their intended receiver: the PRO-
COL programmer is not aware of any queuing. Priority interactions do also
not occur i n the language. These provisions do not belong at the language
level. If need be, it could be easily programmed in an intermediate object serving
as priority handler/assigner.

The protocol is meant as an orthogonal addition to a PROCOL object.
In principle, objects could all run without protocols. In the implementation
of PROCOL it is advisable, as we did, to make protocols mandatory (except
in objects without Actions), because the protocol at a minimum serves as a
clear interface specification of the object concerned.

5 Interrupt actions

Interrupt Actions are public Actions that may be accessed via a message, just
as normal Actions. However, when a normal Action is in progress, the interrupt

524 J. van den Bos and Ch. Laffra

Action in the same object has priority. The execution of the normal Action
is suspended and the interrupt Action is executed. Once the latter is completed,
execution resumes at the point of suspension in the normal Action.

To be allowed access, interrupts have to appear in a protocol of a compound
protocol. Interrupt Actions cannot interrupt themselves or other interrupt
Actions. Interrupts may be masked by any Action using the device of guards.
For an example, assume that A and 13 are normal (inter-)actions, I is an interrupt
Action, and ~0 is a guard.

A;13

~p:l

This protocol allows I to interrupt any executing A or B as long as qo remains
true. A, 13 or 2 may mask the interrupt Action by setting (p to false.

6 Constraints

A constraint is a numeric or geometric relationship between objects [-4, 13].
Constraints are described in terms of visible or exported aspects or value of
the objects in question. Relations can be described easily in a declarative fashion
when constraints are being used. Constraints are comprised of two aspects.
One aspect is the declarative aspect: the definition of the constraint. The second
aspect is the procedural aspect, namely the actions taken when the constraint
has to be applied.

To incorporate constraints in PROCOL the language was extended with
a simple construct: one-way constraints. We wanted an approach that did not
require any modification in the code of the objects that are put under constraint.
Therefore, the constraints are described outside of these objects. Also, we wanted
to adhere to the encapsulation principle. Constraints are not defined in terms
of status variables (which are hidden), but they are described by naming Action
names. The original message mentioned in the constraint is sent without modifi-
cation to the target. But a copy is sent to the constraining object. It can be
manipulated by the object declaring the constraint and propagated to other
objects that share relationships with the target of the message.

6.i Propagator Constraints

The approach can be applied to any object-oriented language. The syntax of
a propagator constraint is as follows:

c o n s t r a i n t TargetObject.ActionName msg ~ body

The semantics is that every time an object sends the message msg to ActionName
in object TargetObyect, the code section defined in body is executed. The state-

PROCOL 525

ment has a declarative function. It is a declaration of a piece of code that
is to be executed at a later stage. In fact, it functions as a kind of inline procedure
declaration. The code section describes the body of the procedure, the constraint
trigger describes when this piece of code is to be executed. The propaga tor
constraint can be placed at any place where a regular send statement can be
placed. That is, in the Init and Cleanup sections, or at any place in an Action.
Constraints can be canceled by specifying an empty body.

An example of a propagator constraint is:

c o n s t r a i n t L i n e 1 . Draw() --* { L i n e 2 . Draw() ;}

This propagator constraint defines that whenever any object sends the message
Draw to object L i n e 1 , then as a result the piece of code between the curly
brackets is executed. Thus, the message Draw will be sent to object L i n e 2 .
The constraint invocation is dynamic, and a form of second-order constraints
could be defined, by placing the constraint statement inside an if-statement.

The propagator constraint

constraintPointl. Move(x, y) ~{PointZ. Move(x+5, y);}

assures that (graphical) object 1 z o i n t 2 is 5 units to the right of Pc i n t 1. When
P o i n t 1 is moved to position (x, y), P o i n t 2 is moved to the position (x+
5, y) . The following example shows how propaga tor constraints can be used
to animate algorithms. For instance, a sorting algorithm that has no graphical
output or feedback can be made visible by applying constraints on its datastruc-
ture. Assume that the algorithm uses an INTARRAY object that provides an
Action called S e t V a l u e (i n d e x , v a l u e) . The declaration of constraints
allows an object to intercept all messages that are sent to this integer array,
and propagate these messages to a visualizer (see Fig. 1).

SetV

(i, v

Fig. h Constraints used to animate an algorithm

526 J. van den Bos and Ch. Laffra

For instance, the integer array could be coupled to a bar graph object, simple
by defining one propagator constraint in the following object:

obj
Declare

Init

DEM0 (INTARRAY array)
BARGRAPHbargraph;
int i, val;/*index, value*/
{new bargraph;
constraint array.SetValue(i, val)~ {

bargraph.SetValue(i, val);}
}

EndO~ DEMO.

Strictly speaking our approach is more a propagation approach then a con-
straint definition approach. In fact, the constraints defined above extend the
method of the object that has been put under constraint. Our approach uses
simple, one-way constraints. Of course, the propagation techniques described
here can be used to implement a more general constraint solving system. But
then the constraint solving system becomes much more complex (see [13]).

A very interesting feature is that the contents of the original message can
be changed and manipulated before being propagated to other objects. Propaga-
tors can be used to maintain relationships between objects, or to visualize non-
visual algorithms, or to simply monitor all accesses to a particular object. This
can be useful for debugging environments or for profiling tools.

7 PROCOL examples

We now present two complete examples. They intend to illustrate the style
and the flavor of PROCOL objects and the protocol governing the communica-
tion between the objects.

7.1 Mastermind

This example was derived from [22]. There is no intrinsic parallelism in this
example. It serves to show the cooperation of 3 objects in solving a problem,
as well as to demonstrate the use of protocols in ordering and allowing interac-
tions. Communication is based on the send primitive only.

The familiar game is modeled here as a parent object, MASTERMIND, which
creates two children, instances of PLAYER and OPPONENT. Object OPPONENT
is created here with the attribute 20 indicating the maximum number of guesses
PLAYER is allowed to make. MASTERMIND does not interfere with the communi-
cation between its two siblings, but waits until PLAYER and OPPONENT send
a completion signal. When that occurs both children are deleted by the parent

PROCOL 527

object. The function of the protocol of ZASTERMIND is to restrict access to
particular clients.

Obj
Description

Protocol
Declare

Int

Actions

EndObj

MASTERMIND

Mastermind is played by a Player and an Opponent with pawns
in 7 colors. Opponent determines a sequence of 4 pawns, called
the code. Player tries to guess the code. Opponent evaluates the
guess and informs Player of the number of bulls (position and
color correct) and cows (color correct, not including the bulls).
Player now determines a new guess. The game continues until
guess equals code (bul ls==4) or until the max imum number of
guesses (maxguess) is exceeded.

player -~ EndPlayer + opponent (re suit) -+ End0pp

int result; PLAYER player;
OPPONENT opponent ;
Note(){...)

{new player; /* create Player*/
new opponent (player, 20);/* 20 turns */
player. Start (opponent);}/* start player*/

EndPlaye r = {de I player; }
End0pp={Note (result); del opponent;}

MASTERMIND.

The next object, PLAYER, demonstrates the usefulness of protocols for client
restrictions as well as for ordering and repetition of Actions in the object. When
the S t a r t Action is triggered it sends a random guess to its opponent. 0 P P 0 -
NENT monitors the number of turns allowed and evaluates the correctness of
the guess, which is sent to PLAYER. PLAYER determines a new guess in Action
M a k e g u e s s and sends it to OPPONENT. This may be repeated (.) a number
of times, until either the code is guessed or m a x g u e s s (the number of turns
allowed) has been exceeded. If so OPPONENT returns the score to Action S t o p
in PLAYER, and the repetition terminates. If bulls:=4 PLAYER celebrates
by calling a local procedure t3eep. Finally it sends a (completion) message
to its creator MASTERMIND.

Protocol

Declare

Actions

EndObj

PLAYER

Creator(opponent) -+ Start ;
opponent(bulls, cows)-~ Makegues s * ;
opponent (bull s) -* S top

OPPONENT opponent ;
int i, bulls, cows, guess [4];
EducatedGuess() { ... }
Beep() { ... }

Start =if or (i =0; i <4; i ++) guess[i] =Random(l, 7);
opp onent.Eval (gue s s); }

Makeguess = {EducatedGuess(); opponent.Eval(guess);}
Stop ----{if(bulls==4)Beep(); Creator.EndPlayer();}

PLAYER;

528 J. van den Bos and Ch. Laffra

When OPPONENT is created the identity of its partner is recorded in object
attribute p l a y e r . Its protocol is in fact a repetition controlled by guard
no t end. It waits for a guess from p l a y e r , evaluates it in Action Eva1, where
it also checks the number of turns taken and the new value of n o t e n d . If
n o t e n d is true it returns the evaluation to PLAYER. As soon as notend is
false OPPONENT will send the score to PLAYER, and a success signal (b u l l s
is equal to 4) or a fail signal (b u l l s less than 4) to its creator MASTERMIND.
If n o t e n d is true, the protocol expression may be repeated; otherwise the
guarded protocol nicely blocks further (illegal) interactions with PLAYER. This
blocking is permanent until object OPPONENT is deleted.

Obj OPPONENT (PLAYER player; int maxgue s s)

Protocol not end: player (gue s s)-* Eval
Declare int count, i, bulls, cows, code [4], guess [4];

int no t end; PLAYER player ;
Determines-core() { ... }

Init { f o r (i = 0 ; i < 4 ; i + +) c o d e [i] = Ran d o m (I , 7);
c o u n t = 1 ; n o t e n d = t r u e ; }

Actions Eval = {Determinescore(); count ++ ;
n o t e n d = (c o u n t _< maxgue s s & & b u l l s < 4);
i f (no t end)

playe r.Makegue s s (bull s, cows)
else{

player.Stop(bulls);
Cr eat o r.End0pp (bull s == 4);

}
}

EndObj OPPONENT.

The specification of object variables in the protocol of the three objects demon-
strates the use of the protocol as a composition rule over cooperating objects.

7.2 Ringbuffer
A more practical, yet still simple example is the object RINGI~UFFER. It has
a protocol with guards opening or closing access to Actions that insert (Put)
a symbol sym in a cyclic buffer, or fetch (Get) a symbol from the same buffer:

Obj RING~UFFER (size:INT)
Protocol count<size:ANY(sym)-*Put + count>=O:ANY-*Get

Declare char sym, buf[size];
int count, in index, out index;

Init {count = in_index = out_index= 0;}

Actions Put= {buf[in_index] = sym;
in index=(in_index+l)% size;
count + + ;
}

Get = {Sender. (buf[out_index]);
out_index= (out_index+ 1)% size;
count -- -- ;
}

EndObj RINGBUFFER;

PROCOL 529

in which size is the size of the buffer, and count is the number of buffer
slots occupied. These two variables are set by Actions P u t and Get . The upshot
of the protocol is that no client is allowed to insert a symbol when the buffer
is full, and no fetching is possible until at least one symbol is present.

7.3 Newton-Raphson pipeline

This is an example of pipelined concurrency and delegation. The pipeline consists
of one object of type SQROOT and any number of pipeline elements NRSTEP.
Together they compute an increasingly refined value for the square root of
the original argument passed to SQROOT. A client communicates with object
SQR00T by means of a request of the following form:

SQR00T. Compute (x) ~ (result)

in which x is the argument and result is the approximation to ~/x. SQR00T
computes the square root by a series of approximations according to the New-
ton-Raphson method. It creates an object NRSTEP to which it later delegates
the computation of the next estimate. This object creates a next NRSTEP for
a computation of a new estimate by delegation. This creation and approximation
process goes on until the present estimate differs less than e p s from the previous
one. This estimate is then returned directly (delegation!) to the client. As soon
as Action Compute of SQROOT has delegated its message to the first instance
of NRSTEP, it is ready to handle another square root request. Once the pipeline
is filled, n computations are in progress simultaneously.

Obj
Protocol
Declare

Init
Actions
EndObj

SQROOT
ANY(x) -+ Compute

float x; NRSTEP Child;

{new Child;)

Compute = {@ Child.Compute (x, 0.5*x);}

SQROOT;

Obj
Protocol
Declare

Init

Actions

NRSTEP

Creator (x, Est) -+ Compute

float x, Est, New~st, eps; int endpipe;
NRSTEP Child;

{eps =0.0001; endpipe =true;}

Compute = {NewEst = 0.5. (Est +x/Est) ;
if (abs(1-NewEst/Est) < eps)

Sender. (NewEst) ;
else(

if (endpipe) {
new Child; endpipe ---- false;)

@Child.Compute (x, NewEst)

530 J. van den Bos and Ch. Laffra

}
EndObj NRST~,P;

Note that objects SQR00T and NRSTEP are similar in structure. SQR00T
functions as a kind of front end to the pipeline. It primes the pipeline by setting
an initial estimate for the value of the square root. It then passes the argument
and the estimate to the first NRSTEP object it has created.

NRSTEP receives these values from its creator, computes a new estimate,
and determines if this value is within a value e p s from the old estimate. If
so the root is returned to the client via the send statement S e n d e r . (N e w E s t) .
Because of the delegation statement in SQROOT and in the NRSTEP instantia-
tions, the S e n d e r primitive always holds the identity of the original client
(the caller of SQROOT). Otherwise, if this NRSTEP instance is the end of the
pipeline, indicated by boolean e n d p i p e , NRSTEP creates a new instance of
its own object type, and assigns it to the variable C h i l d ; subsequently it passes
this child the original square root argument and a new estimate.

In a typical square root approximation this results in a string of NRSTEP
objects, passing each other increasingly better approximations of the root, and
terminating by passing the final approximation to the client.

Note that the protocols are in this example not very interesting, except
perhaps in NRSTEP, where it indicates it only accepts its creator as accessor.
Finally, note that NRSTEP objects remains in existence permanently once creat-
ed. However, the length of the pipeline may increase dynamically, depending
on the number of iterations required for any subsequent square root calculations.

7.4 Polymorphic drawing

Assume that the following three graphic objects have been defined: TRIANGLE,
RECTANGLE, and POLYGON. All objects contain an Action Draw. Then the
following object skeleton makes it possible to draw an arbitrary graphics picture
by collecting object identities in a vector:

Obj
Declare

Init

EndObj

GENDRAW

ANY Geom[3]; TRIANGLE triangle;
RECTANGLE box; POLYGON polygon;

. . .

new triangle (.../*coordinates*/);
newbox (.../*coordinates*/);
newpoly (.../*coordinates*/);
/*do a polymorphic Draw for these graphic objects*/
Geom[1]= triangle;
Geom[2] = b o x ;
Geom[3] =poly;
for (i=0;i < 3;i++) Geom[i].Draw ();

GENDRAW;

PROCOL 531

The for statement effecting the polymorphic Draw will cause three Draw
Actions that, although started in sequence, will run in parallel. But this example
allows for more parallelism. It is quite imaginable that all graphic draws are
executed line by line by some other object, say LINE. If every graphics object
above creates as many LINE objects as it has vertices, and then delegates the
drawing to these LINE objects, all lines will be computed and drawn in parallel
to boot! For example the object TRIANGLE's Action Draw could contain
the following (assuming v t t [1. . . 3] is the vertex array):

new linel (vtt[l], vtt[2]);

new line2 (vtt[2],vtt[3]);

new line3 (vtt[3],vtt[l]);

line1.Draw(); line2. Draw(); line3. Draw();

with linel, line2, and line3 objects of type LIN~..

8 Implementation

Why did we not choose to superimpose protocols on an available OOL? In
the first place almost all existing OOLs [28, 15, 6, 20, 17] are sequential rpc-based
languages. These languages treat communication and corresponding Actions
as a kind of extended procedure call. In particular this means that messages
cannot be passed to other objects for further processing such that the results
are directly returned by objects other than the original receiver of the message.
It also means that sender and receiver are bound during message reception,
processing, and return. ABCL/1 [29] (rpc and SaRs, see Sect. 1) and Actors
(communication type Sa R~), with their asynchronous message passing, as well
as SINA [21] (rpc- and S~ R~) and PROCOL (rpc- and Ss R~), are exceptions
to this long-term binding, and thus foster increased parallelism. In a world
in which parallel processes prevail, concurrent OOLs are a prerequisite.

When a PROCOL program is being compiled, the PROCOL parser trans-
lates the parts different from C into C. A PROCOL object definition is thereby
translated into a structure containing the state variables, and a set of C routines
corresponding to the Actions in the object. When a message is being sent to
an object, the structure belonging to the instance is available to the appropriate
routine. As each message is subjected to the protocol of the receiving object,
at some stage a test is needed whether a given message is valid. Therefore
each object contains a protocol parser that will subject every message that
is sent to this object to a run-time validation. The current protocol state of
an object instance is saved in the same structure where the state variables of
an object instance are kept. The code that performs the protocol parsing is
the same for each object instance of a given type.

If a message is not wanted at a certain time, it gets delayed, and may finally
time out. In this case the sender of the message can inspect the return value
of the send primitive.

The extended regular expression in a protocol is translated into a finite
state machine (see Fig. 2). When a message is being sent to an object instance,

532 J. van den Bos and Ch. Laffra

the protocol parser uses the current protocol state of the object instance to
determine whether the message is legal or not. After accepting the message
the protocol parser will update the protocol state of the object instance.

A + B

> A ; B

true

> ~ ' A

Fig. 2. Correspondence of finite state machine and protocol

In the process of compilation of a P R O C O L program, a send statement
will eventually be translated into a C function call. This function returns a
value, indicating success of failure of the send statement. For example the send
statement b o x . Draw(. . .) is translated into something like a call to the function
B0X_Draw(. . .) , where BOX is the type of object box . At this stage we can
discriminate between dynamic versus static binding. If the type of the target
object and the Action to be executed are known at compile time, we can optimize
the binding code. The send statement can then directly be replaced by the C
function implementing the required Action. This method of binding is generally
referred to as static binding. It is a method which has also been applied to
optimize Smalltalk implementations.

A send statement which allows for less optimization than in the case of
a 1 - 1 mapping is the case when the target of the send statement is a type
rather than an instance of a certain type (1 - n mapping). In this case the sender
of the object is not interested which object instance is handling its request.
The sender only indicates the type and the message. In this case the send state-
ment is translated into a C function that tries all instances of the given type
until one is willing to accept the message. If that happens the C function will
return success. If no object instance of the given type wants to execute the
specified action for the sender in question, the send request is suspended to
be possibly satisfied later, or might finally time-out. Then failure is returned
and the send statement indicates that the send has failed.

The third category of send statements involves those send statements that
do indicate an object instance, but specify an empty Action name. The receiving
object is in this case free to (dynamically) bind the message to any action it

PROCOL 533

finds suitable. So, in this case the receiving object will have to inspect its protocol
definition (and state) to determine the Action that will eventually handle the
message. This kind of coupling of a send statement to an eventual Action is
generally referred to as dynamic binding.

When a sender sends to a type specifying an empty Action name, all instances
of that type will have to be tried, until success. In this case every try will involve
dynamic binding as shown before.

When a message is sent to an object of which the type is unknown at compile
time, its type needs to be determined at run time. After determining the type
of the target object, the message can be dynamically bound to the appropriate
Action.

The types of the individual items that make up the contents of a message
are not checked against the parameter types of the receiving object, neither
at compile-time, nor at run-time. In the case of dynamic binding, type-checking
at compile-time is useless, as the eventual receiving Action cannot be determined.
In the case of static binding, type-checking at compile-time could be performed.
In both cases, type-checking could occur at run-time; that is, when the message
is received and the contents of the message is copied to instance variables local
to the receiving object. Type-checking is not implemented in the current version
of the compiler. The programmer has to assure type compatibility.

A version of a PROCOL compiler has been implemented that translates
every send statement into a C function call. As a consequence the semantics
of a send is the same as for a request. Also, the resulting program no longer
has any parallelism. All objects end up in one single process, and the process
has only one thread.

A parallel extension of the implementation is under construction. In this
implementation a PROCOL program will consist of a number of communicating
processes, one for each processor in the network. Object instances are spread
across the network based on some strategy. This strategy could involve load
balancing or cluster preferences specified in startup files. When an object is
sending a message to another object that resides within the same process, the
message is handled locally. If the target object is outside the process of the
sender, the message is sent over the network to the target process. A number
of objects will reside in the same UNIX process. Light weight processes will
be used to schedule objects. Each object will have its own thread.

At regular intervals, a process checks or is signalled whether there are mes-
sages from outside waiting to be handled. This (coarse grain) implementation
strategy is much like the strategies adopted in Concurrent C [9], and Pool
[2]. Inside each process, parallelism is simulated, but all processes do run in
parallel. In general, when the message has been delivered, the sending process
resumes execution directly and does not have to wait for the result.

Preliminary performance figures show that the sequential implementation
has a throughput of 50000 messages per second, while the distributed version
has a throughput of approximately 1000 messages per second when sender and
receiver are not on the same processor.

9 Conclusion

PROCOL is a concurrent OOL with message based communication, synchro-
nous only during message transfer or request. Apart from this concurrency ,

534 J. van den Bos and Ch. Laffra

PROCOL's main contributions are its protocol, distributed delegation, and con-
straint facilities. The protocol is an explicit way of regulated access control
to Actions inside the object, with specification facilities for sequencing, selecting,
and repeating Actions that affect internal data structures. It also provides the
means for client type checking. In addition it serves to specify relations between
objects. Protocols further safe communication sequences, and are a step in the
direction of verifiability. If all object protocols were available at compile-time,
a first consistency check could be performed. Exhaustive verification is impossi-
ble because of the variable elements (types, guards) in a protocol, but above
all because in a dynamic, incremental system not all object protocols may be
accessible. Consequently, PROCOL's protocols are checked at run-time.

At first sight protocols take away some freedom in programming. On the
other hand OOLs often encourage a programming style where ordering of and
control over communications are hidden deeply in the code. But whereas the
object code is a matter internal to the object itself, communication plays a
role of global importance. It determines the smooth progression of execution
of other objects. Hence there exist good reasons to better separate and control
communication as an external, inter-object activity, from the internal activities
of the object. This is especially important in the context of the global, and
thus often disastrous effects that communication errors may cause.

Protocols as explicit, specification-type constructs in OOLs (sequential or
parallel) are a novelty. An approximation of a protocol exists in the non OOL
Ada [12]. It takes the form of an (explicit) selection protocol when accepting
calls from other subtasks; in addition the selection can be controlled by guards.
The ADA approach has been copied in Pool [2]. Pool does, but ADA does
not have separately specified Actions. In ADA Actions occur in the middle
of executable code; thus sequencing and repetition are (implicitly) derived from
regular ADA language facilities.

A rudimentary protocol can also be found in ABCL/1 [29]. This OOL
is based on the Smalltalk way of defining Actions, but it allows for hierarchical
sets of Actions, such that the object could wait for a new message when in
the middle of some Action triggered by an earlier message. In the terminology
of PROCOL, this means a global selection (+ operator) protocol, in which the
terms consist of sequences.

9.1 Present and future research

9.1.1 Global protocols. Protocols already offer substantial support for constrain-
ing communication. However, one could envisage further facilities for restriction
and protection. An example is a group of cooperating objects. To prevent other
objects from access to this group one might like to specify a kind of inter-object
protocol. This (global) protocol would in fact specify various relationships and
restrictions between the objects (rather than the Actions) in a group of logically
connected objects. Such a protocol would be one level higher than the object
protocols presented in this paper. The idea of inter-object protocols could be
further generalized to inter-group protocols, and so on.

9.1.2 Persistent objects. Another desirable facility is persistent objects, persis-
tence being defined as the ability of an object to outlive the execution time

PROCOL 535

of a program. Persistent objects are of great use when objects accumula te large
amounts of data, such as in database or C A D systems. They can be used in
one or more other p rograms with their da ta still intact, obviat ing a possibly
precious reloading of data. Persistent objects should be handled just as volatile
objects. We have defined and implemented three new primitives [16] on an
experimental basis. The primitive p e r s i s t e n t makes a volatile object persis-
tent, the primitive v o l a t i l e make a persistent object volatile, and the primitive
r e t r i e v e retrieves a persistent object created at an earlier stage. Refinements
in the form of dataset keys make it possible to discriminate between datasets
used for s torage of persistent objects. We are also s tudying the use of visible
(global) at tr ibutes to make it possible to search for a part icular instance that
satisfies a certain condit ion. The experimental implementa t ion uses shared
mapped m e m o r y (virtual files), so at the p r o g r a m m i n g level there is no difference
between persistent and volatile objects, which is an essential characteristic. The
primitives take into account that persistent objects may create/use other persis-
tent objects.

A. Appendix

In the extended syntax convent ions used below square brackets enclose options,
brackets (and) denote zero or more occurrences of the affected term, a n d
the vertical bar (I) indicates an alternative. Literals (terminals) are printed bold.
The a lphabet of terminals consists of the following symbols :

= ~ @ () { } II ; + * =
skip new del constraint Sender Creator Receiver

A.1 Actions syntax

Actions :: = (A c t i o n)
Act ion :: = A - N a m e = b o d y
b o d y :: = { ([c o d e] [communica te] [const ra int])}
communica te :: = send Irequestl delegation
new ::
del ::
constra int ::
send ::
request ::
delegation ::
A - N a m e ::
Ob j -Name ::
variable ::
literal ::
object- type ::
msg ::
mes ::

= new variable [msg]
= del variable;
= constraint send ~ b o d y
= 0 b j - N a m e . [A - N a m e] [msg] ;
= 0 b j - N a m e . [A - N a m e] [msg] --+ mes
= @ 0 b j - N a m e . [A - N a m e] [msg] ;
= identifier
= variable [literal [object-type
= identifier
= Sender IReceiverl Creator
= identifier
= (expression (, expression))
= (identifier (, identifier))

536 J. van den Bos and Ch. Laffra

The non-terminal code is understood to have its intuitive meaning. Apart from
traditional programming constructs, it may contain new and d e l . The syntax
of the Init and Cleanup section is:

Init :: = body
Cleanup :: = body

A.2 Protocol syntax

The complete syntax for protocol specification is:

compound-protocol :: = protocol (11 protocol)
protocol :: = interaction-expr
interaction-expr :: -- interaction-term (+ interaction-term)
interaction-term :: = interaction-factor (; interaction-factor)
interaction-factor : :=interact ion-primary]interact ion-primary.
interaction-primary :: = [guard :] interaction](interaction-expr) linteraction
interaction :: = Obj-Name [mes] [~ A-Name]] skip

For the definition of the non-terminals Obj-Name, mes and A-Name, see above.

A.3 Protocol semantics

Part of the semantics of the expressions occurring in protocols has been
explained, sometimes informally, above. We now present a more formal treat-
ment of the semantics for the special cases such as guards, skip, and blocked
expressions.

As syntactic sugar in guarded expressions a special guard else is provided.
In a selection expression it leaves an alternative communication channel when
all other guards evaluate to false. The guard else is syntactically equivalent
to the complement of the logical or (v) of all guards on the simultaneously
active terms in the particular selection with the else. E.g. given

~o: A + O : B + e l s e : C

the following identity holds:

else = q) v @

From the definition of the operators; + and *, various laws for associativity,
distributivity and commutativity follow intuitively. Let A, B, and C stand for
arbitrary interaction expressions, and let cp and O stand for two arbitrary guards.

PROCOL 537

Then arbitrary interactions, skip and blocked interactions A (VA: A-false:A)
are subject to the following axioms:

associativity

1. A;B;C =A;(B;C) =(A;B);C
2. A + B + C = A + (B + C) = (A + B) + C
3. ~o+~+A =~o+(~+A)

distributivity

4. A , (B + C) = A ; B + A ; C
5. qo:(A+B)=cp:(A)+(p:(B)

c ommut at ivi ty

6. A + B = B + A
7. (p + O + A = O + 9 + A

other

8. A+A =A
9. A;A =A

10. A + A --A
11. skip;A =A
12. skip* =skip
13. A* =skip
14. q):A =A

The expression skip+A is to be interpreted as an optional occurrence of A
(zero or one A).

More than one true guard could introduce (run-time) ambiguity (non-deter-
minism). Sometimes it is possible to check ambiguity syntactically, but in general
it requires semantic checking. For example the following expression would be
ambiguous for ~p and ~/, both true (the parentheses only serve as textual deli-
miters):

(9:A;B)+(t):A;C)

This situation is handle d by allowing A and subsequently waiting for B
or C. Temporary ambiguity can be accepted, but eventually an interaction term
has to occur such that a unique alternative can be chosen from the selection
expression. Without guards ambiguous expressions may also be defined. If the
identity of the sending objects is known at compile time they could be handled
by factoring out the ambiguous terms. But some other situations preclude a
general solution.

References

1. Agha, G., Hewitt, C.: Concurrent programming using Actors. In: Yonezawa, A., Tokoro,
M. (eds.) Object-oriented concurrent programming, pp. 37-53. Cambridge: MIT Press 1987

2. America, R: POOL-T: A parallel object-oriented language. In: Yonezawa, A., Tokoro,
M. (eds.) Object-oriented concurrent programming, pp. 199-220. Cambridge: MIT Press
1987

538 J. van den Bos and Ch. Laffra

3. Bal, H.E., Tanenbaum, A.S. : Distributed programming with shared data. Proceedings IEEE
Conference on Computer Languages, pp. 8~91. Washington: IEEE 1988

4. Borning, A., Duisberg, R.: Constraint-based tools for user interface. ACM Trans. Graphics
5(4), 345 374 (1986)

5. Campbell, R.H., Habermann, A.N.: The specification of process synchronization by path
expressions (Lect. Notes Comput. Sci., Vol. 16, pp. 89-102). Berlin Heidelberg New York:
Springer 1974

6. Cox, B.J.: Object-oriented programming. An evolutionary approach. Reading: Addison-
Wesley 1987

7. Dahl, O.-J., Myhrhaug, B., Nygaard, K.: Simula 67 common base language (NCC Publica-
tions S-52). Oslo: Norwegian Computing Center 1967

8. Feldman, J.: High-level programming for distributed computing. Commun. ACM 22(6),
353 359 (1979)

9. Gehani, N.: The concurrent C programming language. Reading, Mass.: Addison-Wesley
1989

10. Hewitt, C. : Laws for communicating parallel processes. In: Gilchrist, B. (eds.) IFIP Informa-
tion Processing, Vol. 77, pp. 987-992. Amsterdam: North-Holland 1977

11. Hoare, C.A.R.: Communicating sequential processing. Commun. ACM 21(8), 666677
(1978)

12. Ichbiah, J. et.al.: Rationale for the design of the ADA programming language. Sigplan
Notices (ACM) 14(6) (1979), part B (1980)

13. Leler, W.: Constraint programming languages. Their specification and generation. Reading
Mass: Addison-Wesley 1988

14. Liskov, B., Snyder, A., Atkinson, R., Schaffert, C.: Abstraction mechanisms in CLU. Com-
mun. ACM 20(8), 564-575 (1977)

15. Meyer, B.: Object-oriented software construction. Englewood Cliffs: Prentice Hall 1988
16. Oosterom, P. van, Laffra, C.: Persistent graphical objects in PROCOL. In: B6zivin, J.,

Meyer, B., Nerson, J.M. (eds). TOOLS 2, the TOOLS'90 Proceedings, pp. 271283, 1990
17. Schaffert, C, Cooper, T., Bullis, B., Kilian, M., Wilpolt, C. : An introduction to Trellis/Owl.

ACM Conference Proceedings OOPSLA'86, Portland, Special Issue. SigPlan Notices 23(11),
9 16 (1986)

18. Shaw, M., Wulf, W.A., London, R i . : Abstraction and verification in Alphard: defining
and specifying iteration and generators. Commun. ACM 20(8), 553 564 (1977)

19. Stein, L.A.: Delegation is Inheritance. ACM Conference Proceedings OOPSLA'87, Orlando,
Special Issue. SigPlan Notices 22(12), 138-146 (1987)

20. Stroustrup, B. : The C + + programming language. Reading, Mass.: Addison-Wesley 1986
21. Tripathi, A., Berge, E., Aksit, M.: An implementation of the object-oriented concurrent

programming language SINA. Software Pract. Exp. 19(3), 235-256 (1989)
22. Bos, J. van den, Plasmeijer, M.J, Stroet, J.W.M.: Process communication based on input

specifications. ACM-TOPLAS (Trans. Programm. Languages Syst.) 3(3), 224-250 (1981)
23. Bos, J. van den: ABSTRACT INTERACTION TOOLS: A language for user interface

management systems. ACM-TOPLAS (Trans. Programm. Languages Syst.) 10(2), 215-247
(1988)

24. Bos, J. van den: PCOL - A protocol-constrained object language. SIGPLAN Notices 22(9),
14-19 (1987)

25. Bos, J. van den: PROCOL - A protocol-constrained concurrent object-oriented language.
SIGPLAN Notices, (Special Issue) 24(4), 149-151 (1989)

26. Bos, 3. van den, Laffra, C.: PROCOL - A parallel object language with protocols. ACM
Conference Proceedings OOPSLA'89, New Orleans (Special Issue) SigPlan Notices 23(11),
95 102 (1989)

27. Bos, J. van den: PROCOL - A protocol-constrained concurrent object-oriented language.
Inform. Process. Lett. 32, 221-227 (1989)

28. Xerox Learning Research Group: The Smalltalk-80 system. BYTE 6(8), 3648 (1981)
29. Yonezawa, A., Briot, J.-P., Shibayama, E.: Object-oriented concurrent programming in

ABCL/1. ACM Conference Proceedings OOPSLA'86, Portland (Special Issue) SigPlan
Notices 21(10), 258268 (1989)

