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STATISTICAL CHARACTERIZATION OF

RICIAN MULTIPATH EFFECTS IN A

MOBILE-TO-MOBILE COMMUNICATION CHANNEL

This text develops a statistical model for a narrowband mobile-to-mobile channel taking into

consideration Rician scattering near receiving and transmitting antennas both individually and con-

comitantly. From the proposed channel model we obtain the probability density function of the

received signal envelope, the time correlation function and RF spectrum of the received signal, and

level crossing rates and average fade durations. We discuss the impact of these parameters on com-

munication networks supporting an Intelligent Vehicle Highway System (IVHS).
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2.1  Introduction

The application of microwave data links in a land-to-mobile environment has been shown to

suffer from multipath fading, shadowing, and Doppler phase shifts. These effects limit the perfor-

mance of the system. It is thus desirable to have a model of the channel and its limiting effects. This

text presents a statistical model for the effects of multipath fading in a mobile-to-mobile environment,

extending the statistical model for Rayleigh fading by Clarke [1] and Jakes [4] for mobile-to-land,

and by Akki and Haber [7] for mobile-to-mobile communication.

In a mobile channel, energy arrives at the receiver by scattering and diffraction over and/or

around the surrounding environment. A short range mobile-to-mobile channel in a highway environ-

ment will also contain a much stronger direct line-of-sight component, possibly also with a strong

ground reflected wave. These components combine vectorially at the receiver and give rise to a

resultant signal that varies greatly depending on the distribution of the phases of the various compo-

nents. These short-term variations in the received signal are called multipath fading. Long term varia-

tions in the signal, such as shadowing or path loss, are also present. The relative motion of the

vehicles will give rise to a Doppler shift in the signal. Thus, the mobile radio signal varies rapidly

over short distances (fading), with a local mean power that is constant over a small area, but varies

slowly as the receiver moves. We will concentrate on the short term effects for narrowband channels.

In contrast to [1], [4] and [7], we include a dominant component, resulting in Rician fading.

2.2  Probability Density Function of Received Signal

In deriving the probability density function of the received envelope, we will follow Clarke’s

two dimensional scattering model [1]. Work has been done by Aulin [11] to extend this to a three

dimensional model [9]. However from Aulin’s results it is quite clear that those waves which make a

major contribution to the received signal travel in an approximately horizontal direction. We will thus

continue with Clarke’s model which assumes that the field incident on the mobile antenna is com-

prised of horizontally travelling plane waves of random phase. Also all reflections occur in a plane

and both mobile are at the same height. We will augment Clarke’s model by considering a dominant,
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e.g. line-of-sight, component as well as reflections at both transmitter and receiver. On a highway,

reflections may also occur against vehicles in between the transmitter and receiver. However, their

signal strength is often much smaller, as the path contains two relatively long segments, each with

substantial free space loss. This is similar to the situation in land-to-mobile channels.

Figure 2.1 Mobile-to-Mobile propagation channel with scatters near both antennas.

At every receiving point we assume the signal to be comprised of many plane waves, as shown

in Fig. 2.1. Here NT waves experience reflections at the transmitter only, NR waves experience reflec-

tions at the receiver only and NTNR waves experience reflections at both transmitter and receiver. We

denote waves by an index i indicating the path and reflection near the transmitter and an index k

denoting the path and reflections near the receiver. The (i,k)th incoming wave has a phase shift φi,k, a

spatial angle of arrival αRk, and a spatial angle of departure αTi with respect to the velocity of the

receiver. We use i = 0 and k = 0 for dominant waves that are not subject to scattering. The (i,k)th wave

has a real amplitude given by Ei,k depending on the reflections and additional path loss that the wave

undergoes. In practice the amplitudes Ei,k may be difficult to estimate. We model this as Ei,k =

E0Ci,kDi,k where Ci,k accounts for scattering near the transmitter and Di,k describes scattering near the

transmitter. Here E0C0,0D0,0 is the deterministic amplitude of the dominant component,  which in case

it  consists only of the line-of-sight wave, is found from free space loss.  The parameters  φi,k, αTi, αRk,

Ci,k, and Di,k are all assumed to be random and statistically independent, which is reasonable for a

sufficiently large separation distance between transmitter and receiver. Maffett [2] has shown that the

radar cross section, which is analogous to the dimensionless parameters Ci,k and Di,k are a function of

Receiver Transmitter

C0D0

C0Dk CiD0

EikβRk
αRk βTi αTi
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polarization and area of incidence. Since the transmitted waves were assumed to be vertically polar-

ized, the area of incidence is the important factor in modelling these parameters. If the separation dis-

tance between the two mobiles is sufficiently greater than the distance between mobile and scattering

object, the process of scattering at the transmitter and at the receiver may be assumed to be statisti-

cally independent. This is particularly the case if the receiver and transmitter are separated suffi-

ciently far to approximate the sum of the waves travelling directly or via one or two reflections as a

plane Transversal ElectroMagnetic wave through some plane perpendicular to the transmitter-

receiver line of sight. This suggests Ci,k = Ci and Di,k = Dk. In the following analysis we will consider

this to be a special case. Then, Ei,k becomes equal to CiDkE0, while  Ei,0 and  E0,k tend to CiD0E0 and

C0DkE0, respectively .

More in general,  for reflections at both transmitter and receiver, the signal consists of a double

sum over both reflections. If an unmodulated carrier is transmitted, the resulting electric field can be

expressed a s

. (1)

This field consists of a dominant component, which is treated deterministically, along with

components that take into account reflections at the receiver, transmitter, and both receiver and trans-

mitter. Measurements [15] indicated that at short range, both the line-of sight and the ground reflec-

tion are substantially stronger than the sum of weak scattered waves. Reflections off metal surfaces of

the vehicle can also be strong. Hence, one may wish to model the channel using deterministic

assumptions about strong paths, resulting in E0,0, and using a statistical approach fo r Ei,0, E0,k and

Ei,k. In more detailed investigations, one can use the Rician channel model developed here but we

will consider the dominant component E0,0 to consist of the phasor sum of the line-of-sight and a

ground reflection .

E t( ) E0 0, ωc ωd+( ) t φ0 0,+[ ] Ei 0, ωc ωTi+( ) t φi 0,+[ ]cos

i 1=

NT

∑+cos=

E0 k, ωc ωRk+( ) t φk+[ ] Ei k,

i 1=

NT

∑ ωc ωRk ωTi–+( ) t φi k,+[ ]cos

k 1=

NR

∑+cos

k 1=

NR

∑+



5 of 20

The motion of the transmitter and receiver is evident in a Doppler shift in each wave compo-

nent. Our model differs from the single reflection (Rayleigh fading) model by Akki and Haber [7].

However, for certain simplifying approximations both models lead to the same result (if the Rician K-

factor of our model is chosen appropriately). From the geometry of Fig. 2.1, these Doppler shifts are

found as follows:

. (2)

Here VT and VR are the velocities of the transmitter and receiver respectively and γT and γR are

the angles that the motion of transmitter and receiver make with the road axis. In a typical IVHS envi-

ronment vehicles are following each other, thus γT = γR = 0. The received field can now be expressed

as

 (3)

where

(4)

and

ωd
2π
λ------ VR γR VT– γTcoscos( )=

ωRk
2π
λ------VR γR αRk–( )cos=

ωTi
2π
λ------VT γT αTi–( )cos=

E t( ) I t( ) ωctcos Q t( ) ωctsin– E0 0, ωc ωd+( ) t φ0+[ ]cos+=

I t( ) Ei 0, ωTit φi+( )cos E0 k, ωRkt φk+( )cos
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∑+
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∑=

Ei k,
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NR
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. (5)

If NT and NR are sufficiently large, in theory infinite (in practice Bennet [3] has shown that

greater than 8 paths will suffice), the central limit theorem implies that both I(t) and Q(t) are Jointly

Gaussian random variables for a particular time t and the probability density of the angle of arrivals

and departures is uniform between (-π,π]. If we assume that the separation distance between the two

mobiles is much larger than the distance between the mobile and scattering object, then Clarke [1] has

shown that both I(t) and Q(t) are uncorrelated and thus independent. The mean values of I(t) and Q(t)

are both zero, the variance of I(t) and Q(t), or local-mean scattered power, is given by

(6)

and they are jointly Rayleigh distributed. Following Rice [6] we find that the joint probability density

function of the received amplitude, , and phase, , is

(7)

and thus the probability density function of the amplitude is given by

(8)

where I0(.) is defined as the modified zero-order Bessel function of the first  kind. We further define

the Rician  K factor as the ratio of the power in the direct line-of-sight component to the local-mean

scattered power

Q t( ) E0 0, ωTit φi+( ) E0 k, ωRkt φk+( )sin
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∑=
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∑+
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∑
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=
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(9)

and define the local-mean power as

(10)

where PD, PT, PR and PB are the portions of the local mean power in the dominant path, the waves

that are scattered only near the transmitter, those scattered only near the receiver and those scattered

twice, respectively. The pdf of the signal envelope r can be expressed as

. (11)

For the special case of sufficiently large antenna separation, we may further define Rician K

factors at the receiver and transmitter as the ratio of the power in the direct line-of-sight wave and the

local-mean scattered power at the receiver and transmitter respectively, with

(12)

and

. (13)

The pdf of the signal envelope can be expressed in terms of these new Rician K factors by mak-

ing the following substitution of variables

. (14)
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We note that the resulting fading is Rician, which is similar to the case of a line-of-sight compo-

nent with reflections occurring only at one of the antennas. Reflections at both transmitter and

receiver are subject to two Doppler shifts. This results in a larger variance in both the in-phase and

quadrature field components, which is tantamount to an increase in the scattered mean power.

2.3  RF Spectrum

The transmitted signal will be subject to Doppler shifts in the various paths. These Doppler

shifts will tend to spread the bandwidth of the transmitted signal, which will be evident in the RF

spectrum. The RF spectrum can be found by taking the Fourier transform of the temporal autocorrela-

tion function of the electric field, the latter defined as

. (15)

Following Clarke [1], if we let

(16)

and

(17)

then the autocorrelation can be expressed as

(18)

The parameters Cn, Dn, and φn are statistically independent, due to the large separation distance

between mobiles and the fact that small  changes in path length will  yield large changes in phase. Thus

the following simplification can be mad e

(19)

(20)

A critical assumption in [1] is that, for a large number of waves arriving at the receiver and

departing at the transmitter, waves are modelled to arrive (or depart) from all angles in the azimuth

plane with uniform probability density. For short range vehicle-to-vehicle communication this

assumption is less obvious than for macro-cellular propagation environments. 

E E t( ) E t τ+( )[ ]

a τ( ) E I t( ) I t τ+( )[ ] E Q t( ) Q t τ+( )[ ]= =

c τ( ) E I t( ) Q t τ+( )[ ] E– Q t( ) I t τ+( )[ ]==

E E t( ) E t τ+( )[ ] a τ( ) ωcτcos c τ( ) ωcτsin– E0 0,
2 ωc ωd+( ) τcos+=

a τ( ) PRE ωRτcos[ ] PTE ωTτcos[ ] PBE ωTτ ωRτ–( )cos[ ]+ +=

c τ( ) PRE ωRτsin[ ] PTE ωTτsin[ ] PBE ωTτ ωRτ–( )sin[ ]+ +=
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If, for ease of analysis, the probability density functions for αT and αR are nonetheless modelled

by an independent uniform distribution between (−π,π], we can now evaluate the above expectations

as

(21)

(22)

where J0(.) is the zero-order Bessel function of the first kind and fMR and fMT are the maximum Dop-

pler shifts at the transmitter and receiver respectively given by

(23)

and

. (24)

The fact that c(τ) is zero is a mathematical consequence of sin(.) being an odd function. Physi-

cally this result can be related to the fact that the RF spectrum is symmetric about fc. In order to calcu-

late the power spectral density of I(t) and Q(t) we must first find the Fourier transform of a(τ). The

Fourier transform of the first two terms can be found from Gradshteyn and Ryzhik [5,p.707] as

(25)

where Π(f/x) is the rectangular pulse function centered at f = 0 with a width of x and unity amplitude.

The transform of the third term can be found [5, p.709] as

a τ( ) PRJ0 2πfMRτ[ ] PTJ0 2πfMTτ[ ] PBJ0 2πfMTτ[ ] J0 2πfMRτ[ ]+ +=

c τ( ) 0=

fMT VT λ⁄=

fMR VR λ⁄=

F PR J0 2πfMRτ[ ] PT J0 2πfMTτ[ ]+{ } =

PR

2π fMR
2 f2–

------------------------------Π
f fc–
2fMR
------------

 
 
  PT

2π fMT
2 f2–

------------------------------Π
f fc–
2fMT
-----------

 
 
 

+
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(26)

where Q-1/2(.) is the Legendre function of the second kind. By using the following identity found [5]

, (27)

the above transformation can be written in terms of K(.), the complete elliptical integral of the first

kind, as

. (28)

Setting VT = 0 we get an expression analogous to the expression in [1, p.969] for the baseband

output spectrum from a square law detector. This output spectrum appears to be the convolution of

the input spectrum with itself. This argument can be applied to our result. Namely the spectral contri-

bution to the RF spectrum of the waves that undergo reflections at both receiver and transmitter, can

be viewed as the convolution of the spectral components that undergo reflections only at the receiver

with the spectral components that undergo reflection only at the transmitter. Stated mathematically,

. (29)

The RF spectrum can now be found by noting that a(τ) is modulated by cosωcτ, thus shifting the

spectrum of a(τ) by the carrier frequency, and the direct line-of-sight wave will give rise to a delta

function since this wave will only undergo a deterministic Doppler shift. Thus the RF spectra can be

written as

F PBJ0 2πfMRτ[ ] J0 2πfMTτ[ ]{ } =

PB

2π2 fMTfMR
-------------------------------Q 1 2⁄–

fMR
2 fMT

2+ f2–
2fMRfMT

------------------------------- 
 
 

Π
f fc–
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 
 
 

Q 1 2⁄– x( ) K
1 x+

2------------ 
 

=

F PBJ0 2πfMRτ[ ] J0 2πfMTτ[ ]{ } =

PB

2π2 fMTfMR
-------------------------------K

fMR fMT+( ) 2 f2–
4fMRfMT

---------------------------------------- 
 
 

Π
f fc–

2fMR 2fMT+------------------------------
 
 
 

F PBJ0 2πfMRτ[ ] J0 2πfMTτ[ ]{ } PB F J0 2πfMRτ[ ]( ) F J0 2πfMTτ[ ]( )⊗{ }=
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(30)

or

(31)

where the Doppler shift of the direct line-of-sight component is

. (32)

In Fig. 5.2, we see that the RF spectrum is centered around the carrier frequency and bandlim-

ited to 2(fMT + fMR) which is a direct consequence of the Doppler shift incurred by the movement of

transmitter and receiver.

The probability densities of αR and  αT affect the shape of the spectrum inside this band. If we

set VT = 0 we do not obtain Clarke’s spectrum for a mobile receiver and stationary transmitter. This is

due to the fact that Clarke’s model assumes no scattering at the transmitter. However if we set the

Rician factors KT and KR to zero, we obtain a spectrum analogous to that of Akki and Haber [7] for a

Rayleigh fading channel with scattering at transmitter and receiver only.

SRF f( ) F a τ( ) ωcτcos 2PB ωc ωd+( ) τcos[ ]+{ }=

SRF f( )
PR

2π fMR
2 f fc–( ) 2–

-----------------------------------------------Π
f fc–
2fMR
------------

 
 
  PT

2π fMT
2 f fc–( ) 2–

----------------------------------------------Π
f fc–
2fMT
-----------

 
 
 

+=

PB

2π2 fMTfMR
-------------------------------+ K

fMR fMT+( ) 2 f fc–( ) 2–
4fMRfMT

--------------------------------------------------------- 
 
 

Π
f fc–

2fMR 2fMT+------------------------------
 
 
 

PD2πδ f fc– fMD–( )+

fMD fMR γR fMT γTcos+cos=
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Figure 2.2 RF Spectra of mobile-to-mobile radio channel with equal transmitter and receiver
velocities. (a) Reflections solely at either receiver or transmitter. (b) Reflections at
both receiver and transmitter (c) summation of (a) and (b).

2.4  Moments of Power Spectral Density

The correlation functions a(τ) and c(τ) defined earlier can be expressed as inverse Fourier trans-

forms of the power spectral density without the line-of-sight component as

(33)
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fc fMT fMR+ 
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 +
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(34)

where

(35)

It was shown above that c(t) is zero for all t this can further be explained from the above equa-

tion since the RF spectrum is an even function while sin(.) is odd. These autocorrelations evaluated at

zero will give expressions for the moments of the power spectrum. Following Jakes [4]

(36)

where the dots represent differentiation with respect to time. Thus bn = 0 for all odd n, again due to

the symmetric nature of SRF(f). The moments of the power spectrum for even n can be generalized as

. (37)

Using the results of (37) we can now investigate the derivatives of the in-phase and quadrature

components: specifically, to derive the joint pdf of these components and their derivatives. The in-

phase and quadrature components and their derivatives are zero-mean Jointly Gaussian. The covari-

ance matrix can be expressed as

c τ( ) Si f( ) 2π f fc–( ) τ[ ] dfsin

fc fMT fMR+ 
 –

fc fMT fMR+ 
 +

∫=

Si f( ) SRF f( ) E0 0,
2 πδ f fc– fMD–( )–=

E I2 t( )[ ] E Q2 t( )[ ] a 0( ) b0 PB PT PR+ += = = =

E I t( ) Q t( )[ ] c 0( ) 0= =

E I t( ) I· t( )[ ] E Q t( ) Q· t( )[ ] a· 0( ) 0= = =

E I t( ) Q· t( )[ ] E– I· t( ) Q t( )[ ] c· 0( ) b1 0= = = =

E I·2 t( )[ ] E Q· 2 t( )[ ] a··– 0( ) b2= = =
1
2--- PTωMT

2 PRωMR
2 PB ωMT ωMR+( ) 2+ +( )=

bn
1 3 5…n 1–⋅ ⋅

2 4 6…n⋅ ⋅------------------------------------ 
 

PTωMT
n PRωMR

n PB ωMT ωMR+( ) n+ +( )=
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(38)

so

. (39)

The joint pdf [6],[10] can be written as

. (40)

The in-phase and quadrature components can be expressed in terms of an amplitude r and phase

θ as follows

. (41)

The joint pdf of the amplitude, phase and derivatives can be expressed as

. (42)

V
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 

b0b2
2 0

0 b0b2
2

0 0
0 0

0 0
0 0

b0
2b2 0

0 b0
2b2

=

f
I Q I· Q·, , ,
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 
 
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If we uncondition this expression over the phase and both derivatives, we obtain the same

expression for the pdf of the signal envelope derived earlier (with b0 = σ2).

2.5  Level Crossing Rate and Average Fade Duration

The fading of the signal envelope was evident in the derivation of the probability density func-

tion of the envelope. From this pdf we can obtain an expression for the overall percentage of time that

the envelope lies below a certain level and on average how long these fades last. We are also inter-

ested in finding the rate at which the envelope crosses a particular level R. These expressions would

thus provide parameters in selecting transmission bit rates, word lengths and coding schemes. The

level crossing rate, LR, is defined as the expected number of times per second that the envelope

crosses R in the positive direction. Rice [6] gives this value as

. (43)

Thus we must first find the joint pdf of the envelope and its derivative. This can be derived by

integrating the phase and its derivative over the joint pdf derived earlier.

(44)

From this expression we see that since both the envelope and its derivative are independent and

thus uncorrelated, their joint pdf can be expressed as the product of individual pdf’s. Thus the deriva-

tive of the envelope is zero-mean Gaussian with a variance of b2 and the pdf of the envelope is the

same as before. The level crossing rate then be expressed as

. (45)
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∞
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f
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0

2π

∫
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∞

∫=

r
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 
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 

exp
r2 E0 0,( ) 2+( )–

2b0
-----------------------------------------

1
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 
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We further define the fade margin as the ratio of the mean signal power to the specified level, R.

Fig. 2.3 plots the normalized level crossing rate, LR/fM or level crossings per wavelength, for various

Rician K factors. 

Figure 2.3 Normalized Level Crossing Rate vs. Fade Margin for various Rician K factors. Equal
transmitter and receiver velocities. Equal Rician K factors KR and KT.

Another important statistical measure of the envelope is the average fade duration. The fade

duration, τ, below a specified level R, is defined as the period of fade below this level. The overall

fraction of time for which the signal is below a specified level R is given by the cumulative distribu-

tion function, Fr(R), of the received signal envelope. This function is obtained by integrating over the

pdf of the envelope

. (46)
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∫=



17 of 20

The average fade duration can now be expressed as [9]

. (47)

Fig. 2.4 plots the normalized average fade durations for various Rician K factors.

Figure 2.4 Average Fade Duration vs. Fade Margin for various K factors. Equal transmitter and
receiver velocities. Equal Rician K factors KR and KT. Maximum Doppler shift for
both antennas, fM.

2.6  Conclusions

A statistical model for a mobile-to-mobile channel has been presented that extends the work on

Rayleigh fading channels, without a line-of-sight component, by Clarke [1], Jakes [4], and Akki and

Haber [7]. The channel model examines multipath fading and Doppler shifts for a narrowband signal
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taking into consideration scatters at both receiving and transmitting antennas both individually and

concomitantly, as well as a strong line-of-sight component between antennas. This is in contrast to

the model by Akki and Haber [7] which focussed on single reflections, ignoring a LOS or double

reflections. The proposed model loses some of its accuracy when the transmit and receive antennas

become too close. This suggests that the special case addressed here for independent scattering at the

transmitter and receiver may be better acceptable for platoon-to-platoon communications, but needs

further verification or it may need refinement for communication within a platoon. 

Even with scattering at both transmitter and receiver, the line-of-sight component causes the

fading to be Rician, with a new Rician K factor that is a function of the K factors at the transmitter,

KT, and receiver, KR. As KT and KR approach zero we obtain results analogous to Akki and Haber [7]

for Rayleigh fading with long range reflections. Also Doppler spreads, for vehicles travelling at

roughly the same speed, are twice as large as those reported in text books like [4], thus the fading has

components that are twice as fast. We interpret from our curves that fade durations longer than 50

msec diminish rapidly with fade margin. This implies that, if the fade margin is sufficiently large, the

probability that the radio link is in an outage for longer than 50 msec is very small. In an AVCS sys-

tem, it appears important that longer outages become unlikely [14].
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