
Deriving Constraints Among
Argument Sizes in Logic Programs�

Allen Van Gelder

University of California, Santa Cruz

Abstract

In a logic program the feasible argument sizes of derivable facts involving
an n-ary predicate are viewed as a set of points in the positive orthant
of Rn. We investigate a method of deriving constraints on the feasible
set in the form of a polyhedral convex set in the positive orthant, which
we call a polycone. Faces of this polycone represent inequalities proven
to hold among the argument sizes. These inequalities are often useful for
selecting an evaluation method that is guaranteed to terminate for a given
logic procedure. The methods may be applicable to other languages in which
the sizes of data structures can be determined syntactically.

For any atomic formula (atom, for short) in a rule, we show how to
express the vector of its argument sizes as a system of linear equations and
inequalities involving sizes of the logical variables that occur in it. This
system de�nes a polycone, which represents the set of feasible argument size
vectors. Transformations combine polycones for all atoms in one rule to give
the feasible polycone for the entire rule.

We introduce a generalized Tucker representation for systems of linear
equations. We prove that every polycone has a unique normal form in this
representation, and give an algorithm to produce it. This in turn gives a
decision procedure for the question of whether two set of linear equations
de�ne the same polycone.

When a predicate has several rules, the union of the individual rule's
polycones gives the set of feasible argument size vectors for the predicate.
Because this set is not necessarily convex, we instead operate with the
smallest enclosing polycone, which is the closure of the convex hull of the
union. Retaining convexity is one of the key features of our technique.

Recursion is handled by �nding a polycone that is a �xpoint of a transfor-
mation that is derived from both the recursive and nonrecursive rules. Some
methods for �nding a �xpoint are presented, but there are many unresolved
problems in this area.

�An extended abstract of this paper appeared in Ninth ACM Symposium on Principles

of Database Systems, March 1990.

1 Introduction and Basic Concepts

Top-down capture rules were introduced by Ullman [14] and studied by Sagiv
and Ullman [12], Ullman and Van Gelder [15], Afrati et al. [1], and elsewhere,
as a way to plan the evaluation of queries in a \knowledge base." Capture
rules require a proof of termination to justify use of top-down rule evaluation.
Top-down rule evaluation is similar to the evaluation method of Prolog,
except that the system decides on the order for subgoals and rules. It is
often called \back-chaining" in the arti�cial intelligence community.

In a knowledge base environment, proving termination is not just an
academic issue. There exist two approaches to rule evaluation: top-down
and bottom-up. Typically, one converges naturally and the other does not
on a given set of interdependent rules. Even if the less appropriate method
can be made to converge, it is likely to be very ineÆcient. Rules that de�ne a
predicate by \recursion on structure" should usually be evaluated top-down,
while those that de�ne their predicate by \inductive closure" (e.g., tran-
sitive closure) usually require a bottom-up component in their evaluation.
Mixtures of these elementary types are bound to occur in complex systems.

A useful approach to proving termination of top-down evaluation meth-
ods is to �nd some convex linear combination of argument sizes that must
decrease when a predicate is invoked recursively. To prove that a bottom-up
method converges, �nd an upper bound on all argument sizes that cannot
be exceeded when rules are applied in the \forward" direction. However,
to prove that the desired function of the goal predicate's argument sizes
decreases (for top-down) or remains bounded (for bottom-up), it is frequently
necessary to know constraints on the argument sizes of a subgoal predicate,
or more precisely constraints on the relationship among the sizes of the
subgoal predicate's various arguments. This paper is concerned with deriving
such constraints.

Our model of a knowledge base, as in [14, 15, 7, 16], is a relational
database, together with a collection of logical rules in the form of Horn
clauses

p(~x) q1(~z1); : : : ; qk(~zk)

The set of rules is referred to as a logic program. As will be seen, our
techniques also apply to logic programs with strati�ed negation.

Here ~x � (x1; : : : ; xn) is a vector of p's arguments; each argument xi is
a term as normally de�ned in logic. Such a rule is read \p(~x) is true if there
exist assignments to the logical variables appearing in ~z1; : : : ; ~zk but not in
~x such that q1(~z1); : : : ; qk ~zk) are all true." We call this a rule for p, since
predicate p appears on its left side, which is called the head of the rule. The
atomic formulas (atoms, for short) q1(~z1); : : : ; qk ~zk) on the right of the rule
are called its subgoals. The collection of all rules for p is called the logic

procedure for p.
A \top-down" interpretation of the above rule is: To �nd a tuple that

satis�es p, �nd \joinable" tuples that satisfy q1; : : : ; qk. The \bottom-up"

interpretation is: Given tuples satisfying q1; : : : ; qk, infer a tuple satisfying
p. One or more of the qj may actually be p, making the rule immediately
recursive, and recursion may also occur by p becoming a subgoal of itself
through a chain of several rules.

A frequently applicable way to ensure that a top-down approach termi-
nates in the presence of recursion is to show that the bound arguments grow
smaller in some sense as the recursion progresses. Top-down capture rules
are discussed extensively in Ullman [14], Sagiv and Ullman [12], Ullman and
Van Gelder [15].

This paper develops methods to �nd, through syntactic examination of
a logic program, a set of linear inequalities for each predicate p such that if
p(x1; : : : ; xn) is derivable by the program, then the term sizes of (x1; : : : ; xn)
(viewed as a vector) must satisfy all of these inequalities. Di�erent predicates
have di�erent sets of inequalities that their arguments must satisfy. We
extend the methods developed in [15] in two important ways. First, our
approach is amenable to modularization, as each strongly connected compo-
nent of predicates (Section 1.6) is analyzed separately. Second, our methods
can handle constraints among three and more variables (see discussion in
Example 5.1).

1.1 Related Work

We visualize application of the present work in the automated construction
of termination proofs based on analysis of argument sizes. The problem of
proof construction has been studied in its own right by Naish [8], Ullman
and Van Gelder [15], Walther [17], Afrati et al. [1], Pl�umer [10], and Brodsky
and Sagiv [2].

A central problem in our technique is that of deciding polycone equiva-
lence. While this problem does not appear to have been studied in this pre-
cise form, the closely related problem of eliminating redundant constraints
in linear programs has been studied extensively; Karwan et al. [5] survey the
�eld. Implicit equalities are inequality constraints that can in fact only be
satis�ed by equality. Such constraints also represent a form of redundancy.
Identi�cation of implicit inequalities has been studied by Telgen [13], Freund
et al. [4], and very recently by Lassez and McAloon [6]. A less closely
related problem that also bridges logic and linear programming is that of
linear quanti�er elimination, which is treated by Eaves and Rothblum [3].

1.2 Outline of the Paper

In the remainder of Section 1 we show how to associate a set of linear
inequalities with each rule in a program, and describe how the program's
dependency graph determines which ones must be treated as a group. Each
rule de�nes a polycone (De�nition 1.1).

Section 2 describes several useful operations on polycones, in particular

the closure of the convex hull of union CHU. This key operation allows us
to combine feasible regions of several rules, getting a polycone that encloses
their union. The motivation for using convex hulls in the this work is that
convex sets can be described conjunctively, that is, as a set of conditions
that must all hold. Each rule for a given predicate in a logic program can be
satis�ed only by arguments whose sizes lie in a certain convex set (in fact, a
polycone). However, the possible sizes of arguments for which one of several

rules is satis�ed form a union of convex sets, which is not necessarily convex.
The information that a point is in such a union needs to be represented
and reasoned with disjunctively. The extra complexity is unmanageable
in practice. However, the information that a point is in the closure of the
convex hull of the union can still be represented conjunctively, and intuitively
seems to be the most speci�c conjunctive statement that implies that the
point is in the union. It is our belief that in practice the constraints given
by CHUs are sharp enough to be useful in evaluating convergence of top-
down capture rules. A rich theory has been developed for convex sets, and
has been collected by Rockafellar [11]. Rigor supporting our rather informal
exposition of polycones may be found there.

Section 3 de�nes two transformations on polycones, called 	 and T ,
that are associated with sets of interdependent recursive rules. Section 4
describes how a polycone that bounds the feasible region of argument sizes
can be de�ned as a �xpoint of the transformation T .

Remaining sections explore the problems of �nding a such a �xpoint.
Section 5 describes a method to verify a conjectured �xpoint that may
be fast, but is not certain to work. Section 6 introduces a normal form

for polycones that makes the question of polycone equivalence decidable.
Section 7 o�ers an heuristic for guessing a �xpoint. Section 8 discusses
future directions.

1.3 Logical Terms

The arguments of predicates are terms, as normally de�ned in logic: A
term is logical variable, a constant, or an uninterpreted function symbol
with terms as its arguments. Such terms are usually best interpreted as
data structures in the context of logic programming. A ground term is one
without variables.

In examples, we shall use the in�x operator \ � " (read as \cons") as
a binary function symbol to construct lists, a class of terms that occur
frequently in practice; we shall use \ " (read as \nil") as the constant that
represents the empty list. Thus a � R represents the list whose head (�rst
element, car) is a and whose tail (remaining elements, cdr) is R. Since both
a and R may have structure, \ � " is e�ectively a constructor for nodes of a
binary tree, but in logic programming it is normally used to build lists, as
other function symbols are available for di�erent structures. Unlike several
popular versions of Prolog syntax, we do not enclose lists in square brackets.

1.4 Term and Argument Sizes

Several measures of term size are possible. We shall work with one that
we call structural term size, which for ground terms (those containing no
variables) is de�ned informally to be the number of edges in the tree that
represents the term. More precisely, regarding constants as functions of zero
arity, the structural term size of a ground term is the sum of the arities of
its function symbols.

For terms containing logical variables, we associate a real variable with
each logical variable, and de�ne the structural term size to be the obvious
linear polynomial in these real variables: the constant for this polynomial is
the sum of the arities of the function symbols in the term, and the coeÆcient
of each real variable is the number of occurrences in the term of its associated
logical variable. For example, the size of f(u; v; a), where f is a function
symbol, a is a constant, and u and v are logical variables, is the polynomial,
3 + u + v. The u and v in the polynomial are nonnegative real variables
representing the sizes of the logical variables u and v in the term. Although
this overworks the variable names, which role they play is clear from context.

Similarly, when discussing the atomic formula p(~x), xi denotes the logical
term that is the i-th argument of p, but when xi appears in a mathematical
context it is a real variable that represents the size of the i-th argument of p
in the above formula. For each argument term xi, let Qi be the polynomial
that is its structural term size. Then we have the obvious linear equation

xi = Qi

involving the real variable xi and real variables corresponding to logical
variables in the term. We call these argument size equations. For example,
if the left side of a rule is p(f(v1; g(v2); v2); v1), since f and g have arities 3
and 1, respectively, and logical variable v2 occurs twice in the �rst argument
of p, we obtain the two argument size equations:

x1 = 4 + v1 + 2v2

x2 = 0 + v1

Note that these equations will always have nonnegative coeÆcients and
constants when written in this form. Since two logical variables can appear
in one term only if there is at least a binary function symbol to connect them,
we can see that argument size equations satisfy these further constraints:

1. If the additive constant is 0, there is at most one positive coeÆcient of
a variable, which must be 1. (I.e., the equation is simply xi = vj .)

2. If there is more than one positive coeÆcient of a variable, then the
additive constant is at least as large as the sum of the coeÆcients of
the variables.

1.5 Inequalities and Slack Variables

As in linear programming, we shall be concerned almost exclusively with
variables that are restricted to be nonnegative. Inequalities can be repre-
sented as equations by adding a \slack variable" to the appropriate side,
using the convention of nonnegativity. Conversely, an equation can be
converted to an inequality by \projecting out" a nonnegative variable. In
general, the set of points satisfying an equation or set of equations will be
restricted to have all nonnegative components, i.e., the set will lie in the
positive orthant of the appropriate vector space.

1.6 Predicate Structure of Logic Programs

For simplicity, let us assume that each head of a rule in our logic program can
unify with every occurrence of the same predicate in subgoals of rules. (This
involves no real loss of generality, as a program can be e�ectively transformed
to have this property.) Now we construct a digraph with predicates as nodes
and arcs p! q for every node pair such that q is a subgoal of some rule for
p. Intuitively, q supports the derivation, or solution, of p. We identify the
strongly connected components (SCCs) of this digraph, and the partial order
induced upon them. (We assume that predicates corresponding to database
relations never appear on the left side of a rule, and hence are lowest in this
partial order.) We shall analyze the SCCs according to their partial order,
from lowest to highest. Thus, at the time we are deriving constraints on the
argument sizes of a certain SCC, we should already have constraints derived
for all predicates that are outside this SCC, but appear as subgoals in the
rules being analyzed. Speci�cally, if p is in the SCC being analyzed, and q
appears as a subgoal of a rule for p, then either q is in the same SCC, or is in
one already analyzed. If the latter, then constraints on the arguments of q
have already been derived, and are available for use in the current analysis.

Recursion in rules can occur in more and less complex forms. A recursive

subgoal is one whose predicate is in the same SCC as the head of the rule.
If each rule in an SCC has at most one recursive subgoal, then the recursion
in this SCC is said to be linear. If recursion is linear and in addition there
is just one predicate in the SCC, we say the recursion is simple.

For the main presentation, we shall assume that the SCC contains only
simple recursion, so a typical recursive rule is of the form:

p(x1; : : : ; xn) p(y1; : : : ; yn); r(z1; : : : ; zm)

where q (if present) is in a lower SCC than p. Linear recursion does involve
a loss of generality,1 but provides a clearer environment for the exposition of
the main ideas, and covers many common cases. In Appendix A we outline
the changes needed to accomodate general recursion.

1For example, divide-and-conquer procedures typically have two recursive subgoals in

one rule.

1.7 Notation and De�nitions

We shall use a number of conventions in discussing linear systems of equa-
tions. Lower-case letters are vectors; upper-case are matrices. The vector
of argument sizes of the head of a rule is denoted by x; for the recursive
occurrence of the same predicate on the right, we use y; for non-recursive
predicates we use z; for logical variables we use v. Greek letters denote other
vector variables.

The variables appearing on the left side of an equation are considered to
be the dependent variables; those on the right are the independent variables.
All independent variables are implicitly restricted to be nonnegative. The
relation � applied to vectors and matrices is de�ned to hold if and only if it
holds for each component, and thus de�nes a partial order.

Linear systems of equations will be represented in a special matrix nota-
tion that we now illustrate. A set of equations in the form x = a+Av, where
a is a vector constant, and A is a matrix, is called a Tucker representation

[11]. These equations are shown as:

h ���
(x) (v)

I a A
i

or if x and v are understood: h ���I a A
i

The usefulness of this notation is apparent when we look at an example
in which larger matrices (or vectors) are composed from smaller ones. To
represent both x = a+Av and z = b+Bv as a set of x-points generated by
z's and v's, we write:

"
�����

(x) (v) (z)

I a A 0
0 b B �I

#
(1:1)

or, since x is understood and the name of v is not important:

"
�����

(z)

I a A 0
0 b B �I

#
(1:2)

In general, the vertical double line marks the location of the equal signs.
Columns to the left of it represent the dependent variables (usually x).
The one column between the double line and single line is the constants
column. Finally, columns to the right of the single line represent independent
variables; we shall use the term right-hand columns to refer to them. In this
paper we shall rarely need to talk about columns to the left of the double
line, so we shall denote the constants column as column 0 and the right-
hand columns as columns 1, 2, etc. When speaking of right-hand columns,

we shall mean \column" in a generalized sense: this \column" will often
contain a submatrix. (However, column 0, the constants column will always
be a single column.) Thus numbering should be interpreted relative to the
diagram in question. Similarly we shall refer to generalized \rows," starting
with 1. In Eq. 1.2, for example, we say that A is in row 1, column 1, and
that b is in row 2, column 0.

Frequently, we shall use these matrices to represent sets of points in the
following sense (where In is the n � n identity, and A1 and A2 have m
columns): "

�����In a1 A1

0 a2 A2

#
(1:3)

represents the set of points x 2 Rn such that there exists � (2 Rm) � 0 that
satis�es 0 = a2 + A2� (the lower rows) and for which x = a1 + A1� (the
upper rows). We say that each � satisfying the lower rows generates the x
that results from substituting that � into the upper rows. Geometrically, we
are projecting a set in Rn+m with coordinates (x; �) into Rn, retaining the
x coordinates.

De�nition 1.1: A polyhedral convex set in Rn is the (possibly unbounded)
set of points constituting the intersection of a given �nite set of closed half-
planes [11].

A polycone in Rn is a polyhedral convex set that lies entirely within the
positive orthant. Equivalently, it is the set of points that satisfy a given set
of linear \�" inequalities, among them xi � 0 for 1 � i � n.

A matrix in the form of Eq. 1.3, and the set of equations it represents,
are called a generalized Tucker representation of a polyhedral convex set in
Rn.

It is easy to show, by introducing slack variables and using Gaussian
elimination, that any polycone can be expressed in the form of Eq. 1.3. (If
Ax � a includes the constraints x � 0, then A has full rank.) Similarly,
the solution set of Eq. 1.3, projected on the dependent variables, must be
a polycone. The understanding that independent variables are restricted to
nonnegative values is central to this representation of polycones, and will not
be mentioned further. We observe that a generalized Tucker representation
reduces to a Tucker representation when A2 has no rows in Eq. 1.3.

The empty set ; is technically a polycone. We generally ignore this case
in our presentation.

Example 1.1: When invoking the following logic procedure, the �rst ar-
gument should be a list to be reversed, the second argument should be .
The procedure instantiates the third argument to the reversed list. (The
second argument functions as a place-holder for the partially reversed list;
read \D" as \Done.") The Prolog convention of using capital letters for

logical variables has been employed.

rev(; R; R):

rev(E � L; D; R) rev(L; E � D; R):

The matrices for these two rules are shown below.

2
64

�������

(x) (R)

1 0 0 0 0
0 1 0 0 1
0 0 1 0 1

3
75

2
66666664

�������������

(x) (y) (E) (L) (D) (R)

1 0 0 0 0 0 2 1 1 0 0
0 1 0 0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0 1 0 0
0 0 0 0 1 0 2 1 0 1 0
0 0 0 0 0 1 0 0 0 0 1

3
77777775

(1:4)

The left matrix applies to the �rst, nonrecursive, rule and should be fairly
self-explanatory. The right matrix applies to the second rule. The coeÆ-
cients for sizes of E, L, D, R are in columns 1 through 4, respectively. (Recall
the column numbering convention.) The 2's that appear in the constants
column arise from \ � " being a binary function symbol. Finally, y (a 3-
vector) represents argument sizes in the recursive occurrence of rev on the
right side of the rule.

We can interpret the left matrix in Eq. 1.4 as the constraints x1 = 0 and
x2 = x3 � 0. The right matrix can be reduced to the form

x = y +

2
4 1
�1
0

3
5 �+

2
4 2
�2
0

3
5

which can be thought of as a transformation of point y into a ray. The
point represents the (vector of) argument sizes of the subgoal, and the ray
represents the possible argument sizes that result on the left, when the second
rule above is used.

When we regard a matrix as representing a polycone, the independent
variables are essentially anonymous. In particular, a column that contains
coeÆcients of an independent variable (i.e., a right column) can be rescaled
by a positive quantity without changing what polycone is represented. Fur-
thermore, a lower row (i.e., involving only independent variables) can be
rescaled by any nonzero quantity and/or added to any other row (upper or
lower) leaving the polycone invariant. (Such an operation with an upper row
would also be valid, but is avoided, as it is preferable for our purposes to
keep the identity matrix on the left.)

2 Operations on Polycones

We now examine several operations on polycones that prove useful in com-
bining several polycones, each representing constraints on argument sizes of
a single rule, into a polycone that represents constraints on a predicate that
hold throughout the logic program.

2.1 Closure of Convex Hull of Union

The �rst operation constructs the closure of the convex hull of the union of
two polycones. Recall that a convex combination of a �nite set of points
x1; : : : ; xk is a point (�1x1+ � � �+�kxk), where �i � 0 and �1+ � � �+�k = 1.
A nontrivial convex combination is one in which at least two � components
are nonzero.

De�nition 2.1: The closure of the convex hull of the union (CHU) of two
sets of points S1; S2 � Rn is de�ned as the closure of the set of points that
are convex combinations of two points in the union of the sets; it is denoted
by S1 [S2. The symbol [is intended to suggest the combination of \union"
and \�lling in."

That is, if S1 and S2 are convex (the only case we are concerned with)
and x1 2 S1, x2 2 S2, �1+�2 = 1, and �1 and �2 are both nonnegative, then
�1x1 + �2x2 is in the convex hull of S1 [S2. But moreover, the boundary
points of the set so formed are also included in the closure of the convex hull.
Because we allow unbounded polycones, it is necessary to take the closure to
guarantee that the CHU of two (or any �nite number of) polycones is itself
a polycone.

Example 2.1: Consider
h
0
1

i
[
h
�
0

i
, i.e., the CHU of a point o� the x1-axis

and a ray along the x1-axis. The convex hull of the union is fx1 � 0 ^ 0 �
x2 < 1g [f(0; 1)g, which excludes the boundary points fx1 > 0 ^ x2 = 1g,
and is not a polycone. Taking the closure includes these boundary points,
and yields the CHU, which is described by fx1 � 0 ^ 0 � x2 � 1g, and
clearly is a polycone.

The form of Eq. 1.3 is very convenient for forming the CHU of two
polycones, as shown by the following basic theorem:

Theorem 2.1: Let two polycones S1 and S2 be speci�ed by

"
�����
(�)

I b1 B1

0 b2 B2

#
and

"
�����
(�)

I c1 C1

0 c2 C2

#
(2:1)

respectively. Then S1 [S2, the closure of the convex hull of their union, is
the polycone S3 given by:

2
6664

���������

(�1) (�1) (�2) (�2)

I 0 b1 B1 c1 C1

0 0 b2 B2 0 0
0 0 0 0 c2 C2

0 �1 1 0 1 0

3
7775 (2:2)

where �1 and �2 are scalar variables. (The variable names over the columns
are given to help in the proof, but are otherwise immaterial.)

Proof: Let x3 be any convex combination of points x1 2 S1 and x2 2 S2;
that is, x3 = �x1+(1��)x2, where 0 � � � 1. There exist � and � satisfying

x1 = b1 +B1�

0 = b2 +B2�

x2 = c1 + C1�

0 = c2 + C2�

Thus x3 corresponds to a point in S3 for which �1 = �, �2 = (1��),
�1 = ��1, and �2 = �2�. This shows that S3 contains all the interior
points in the convex hull of S1 [S2, and since S3 is a closed set, it contains
the boundary points as well. To see that the closure of the convex hull of
S1[S2 contains S3, let x3 2 S3 be generated by �1, �2 = (1��1), �1, and �2
that satisfy rows 2 and 3 of Eq. 2.2. If 0 < �1 < 1, de�ne � = �1, let x1 2 S1
be generated by � = �1=�1, and let x2 2 S2 be generated by � = �2=�2.
(Clearly � and � satisfy row 2 of their respective matrices in Eq. 2.1.) But
x3 = �x1 + (1��)x2, so x3 is in the convex hull. If �1 = 0, consider a

sequence of points x
(1)
3 ; x

(2)
3 ; : : : ; x

(k)
3 ; : : : generated by the same �1 and �2,

but a decreasing sequence �
(k)
1 = 1=k. By the preceding argument, each x

(k)
3

is in the convex hull and the sequence converges to x3, so x3 is in its closure.

Similarly, if �1 = 1, consider an increasing sequence of �
(k)
1 = 1� 1

k
.

Example 2.2: Let S1 and S2 correspond to Example 2.1:

"
�����1 0 0

0 1 1

#
and

"
�����
(�)

1 0 0 1
0 1 0 0

#

Then S1 [S2 is given by:

2
64

�������

(�1) (�2) (�2)

1 0 0 0 0 1
0 1 0 1 0 0
0 0 �1 1 1 0

3
75

The third line speci�es �1 + �2 = 1. Together with the requirement that
all variables be nonnegative, this implies 0 � �1 � 1. But the second line
speci�es that x2 = �1, so we see that these equations specify the same
polycone as the CHU found in Example 2.1.

2.2 Removing Redundant Rows and Columns

We should point out that the representation of the CHU given by Eq. 2.2
may be highly redundant. This is the price we pay for being able to form
it quickly. Operations to be introduced later also tend to introduce redun-
dancy. Here we consider a number of situations in which lower rows and/or

right-hand columns of the matrix specifying a polycone can be determined
to be redundant. A row and/or column is considered to be redundant if
removing it from the matrix leaves a matrix that speci�es the same polycone.
Two matrices are said to be equivalent (�) in this context if they specify
the same polycone.

Removal of redundancy in linear inequalities has been studied extensively
in the context of linear programming [13, 5, 4], and more recently by Lassez
and McAloon in the context of \constraint logic programming" [6] (q.v. for
further bibliography). However, we consider only operations that preserve
the generalized Tucker form of the equations. Our operations bear no obvious
correspondence to the redundancy classes described by Lassez and McAloon,
partly because of the di�erences in representation (they use a \solved form"
consisting of equalities and inequalities). However, the possible relationship
merits further study.

Intuitively, a lower row (i.e., one that does not involve the dependent
variables) is redundant if it does not restrict the possible values of other
independent variables. This situation is most easily identi�ed when the
matrix has the form shown below on the left, where C is a row vector, c is
a scalar, and both are nonnegative.

2
64

�������

(�)

I b 0 B
0 c �1 C
0 d 0 D

3
75 �

"
�����I b B

0 d D

#
if c � 0; C � 0: (2:3)

Clearly, any solution to the matrix on the right can be augmented by a
nonnegative value of � to give an equivalent solution to the matrix on the
left (i.e., the value of � can be decided last); also any solution to the left
matrix is a solution to the right one. Thus the two matrices de�ne the same
set of points and the left one can be reduced to the right one.

This simpli�cation is important because it seems to occur frequently in
practice and is very eÆcient to recognize. All that is needed is to identify
a lower row in which one variable's column has opposite sign from all other
nonzero entires in that row. Then pivoting (described below) sets up Eq. 2.3.

Another situation that allows deletion of one row and two columns occurs
when the matrix has the form shown below on the left, where C is any row
vector and d1 and d2 are nonnegative scalars.

2
64

�������

(�) (�)

I b 0 0 B
0 c d1 �d2 C
0 e 0 0 E

3
75 �

"
�����I b B

0 e E

#
if d1 � 0; d2 � 0: (2:4)

Clearly, any solution to the matrix on the right can be augmented by non-
negative values of � and � to give an equivalent solution to the matrix on
the left; also any solution to the left matrix is a solution to the right one.

Thus the two matrices de�ne the same set of points and the left one can be
reduced to the right one.

Pivoting operations are usually needed to set up such situations. The
operation of \pivoting on (i; j)" consists of adding the appropriate multiple
of row i to each other row to cause its entry in column j to become 0. An
e�ective method of choosing pivot elements to expose redundancies is a topic
for further investigation.

Another form of redundancy similar to the previous one, but something
of a special case is shown below. Here some positive combination of inde-
pendent variables equals zero, so they all must be zero. Hence their columns
can be deleted.2
64

�������

I a b B

0 0 c C
0 d e E

3
75 �

2
64

�������

I a B

0 0 C
0 d E

3
75 if c > 0, C � 0 (2:5)

The diagram shows only one column being deleted, but the process continues
until C has no positive elements left. Then row 2 is all zeros and is deleted.
The scan for this situation can be incorporated into the scan for the situation
of Eq. 2.3, and of course, if a negative combination is found, the row can be
multiplied by �1 to set up Eq. 2.5.

If some right-hand column is a positive linear combination of other
right columns, it may be deleted. For example, in the matrix below left,
suppose that the (single) column for � is expressible as a nonnegative linear
combination �T of the columns for �. (Superscript \T" denotes \transpose,"
and converts a column vector to a row vector.) If � = �1, � = �1 generates
some point x1, then that same point can be generated by � = 0 and
� = �1 + ��1.

"
�����
(�) (�)

I a b B
0 d e E

#
�

"
�����I a B

0 d E

#
if
h
b
e

i
= �T

h
B
E

i
for some � � 0 (2:6)

It follows that the column for � can be deleted without removing any points
from the set de�ned by the matrix. Unlike previous cases, there is no row
deletion associated with this simpli�cation.

An important special case of Eq. 2.6 is when one column is a positive
multiple of another. (Negative multiples are treated below.) This occurs
often in practice and is fairly eÆcient to recognize.

It turns out that if a right-hand column is a negative linear combination
of other right-hand columns and has a non-zero entry in a lower row, then it
can be deleted eventually, but some preliminary row operations are necessary.
The row operations pivot on this lower nonzero element, making it the only
nonzero element of the column to be deleted. Columns remain the same
linear combinations of each other after row operations. This situation after
pivoting is shown on the left below, where the column containing the scalar

d is assumed to be some negative linear combination (��T) of the other
right-hand columns.2

664

��������
I b 0 B

0 c d C

0 e 0 E

3
775 �

2
664

��������
I b 0 0 B

0 c d �d C

0 e 0 0 E

3
775 �

2
4

������

I b B

0 e E

3
5

if

2
4 0
�d
0

3
5 = �T

2
4BC
E

3
5 for some � � 0

(2:7)

The result is obtained by �rst applying Eq. 2.6 from right to left, then
applying Eq. 2.4.

The technique of combining pivoting operations with the deletion (or
sometimes the introduction) of redundant rows is a useful tool for proving
properties of polycones. This technique is used in the next corollary to derive
a formula for the CHU of three polycones. The extension to a k-ary CHU is
obvious.

Corollary 2.2: Let three polycones S1, S2 and S3 be speci�ed by"
�����I b1 B1

0 b2 B2

#
and

"
�����I c1 C1

0 c2 C2

#
and

"
�����I d1 D1

0 d2 D2

#
(2:8)

respectively. Then the closure of the convex hull of their union, is the set S4
given by: 2

666664

�����������

I 0 b1 B1 c1 C1 d1 D1

0 0 b2 B2 0 0 0 0
0 0 0 0 c2 C2 0 0
0 0 0 0 0 0 d2 D2

0 �1 1 0 1 0 1 0

3
777775 (2:9)

Consequently, binary CHU is associative and commutative, and the notation
S1 [S2 [S3 is unambiguous.

Proof: By Theorem 2.1, the matrix for (S1 [S2) [S3 is:2
666666664

��������������

I 0 0 b1 B1 c1 C1 d1 D1

0 0 0 b2 B2 0 0 0 0
0 0 0 0 0 c2 C2 0 0
0 0 �1 1 0 1 0 0 0
0 0 0 0 0 0 0 d2 D2

0 �1 1 0 0 0 0 1 0

3
777777775

Add row 4 to row 6, giving:2
666666664

��������������

I 0 0 b1 B1 c1 C1 d1 D1

0 0 0 b2 B2 0 0 0 0
0 0 0 0 0 c2 C2 0 0
0 0 �1 1 0 1 0 0 0
0 0 0 0 0 0 0 d2 D2

0 �1 0 1 0 1 0 1 0

3
777777775

Now, as argued in connection with Eq. 2.3, row 4 (a genuine single row) is
redundant because it can always be satis�ed after all other rows are satis�ed,
and hence does not restrict the set of points in the de�ned polycone. Delete
row 4 and column 1 (again, recall the numbering scheme), giving Eq. 2.9.

3 Transformations that Correspond to Logic

Procedures

Now we describe how a polycone in Rn�Rn represents a transformation on
polycones in Rn. Let x 2 Rn, y 2 Rn, and let a set of equations or equivalent
matrix be given:

x = c1 + C1�

y = c2 + C2�

0 = c3 + C3�

2
64

�������

I 0 c1 C1

0 I c2 C2

0 0 c3 C3

3
75 (3:1)

which speci�es a polycone in Rn�Rn. Let A be any polycone in Rn, speci�ed
by:

y = a1 +A1�

0 = a3 +A3�

"
�����I a1 A1

0 a3 A3

#
(3:2)

De�nition 3.2: The natural transformation 	 associated with Eq. 3.1 is
the mapping that takes any polycone A, given by Eq. 3.2, into the polycone
	(A) (also in Rn) speci�ed by:

x = c1 + C1�

0 = c2 � a1 + C2��A1�

0 = c3 + C3�

0 = a3 +A3�

2
6664

���������

I c1 C1 0

0 (c2�a1) C2 �A1

0 c3 C3 0
0 a3 0 A3

3
7775 (3:3)

In terms of matrices,

2
664

��������
I 0 c1 C1

0 I c2 C2

0 0 c3 C3

3
775 acting on

2
4

������

I a1 A1

0 a3 A3

3
5

produces

2
666664

�����������

I c1 C1 0

0 (c2�a1) C2 �A1

0 c3 C3 0

0 a3 0 A3

3
777775

De�nition 3.3: Imported constraints consist of constraints on argument
sizes of subgoals from other (lower) SCCs that were derived when those
SCCs were analyzed (Sect. 1.6).

Now suppose the logic procedure for p consists of several nonrecursive
rules and several simple recursive rules. (Recall that simple recursion means
p recurs only on itself.) Each nonrecursive rule has a set of equations,
comprising its argument size equations (Sect. 1.4) and imported constraints.
The set of all these equations for one rule can be expressed in the form of
Eq. 3.2, which in turn de�nes a polycone. Let B be the CHU of all such
polycones. Clearly, B contains the set of feasible argument sizes of p arising
immediately from the nonrecursive rules. The equations specifying B are of
the same general form, which we represent by:

x = b1 +B1�

0 = b3 +B3�

"
�����I b1 B1

0 b3 B3

#
(3:4)

Similarly there are argument size equations and imported constraints for
each simple recursive rule, which may be written in the form of Eq. 3.1, and
interpreted to represent a polycone in R2n. Again, the CHU of the polycones
for all the recursive rules is of the same form. Therefore, let us say that the
CHU is in fact given by Eq. 3.1.

Example 3.1: The following procedure is intended to merge its �rst two
arguments, which should be sorted lists, and instantiate the third argument
to the result. In order to assure balanced treatment of the two \input" lists,
they are interchanged upon recursion. The Prolog style of using Xs to name
a list of X, etc., has been adopted.

merge(; Ys; Ys):

merge(Xs ; ; Xs):

merge(X � Xs; Y � Ys ; X � Zs) X � Y; merge(Y � Ys; Xs; Zs):

merge(X � Xs; Y � Ys ; Y � Zs) Y � X; merge(Ys; X � Xs; Zs):

The matrices for the two nonrecursive rules are shown below.2
64

�������

0 0

I3 0 1
0 1

3
75

2
64

�������

0 1

I3 0 0
0 1

3
75 (3:5)

Consequently the polycone B for merge is their CHU:

B �

2
6664

���������

0 0 0 0 1

I3 0 0 1 0 0
0 0 1 0 1

0 �1 1 0 1 0

3
7775 �

2
64

�������

0 0 1

I3 0 1 0
0 1 1

3
75 (3:6)

The argument size equations for the two recursive rules lead to the
matrices shown below. The assumed built-in predicate \�" happens to

provide no imported constraints, so there are no rows for C3 of the individual
rules. The right-hand columns have labels over them to assist in seeing how
the matrices are derived.

2
66666666664

����������������

(x) (y) (X) (Xs) (Y) (Ys) (Zs)

2 1 1 0 0 0

I3 0 2 0 0 1 1 0

2 1 0 0 0 1

2 0 0 1 1 0

0 I3 0 0 1 0 0 0

0 0 0 0 0 1

3
77777777775

2
66666666664

����������������

(x) (y) (X) (Xs) (Y) (Ys) (Zs)

2 1 1 0 0 0

I3 0 2 0 0 1 1 0

2 0 0 1 0 1

0 0 0 0 1 0

0 I3 2 1 1 0 0 0

0 0 0 0 0 1

3
77777777775

(3:7)

The CHU of these two matrices de�nes the matrix underlying 	 for
merge (per De�nition 3.2), at least in its initial form:

2
64

�������

I 0 c1 C1

0 I c2 C2

0 0 c3 C3

3
75 �

2
66666666664

����������������

0 2 1 1 0 0 0 2 1 1 0 0 0

I3 0 0 2 0 0 1 1 0 2 0 0 1 1 0
0 2 1 0 0 0 1 2 0 0 1 0 1
0 2 0 0 1 1 0 0 0 0 0 1 0

0 I3 0 0 0 1 0 0 0 2 1 1 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 1

0 0 �1 1 0 0 0 0 0 1 0 0 0 0 0

3
77777777775

(3:8)

This matrix has a number of redundant columns: numbers 5, 8, 9, 11, and
12. After eliminating them, we can express 	 as:

	

2
6664

���������

b1 a1

I3 b2 a2
b3 a3

0 c C

3
7775 =

2
6666666666664

������������������

0 2 1 1 0 0 2 0 0

I3 0 2 0 0 1 0 2 1 0
0 2 1 0 0 1 2 1 0
�b1 2 0 0 1 0 0 0 �a1

0 �b2 0 0 1 0 0 2 0 �a2
�b3 0 0 0 0 1 0 0 �a3

0 �1 1 0 0 0 0 1 0 0
0 c 0 0 0 0 0 0 0 C

3
7777777777775

(3:9)

In the above equation, ai are row vectors with as many columns as matrix
C, and c is a column vector with as many rows as C.

The generalization of 	 to SCCs with several predicates and rules with
nonlinear recursion is cumbersome, but involves no new ideas; the method
is outlined in Appendix A.

De�nition 3.4: The recursive transformation T of a logic procedure for p,
where B and 	 are as de�ned in Eqs. 3.1{3.4 is the mapping that takes any
polycone A � Rn into the polycone T (A) � Rn, where:

T (A) = 	(A) [B (3:10)

From their de�nitions it is clear that both 	 and T are monotonic
transformations. In order to study the structure of 	 and T , we �rst observe
that the polycones of Rn with operation [form a commutative monoid.

Lemma 3.3: The transformation 	 de�ned by Eqs. 3.1{3.4 is a homomor-
phism with respect to [; that is, for any polycones P;Q � Rn:

	(P [Q) = 	(P) [(Q) (3:11)

Proof: Let P and Q be given by:

P �

"
�����I p1 P1

0 p3 P3

#
Q �

"
�����I q1 Q1

0 q3 Q3

#
(3:12)

Use Eq. 2.2 to form P [Q. Use Eq. 3.3 with P [Q in the role of A:

	(P [Q) �

2
666666664

��������������

I c1 C1 0 0 0 0

0 c2 C2 �p1 �P1 �q1 �Q1

0 c3 C3 0 0 0 0
0 0 0 p3 P3 0 0
0 0 0 0 0 q3 Q3

0 �1 0 1 0 1 0

3
777777775

(3:13)

Similarly:

	(P) [(Q) �

2
666664

�����������

I 0 c1 C1 0 c1 C1 0

0 0 (c2�p1) C2 �P1 (c2�q1) C2 �Q1

0 0 c3 C3 0 c3 C3 0
0 0 p3 0 P3 q3 0 Q3

0 �1 1 0 0 1 0 0

3
777775 (3:14)

In Eq. 3.13, multiply the last row by c1 and add it to row 1. Then multiply
the last row by c2 and add it to row 2. Finally, multiply the last row by c3

and add it to row 3, giving:

	(P [Q) �

2
666666664

��������������

I 0 C1 c1 0 c1 0

0 0 C2 (c2�p1) �P1 (c2�q1) �Q1

0 0 C3 c3 0 c3 0
0 0 0 p3 P3 0 0
0 0 0 0 0 q3 Q3

0 �1 0 1 0 1 0

3
777777775

(3:15)

In Eq. 3.14 column 5 is a duplicate of column 2, so may be deleted. This
also gives Eq. 3.15, except that columns 1 and 2 are interchanged.

Corollary 3.4: For any polycone P , and k > 0,

T k(P) = B [(B) [2(B) [: : : [k�1(B) [k(P) (3:16)

Also, the sequence B; T (B); T 2(B); : : : ; T k(B); : : : is monotonic.

Proof: Eq. 3.16 follows by Lemma 3.3 and a trivial induction on k. Mon-
tonicity of T k(B) follows from Eq. 3.16 with P = B.

4 The Search for a Fixpoint

Let B be the polycone speci�ed by Eq. 3.4, which contains the set of feasible
argument sizes arising from the nonrecursive rules. Let F be a polycone in
the positive orthant of Rn that is a �xpoint of T ; that is, F satis�es the
equation F = T (F). It is straightforward to show F contains the set of
feasible argument sizes arising from all of the rules for p, and thus completes
our analysis of p's SCC. That is, if p(x) is derived without any recursions on
p, then x 2 B � F ; if all p(y) derived with k�1 recursions are in F , then all
p(x) derived in k recursions are in 	(F) � F ; use induction on the number
of applications of a recursive rule for p.

How to �nd such an F in general is not known at present. A solution
in many simple examples is simply F = T (B). If that does not work, one
could try more iterates, but as the next example shows, this may also fail.
A more complicated heuristic is described later in Section 7.

Example 4.1: This example shows that iterating T may not reach a �xpoint
in a �nite number of steps, even though one exists. The logic procedure below
might test for precedence in some partial order, thinking of s as successor.

p(X;X):

p(X; s(Y)) p(X;Y):

We �nd that:

B �

"
�����1 0 0 1

0 1 0 1

#
	(B) �

"
�����1 0 0 1

0 1 1 1

#
T (B) �

2
64

�������

1 0 0 0 1 0

0 1 0 1 1 0
0 0 �1 1 0 1

3
75

and for iterated applications of T :

T k(B) �

2
64

�������

1 0 0 0 1 0

0 1 0 k 1 0
0 0 �1 1 0 1

3
75

It is clear that this sequence does not reach a �xpoint in a �nite number
of steps. However, we note that rescaling a column by a positive quantity
does not change the polycone de�ned by the matrix, provided the column
contains coeÆcients for a slack (independent) variable, i.e., it is a positively
numbered column. Taking advantage of this, we divide column 1 of T k(B)
by k, giving:

T k(B) �

2
664

��������
1 0 0 0 1 0

0 1 0 1 1 0

0 0 �1 1
k
0 1

3
775 as k!1
����!

2
664

��������
1 0 0 0 1 0

0 1 0 1 1 0

0 0 �1 0 0 1

3
775

�

2
4

������

1 0 0 0 1

0 1 0 1 1

3
5 � F

It is now easy to verify that T (F) = F , so F is indeed the desired �xpoint.
The inequalities repesented are x2 � x1 � 0.

This example is discussed further in Example 7.1.

5 Veri�cation of a Fixpoint

Suppose it is conjectured that a certain set of equations F speci�es a �xpoint
of T , namely:

F �

"
�����I f1 F1

0 f3 F3

#
(5:1)

Substituting into the right side of Eq. 3.3, then forming the CHU with Eq. 3.4
gives

T (F) = 	(F) [B �

2
666666664

��������������

I 0 c1 C1 0 b1 B1

0 0 (c2�f1) C2 �F1 0 0
0 0 c3 C3 0 0 0
0 0 f3 0 F3 0 0
0 0 0 0 0 b3 B3

0 �1 1 0 0 1 0

3
777777775

(5:2)

To verify the conjecture, we must show that Eq. 5.2 is equivalent to (rep-
resents the same polycone as) Eq. 5.1. One method is to use the earlier
observations about redundancies, or other arguments, to transform Eq. 5.2
back to Eq. 5.1. Although this can be done ad hoc on examples, an eÆcient
general algorithm for �nding redundancies is not known. A general method
of deciding equivalence, based on conversion to normal forms, is described
in the next section.

Example 5.1: Using the matrices for the rev procedure of Example 1.1, we
get

B �

2
64

�������

0 0

I3 0 1
0 1

3
75

and

	(B) �

2
666666664

��������������

2 1 1 0 0 0

I3 0 0 0 1 0 0
0 0 0 0 1 0
0 0 1 0 0 0

0 2 1 0 1 0 �1
0 0 0 0 1 �1

3
777777775
�

2
64

�������

2 1 0

I3 0 0 1
2 1 1

3
75 (5:3)

The second form of 	(B) was obtained by the following series of simpli�ca-
tions (equation numbers in parentheses provide the justi�cations): Subtract
row 6 from row 5 and delete row 6 and col. 5 (by 2.3). Add row 5 to row 3
and delete row 5 and col. 4 (by 2.3). Delete col. 2 and row 4 (by 2.5).

Using the reduced form of 	(B), we compute T (B) = 	(B) [B as:

T (B) �

2
6664

���������

0 2 1 0 0 0

I3 0 0 0 1 0 1
0 2 1 1 0 1

0 �1 1 0 0 1 0

3
7775 �

2
64

�������

0 1 0

I3 0 0 1
0 1 1

3
75 (5:4)

The second form of T (B) was obtained by the following series of simpli�ca-
tions: Delete col. 5, as it equals col. 3 (by 2.6). Delete col. 1, as it equals
col. 4 + 2�col. 2 (by 2.6). Delete row 4 and original col. 4 (by 2.3).

We de�ne F = T (B) as the hypothetical �xpoint, and try to verify it:

	(F) �

2
666666664

��������������

2 1 1 0 0 0 0

I3 0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 1 0 0 �1 0

0 2 1 0 1 0 0 �1
0 0 0 0 1 �1 �1

3
777777775
�

2
64

�������

2 1 0

I3 0 0 1
2 1 1

3
75 (5:5)

To get the simpler form we subtract row 6 from row 3, add row 5 to row 3,
and add row 4 to row 3. Then we delete in turn rows 6, 5, and 4. This makes
makes columns 4{6 zero, so they are deleted. Finally, col. 2 is a duplicate
of col. 1, so is deleted. Now we note that 	(F) = 	(B), so it follows that
T (F) = T (B) by de�nition of T . We have veri�ed that F is indeed a �xpoint
of T .

By inspection, we see that Eq. 5.4 is equivalent to the set of constraints:
x1 � 0, x2 � 0, and x3 = x1 + x2. This is precisely what we expect for
rev(x1; x2; x3), and represents a tight bound.

We observe that the methods developed in [15] do not handle constraints
among three variables. Thus those methods could conclude only x3 � x1 and
x3 � x2. While these weaker constraints are suÆcient to prove termination
for top-down evaluation of rev itself, they may not be suÆcient for whatever
procedures use rev .

6 Normal Forms and Polycone Equivalence

In this section we use the machinery of convex analysis and linear program-
ming to develop a normal form representation of polycones and an algorithm
to convert any matrix representation of a polycone to its normal form. This
algorithm provides a decision procedure for the question of whether two
matrices represent the same polycone.

We begin with some standard de�nitions [11]. For these de�nitions, let
A be a convex set in Rn. A ray is a closed half-line, i.e., a set of points
fa+ d� j � � 0g, where a and d are vectors in Rn and � is a scalar.

De�nition 6.1: Vector d 2 Rn is a direction of recession of A if 9a 2 A
such that the ray fa+ d� j � � 0g is contained in A.

If A is nonempty, then \9a 2 A" can be replaced by \8a 2 A" in the
above de�nition.

De�nition 6.2: An extreme point of A is a point that cannot be expressed
as a nontrivial convex combination of (other) points in A. An extreme

direction of A is a direction of recession that cannot be expressed as a
nontrivial convex combination of (other) directions of recession of A.

It can be shown [11, Theorem 19.6] that a convex set P is polyhedral
(De�nition 1.1) if and only if it has a �nite set of extreme points fcig and a
�nite number of extreme directions fdjg. This set of points and directions
is said to �nitely generate P ; that is, point a 2 P if and only if a has a
representation as

a =
P
�ici +

P
�jdj � � 0;

P
�i = 1; � � 0

Now let us restrict P to be a polycone, that is, restrict it to lie in the
positive orthant of Rn. Let C be the matrix whose columns are ci, the
extreme points of P . Let D be the matrix whose columns are dj , the extreme
directions of P . Clearly, each ci � 0 and each dj � 0. Let 1 denote a row
vector of 1's. A generalized Tucker representation for polycone P is given
by

"
�����
(�) (�)

I 0 C D
0 �1 1 0

#

De�nition 6.3: Let matrices C and D be as described above for polycone
P . Further, let the elements of each column dj be relatively prime integers,
let the columns of D be arranged lexicographically, and let the columns of C
be arranged lexicographically. Then the generalized Tucker representation:"

�����I 0 C D

0 �1 1 0

#
(6:1)

is called the normal form representation of P .
It is clear that the normal form of a given polycone is unique. Thus,

to verify whether two representations are actually the same polycone, as is
necessary to verify �xpoints, it is suÆcient to reduce each to its normal form.
This boils down to the following problem: given some matrix that represents
a polycone, �nd its set of extreme points and directions.

The simplex algorithm of linear programming can be modi�ed to �nd the
extreme points and directions of a polycone. Background on this algorithm
can be found in Papadimitriou and Steiglitz [9, Ch. 2], and elsewhere; we
review the essentials briey. Assume we have transformed a generalized
Tucker representation into a standard form linear programming problem,
except for the objective function (which may be treated as 0). That is, we
have a linear system

A� = b � � 0 (6:2)

that describes the polycone, where A is an m �N matrix of full rank, and
m < N . (This � includes x and the slack (independent) variables of the
generalized Tucker representation; its arity is N .) Recall that a basis for
the problem is a set of m linearly independent columns of A, designated
AB(i) for 1 � i � m. B denotes the nonsingular matrix composed of the
basis columns of A. Here B is an m-element subset of f1; : : : ; Ng in a �xed
sequence.

A basic feasible solution (bfs) is a nonnegative vector X0 such that

X0k = 0 for k =2 B.

X0B(i) = i-th component of B�1b.

It is well known that basic feasible solutions correspond to vertices (extreme
points) of the polycone, and that they can be enumerated by pivoting from
one basis to another.

Now suppose Aj is any column not in a current basis B that corresponds
to bfs X0. Then it is a linear combination of the columns of B, so satis�es

Aj = BXj (6:3)

for a certain vector Xj. We recall that the simplex algorithm maintains a
\tableau", the matrix X, with a zero-th column X0 that is the current bfs;
the columns XB(i) comprise an m�m identity matrix; column Xj for each
j =2 B satis�es Eq. 6.3.

For � a nonnegative scalar, we have the identity

B (X0 � �Xj) + � Aj = b (6:4)

We can \move" away from vertex X0 in direction Xj by increasing � from 0.
We remain in the feasible region as long as (X0 � �Xj) � 0. To \pivot" in
the simplex algorithm, we need to determine the maximum value of � that
stays in the feasible region. We have three cases:

1. For some row k, we have Xkj > 0 and Xk0 = 0. Then �max = 0.

2. For some k, Xkj > 0, and for all k such that Xkj > 0, we also have
Xk0 > 0. Then �max > 0, but �nite. In this case \moving to �max"
corresponds to traversing an edge of P to another vertex.

3. For no k is Xkj > 0. Then � can increase inde�nitely and (X0 � �Xj)
remains feasible. Evidently, �Xj is a direction of recession of P .

Most linear programming texts make an early assumption that the feasible
region is bounded, so that case (3) cannot occur; consequently, we cannot
use their results directly. The modi�cations for unbounded feasible regions
are fairly straightforward, and we present them below.

Algorithm (6.1): To �nd the extreme points and directions of P , the
feasible region of Eq. 6.2.

method: (Outline)

Visit all the vertices of P by pivoting and never choosing a column
that �ts case (3) above. Use standard methods, such as depth �rst
search, to ensure that each vertex is visited once.

At each vertex (bfs), determine which nonbasis columns fall into case
(3). The associated directions, �Xj , are the extreme directions of P .

To justify this algorithm's correctness, we need to prove two facts:

1. Every instance of case (3) gives an extreme direction.

2. Every extreme direction arises as an instance of case (3). That is, if d
is an extreme direction, then there is some vertex c such that c + �d
describes a one-dimensional face of P .

The following lemmas address these problems.

Lemma 6.1: Every instance of case (3) gives an extreme direction.

Proof: It is suÆcient to show that f(X0 � �Xj) j � � 0g is a (one-
dimensional) face of P . We use the fact that a subset of P is a face if
and only if there is some linear function h(�) that takes its maximum within
P precisely on that set [11, Sect. 18]. A suitable h(�) is obtained by setting
the coeÆcients of the basis elements and the j-th element to 0, and setting
the remaining coeÆcients to �1. Then the maximum, which is 0, is attained
precisely on the desired ray.

Lemma 6.2: If d is an extreme direction of polycone P , then there is
some vertex (extreme point) c such that fc + �d j � � 0g describes a one-
dimensional face of P .

Proof: Let H be the hyperplane through the origin that is orthogonal to
d, and consider the projection P 0 of polycone P on H. P 0 is polyhedral,
and any extreme point of P 0 must have an extreme point of P in its inverse
image. If P 0 has an extreme point, choose any extreme point c in its inverse
image. If P 0 has no extreme points, then clearly d is not an extreme direction
of P . (We can �nd a pair (d0; �d0) of directions of recession of P 0 whose
inverse images can be copmbined to yield d in P .)

Theorem 6.3: It is decidable whether two generalized Tucker representa-
tions with rational coeÆcients de�ne the same polycone.

Proof: Algorithm 6.1 �nds the extreme points and extreme directions of
P in the space of all variables, �. It is only necessary to project them onto
the x components of �, express directions with relatively prime integers, and
arrange columns in lexicographic order to obtain the normal form of Eq. 6.1.
Two representations de�ne the same polycone if and only if their normal
forms are the same.

Example 6.1: Consider the equations developed in Example 3.1 for the
merge procedure. We sketch the evaluation of the normal form of 	(B),
where 	 was given by Eq. 3.9 and B by Eq. 3.6. By substitution,

	

2
64

�������

0 0 1

I3 0 1 0
0 1 1

3
75 =

2
66666666664

����������������

0 2 1 1 0 0 2 0 0 0

I3 0 2 0 0 1 0 2 1 0 0
0 2 1 0 0 1 2 1 0 0
0 2 0 0 1 0 0 0 0 �1

0 0 0 0 1 0 0 2 0 �1 0
0 0 0 0 0 1 0 0 �1 �1

0 �1 1 0 0 0 0 1 0 0 0

3
77777777775

(6:5)

To put this in the form of Eq. 6.2, we move the constants column to the
left side, move the coeÆcients of x to the right side, and multiply the three
upper rows by �1. In addition, the columns are labeled with variable names:

2
66666666664

����������������

(x1) (x2) (x3) (�1) (�2) (�3) (�4) (�5) (�6) (�7) (�8) (�9)

0 1 0 0 �2 �1 �1 0 0 �2 0 0 0
0 0 1 0 �2 0 0 �1 0 �2 �1 0 0
0 0 0 1 �2 �1 0 0 �1 �2 �1 0 0
0 0 0 0 2 0 0 1 0 0 0 0 �1
0 0 0 0 0 0 1 0 0 2 0 �1 0
0 0 0 0 0 0 0 0 1 0 0 �1 �1
1 0 0 0 1 0 0 0 0 1 0 0 0

3
77777777775

(6:6)

The interested reader is invited to check our computation of Algorithm 6.1,

which yields two extreme points:

(x; �) = (2; 2; 4; 1; 0; 0; 0; 2; 0; 0; 2; 0)

(x; �) = (2; 2; 4; 0; 0; 0; 0; 2; 1; 0; 0; 2)
(6:7)

and several extreme directions:

(x; �) = (0; 1; 1; 0; 0; 0; 0; 0; 0; 0; 0; 0)

(x; �) = (0; 1; 1; 0; 0; 0; 0; 1; 0; 0; 1; 0)

(x; �) = (0; 1; 1; 0; 0; 0; 1; 1; 0; 0; 0; 0)

(x; �) = (1; 0; 1; 0; 0; 0; 0; 0; 0; 0; 0; 0)

(x; �) = (1; 0; 1; 0; 0; 0; 0; 1; 0; 0; 0; 1)

(x; �) = (1; 0; 1; 0; 0; 1; 0; 1; 0; 0; 0; 0)

(6:8)

Projecting on x, we �nd the normal form to be:2
6664

���������

0 2 0 1

I3 0 2 1 0
0 4 1 1

0 �1 1 0 0

3
7775 (6:9)

Geometrically, this states x1 � 2, x2 � 2, and x3 = x1+x2, which is precisely
what we expect after one application of a recursive merge rule to a base case.

Interestingly, Eq. 6.9 can also be obtained eÆciently by redundancy
elimination procedures. Briey, in Eq. 6.5 pivoting allows rows 4, 5, and 6
to be eliminated by setting up Eq. 2.3, then duplicate columns are coalesced,
resulting in Eq. 6.9. Finally, we observe that T (B) = 	(B) [B reduces to
B, so B has been shown to be a �xpoint.

7 An Heuristic that Often Works

The following polycone has been found to provide a �xpoint in several
examples. Let Eqs. 3.1{3.4 describe the logic procedure. Let F be given
by:

F �

2
66666666664

����������������

I b1 c1�b1 B1 �B1 C1 0 0

0 b3 0 B3 0 0 0 0
0 0 b3 0 B3 0 0 0
0 0 c2�b1 0 0 C2 �B1 0
0 0 c3 0 0 C3 0 0
0 0 b3 0 0 0 B3 0
0 b1 c1�b1 B1 �B1 C1 0 �I

3
77777777775

(7:1)

This matrix was arrived at by trying to \enlarge T (B) in the 	 direction."
Recall that a point x 2 T (B) can be represented as �(v � u) + u, where
u 2 B, v 2 	(B), and 0 � � � 1. If we drop the requirement � � 1 we are
in a sense projecting rays from B through 	(B). If B and 	(B) are disjoint,

the portion of the set for which � � 1 is called the penumbra of 	(B) with
respect to B [11]. Projecting B through 	(B) does not necessarily produce
a convex set. However, Eq. 7.1 speci�es a polycone that does enclose the set
so produced.

Example 7.1: Consider the same rules given in Example 5.2, in which no
�nite T k(B) was a �xpoint.

p(X;X):

p(X; s(Y)) p(X;Y):

The heuristic of Eq. 7.1 gives the following matrix for F , initially.

F �

2
666666664

��������������

1 0 0 0 1 �1 1 0 0 0 0

0 1 0 1 1 �1 0 1 0 0 0
0 0 0 0 0 0 1 0 �1 0 0
0 0 0 0 0 0 0 1 �1 0 0
0 0 0 0 1 �1 1 0 0 �1 0
0 0 0 1 1 �1 0 �1 0 0 �1

3
777777775

(7:2)

This matrix can be reduced as follows. Pivot on row 6, column 3. Columns
2 and 3, and row 6, are eliminated using Eq. 2.4. Rows 5, 4, and 3 are then
redundant, and eliminated after pivoting. The result is the same matrix that
was found to be a �xpoint in Example 4.1, namely:

F �

"
�����1 0 0 0 1

0 1 0 1 1

#
(7:3)

8 Directions for Further Work

There are two principal directions in which this work needs to be extended.
First, we would like to have a more eÆcient procedure for determining
equivalence of polycones, and a good analysis of the running time. Second,
and most important, we need more ways to generate candidates for the
�xpoint.

Frequently, the \recursive activity" of an SCC occurs in only a small
number of dimensions. A method that covers two or three \signi�cant"
dimensions would be useful.

One possibly exploitable property of [b1jB1] [c1jC1], and [c2jC2], when
they pertain to a single rule, is this: in any row with a positive constant
column, the sum of the coeÆcients in the row cannot exceed the constant
in that row; furthermore, when the constant for the row is zero, there is at
most one positive coeÆcient, and that equals 1. Speci�cally, for [b1jB1]:

X
j

B
(ij)
1 �

(
1; if b

(i)
1 = 0;

b
(i)
1 ; if b

(i)
1 > 0.

This is a consequence of the de�nition of term size, together with the fact
that logical variables within the same term must be connected by function
symbols of arity at least 2.

Looking at Eqs. 3.1{3.3 and Appendix A, we see that there is predictable
sparseness in the generalized Tucker representations. It might be possible to
take advantage of this.

Since T is monotonic, it has a least �xpoint, but this �xpoint (and others)
may not be a polycone. It would be interesting to formulate conditions under
which the least �xpoint of T is a polycone.

To conclude, while this paper o�ers a beginning, there is still much work
to be done in the automatic analysis of argument term size constraints.

Acknowledgements

We wish to thank Jean-Louis Lassez for stimulating and helpful discussions.
This work was partially supported by NSF grants CCR-89-58590 and IRI-
89-02287.

Appendix A Programs with General Recursion

Here we outline how to construct the 	 and T transformations in SCCs that
have nonlinear recursion and/or several predicates in one SCC. Suppose there
are s di�erent predicates in the SCC, p1; : : : ; ps. The main idea is that we
de�ne 	1; : : : ;	s as mappings for those predicates. Each mapping operates
on a vector of polycones, A1; : : : ; As. Then 	 for the whole SCC is the direct
product:

	(A1; : : : ; AS) = (1(A1; : : : ; As); : : : ;	1(A1; : : : ; As))

Similarly, we formulate base case polycones B1; : : : ; Bs and use their direct
product, together with 	, to de�ne T for the whole SCC. To keep the
notation reasonable, we illustrate the details for an SCC with two predicates
p and q.

Consider a recursive rule for p with k p-subgoals, m q-subgoals, and
possibly a nonrecursive subgoal. The argument size equations are

x = c+C�

y1 = d1 +D1�

: : :

yk = dk +Dk�

z1 = e1 +E1�

: : :

zm = em +Em�

0 = f + F�

(A:1)

Here x represents argument sizes of p in the head of the rule; yi represents
argument sizes of the i-th p-subgoal; zj represents argument sizes of the j-th
q-subgoal; � contains variables corresponding to the logical variables in the
rule. Now suppose the polycones to be operated upon by 	 are presented as

y = a+A�

0 = g +G�

z = b+B�

0 = h+H�
(A:2)

We substitute a separate copy (with � renamed) of the left equations for
each of yi and substitute a separate copy of the right equations for each zj
(cf. Eqs. 3.1{3.3), giving:

2
66666666666666666666666666664

����������������������������������

(�) (�1) : : : (�k) (�1) : : : (�m)

I c C 0 : : : 0 0 : : : 0
0 (d1�a) D1 �A 0

...
...

. . . 0
0 (dk�a) Dk 0 �A
0 (e1�b) E1 �B 0

...
... 0

. . .

0 (em�b) Em 0 �B
0 f F 0 : : : 0 0 : : : 0
0 g 0 G 0

...
...

. . . 0
0 g 0 0 G
0 h 0 H 0

...
... 0

. . .

0 h 0 0 H

3
77777777777777777777777777775

(A:3)

This de�nes the feasible polycone for one rule! The CHU of all recursive
rules for p de�nes 	p evaluated at the pair of polycones in Eq. A.2. 	q

is de�ned similarly, based on the recursive rules for q, and 	 is the direct
product of 	p and 	q.

Now let the base case polycones for p and q be Bp and Bq, respectively.
We de�ne

Tp(P;Q) = 	p(P;Q) [Bp

Tq(P;Q) = 	q(P;Q) [Bq

T (P;Q) = (Tp(P;Q); Tq(P;Q))

(A:4)

where (P;Q) is the vector of polycones to be transformed, represented by
Eq. A.2.

References

[1] F. Afrati, C. Papadimitriou, G. Papageorgiou, A. R. Roussou, Y. Sagiv,
and J. D. Ullman. On the convergence of query evaluation. Journal of
Computer and System Sciences, 38(2):341{359, 1989.

[2] A. Brodsky and Y. Sagiv. On termination of datalog programs. In First

International Conference on Deductive and Object-Oriented Databases,
pages 95{112, Kyoto, Japan, 1989.

[3] B. C. Eaves and U. G. Rothblum. Elimination of Quanti�ers of

Linear Variables and Corresponding Transfer Principles. Technical
Report Operations Research, Stanford University, 1987.

[4] R. M. Freund, R. Roundy, and M. J. Todd. Identifying the Set of

Always-Active Constraints in a System of Linear Inequalities by a

Single Linear Program. Technical Report 1674-85, Sloan School of
Management, MIT, 1985.

[5] M. H. Karwan, V. Lofti, J. Telgen, and S. Zionts. Redundancy in Mathe-

matical Programming: A State-of-the-Art Survey. Springer-Verlag, New
York, 1983.

[6] J.-L. Lassez and K. McAloon. Simpli�cation and elimination of redun-
dant linear arithmetic constraints. In North American Conf. on Logic

Programming, pages 37{51, 1989.

[7] K. Morris, J. D. Ullman, and A. Van Gelder. Design overview of the
Nail! system. In Third Int'l Conf. on Logic Programming, pages 554{
568, 1986.

[8] L. Naish. Automatic generation of control for logic programs. Technical
Report 83/6, Dept. of Computer Science, University of Melbourne,
Melbourne, Australia, 1983.

[9] C. H. Papadimitriou and K. Steiglitz. Combinatorial Optimization.
Prentice-Hall, Englewood Cli�s, NJ, 1982.

[10] L. Pl�umer. Termination Proofs for Logic Programs. PhD thesis,
Dortman University, 1988.

[11] R. T. Rockafellar. Convex Analysis. Princeton University Press,
Princeton, NJ, 1970.

[12] Y. Sagiv and J. D. Ullman. Complexity of a top-down capture rule.
Technical Report STAN{CS{84{1009, Stanford University, 1984.

[13] J. Telgen. Minimal representation of convex polyhedral sets. Journal

of Optimization Theory and Application, 38(1):1{24, 1982.

[14] J. D. Ullman. Implementation of logical query languages for databases.
ACM Transactions on Database Systems, 10(3):289{321, 1985.

[15] J. D. Ullman and A. Van Gelder. EÆcient tests for top-down termina-
tion of logical rules. Journal of the ACM, 35(2):345{373, 1988.

[16] A. Van Gelder. A message passing framework for logical query evalua-
tion. In 1986 ACM-SIGMOD Conf. on Management of Data, pages 155{
165, 1986.

[17] C. Walther. Automated Termination Proofs. PhD thesis, University of
Karlsruhe, 1988.

