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Probability Propagation

by

Glenn R. Shafer  and  Prakash P. Shenoy

School of Business, University of Kansas, Summerfield Hall,

Lawrence, Kansas, 66045-2003, USA

Abstract

In this paper we give a simple account of local computation of marginal
probabilities for when the joint probability distribution is given in factored form
and the sets of variables involved in the factors form a hypertree.  Previous
expositions of such local computation have emphasized conditional probability.
We believe this emphasis is misplaced.  What is essential to local computation is
a factorization.  It is not essential that this factorization be interpreted in terms of
conditional probabilities.  The account given here avoids the divisions required by
conditional probabilities and generalizes readily to alternative measures of
subjective probability, such Dempster-Shafer or Spohnian belief functions.

Key Words:  probability propagation, local computation, hypertree, construction
sequence, hypertree cover, Markov tree, array, potential, parallel processing.

1.  Introduction

In this paper, we study local computation for probability distributions.  More pre-

cisely, we describe a simple way marginal probabilities can be computed when a joint

probability distribution is given in factored form, and the sets of variables involved in the

factors form a hypertree.

The phrase "local computation" refers to a computation that involves only a small

number of variables.  The adjective "local" is used because the variables involved in a

given computation are near each other when the relations among the variables are

represented graphically.

The purpose of this paper is to simplify and unify previous work.  The basic

algorithms we describe in sections 7 and 8 do not go beyond the algorithms of Kelly and

Barclay [11], Cannings, Thompson and Skolnick [6], Pearl [19], and Lauritzen and

Spiegelhalter [14] in what they accomplish, but they do show that the accomplishment is

simpler than sometimes thought.  All of these earlier authors emphasized conditional

probabilities, and all of their algorithms require divisions in order to compute conditional

probabilities.  But as we show in this paper, the computation of marginal probabilities

from factored joint distributions does not require any divisions or any reference to

conditional probability.  What is essential to local computation is a factorization.  It is not



G. R. Shafer  and  P. P. Shenoy

essential that this factorization be interpreted, at any stage, in terms of conditional

probabilities.  Conditional probabilities can be obtained as a by-product of local

computation, and they can often strengthen the intuitive interpretation of intermediate

computations.  But the divisions needed in order to obtain conditional probabilities are

unnecessary if only marginal probabilities are desired (Shafer and Shenoy [24]).

Because our approach does not involve conditional probability, it generalizes readily

to measures of belief, such as Dempster-Shafer belief functions, for which conditionals

do not play a prominent role.  In fact, we first learned the approach in the context of

Dempster-Shafer belief functions (Shenoy and Shafer [27], Shenoy, Shafer and Mellouli

[31], Shafer, Shenoy and Mellouli [25]).

In Shafer and Shenoy [24], we explain how to abstract the approach given here to a

set of axioms that apply not only to probability and belief-function propagation but also

to constraint propagation (Seidel [22], Dechter and Pearl [7], Shenoy and Shafer [29]),

discrete optimization (Bertele and Brioschi [4], Shenoy and Shafer [30]), solving systems

of linear equations (Rose [21]), propagation of Spohnian belief functions (Spohn [32],

Hunter [10]), retrieval from acyclic databases (Malvestuto [16], Beeri et al. [2]), rule

propagation in rule-based systems (Shenoy [26]), and implementation of the Kalman

filter (Dempster [8], Meinhold and Singpurwalla [17]).

An outline of this paper is as follows.  In section 2, we review some graph-theoretic

concepts.  In section 3, we introduce a notation for probability distributions and for more

general functions that we call potentials and arrays.  In section 4, we define

marginalization for arrays and potentials, and in section 5, we study multiplication and

factorization of arrays.

In section 6, we show how local computation can be used to marginalize a factor-

ization on a hypergraph to the smaller hypergraph resulting from the deletion of a twig.

Once we know how to delete a twig, we can reduce a hypertree to a single hyperedge by

successively deleting twigs.  When we have reduced a factorization on a hypertree to a

factorization on a single hyperedge, it is no longer a factorization; it is simply the

marginal for the hyperedge.

In section 7, we shift our attention from the hypertree to the Markov tree determined

by a branching for the hypertree.  Using this Markov tree, we describe more graphically

the process of marginalizing to a single hyperedge.  Our description is based on the idea

that each vertex in the tree is a processor, which can operate on arrays for the variables it

represents and then send the result to a neighboring processor.  In section 8, we
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generalize this idea to a scheme of simultaneous computation and message passing that

produces marginals for all the vertices in the Markov tree.  Finally, in section 9, we

illustrate our propagation scheme by means of a numerical example.

Our treatment of local computation applies to arrays in general, not just to probability

distributions.  We take this approach not because the greater generality is of practical

importance, but rather because it distances us from probabilistic interpretations and

allows us to concentrate on purely computational aspects of our problem.  In particular, it

frees us from the temptation to seek a probabilistic interpretation for every step in the

computation.

In Shafer and Shenoy [24], we explore the connections between factorizations of the

joint probability distribution and probabilistic notions of conditional probability and

conditional independence.  We show that the algorithm of section 8 applied to probability

trees results in the generalization of Bayes' theorem developed by Kelly and Barclay [11]

and Pearl [19].  Also, we show that Lauritzen and Spiegelhalter's [14] algorithm differs

only slightly from the algorithm of section 8.

2.  Some Concepts from Graph Theory

Most of the concepts reviewed here have been studied extensively in the graph theory

literature (see Berge [3], Golumbic [9], and Maier [15]).  A number of the terms we use

are new, however - among them, hypertree, construction sequence, branch, twig, bud,

and Markov tree.  A hypertree is what other authors have called an acyclic (Maier [15])

or decomposable (Lauritzen, Speed, and Vijayan [13]) hypergraph.  A construction

sequence is what other authors have called a sequence with the running intersection

property.  A Markov tree is what authors in database theory have called a join tree (see

Maier [15]).  We have borrowed the term Markov tree from probability theory, where it

means a tree of variables in which separation implies probabilistic conditional

independence given the separating variables.  We first used the term in a non-

probabilistic context in Shenoy and Shafer [27] and in Shafer, Shenoy, and Mellouli [25],

where we justified it in terms of a concept of qualitative independence analogous to

probabilistic independence.

Hypergraphs and Hypertrees.  We call a non-empty set h of non-empty subsets of a

finite set x a hypergraph on x.  We call the elements of h hyperedges.  We call the

elements of x vertices.

Suppose t and b are distinct hyperedges in a hypergraph h, t∩b≠∅, and b contains

every vertex of t that is contained in a hyperedge of h other than t; t∩(∪(h-t)) ⊆ t∩b.
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Then we call t a twig of h, and we call b a branch for t.  A twig may have more than one

branch.

We call a hypergraph a hypertree if there is an ordering of all its hyperedges, say

h1h2...hn, such that hk is a twig in the hypergraph {h1,h2,...,hk} whenever 2≤k≤n.  We call

any such ordering of the hyperedges a hypertree construction sequence for the hypertree.

We call the first hyperedge in a hypertree construction sequence the root of the hypertree

construction sequence.

Figure 1 illustrates hypergraphs, hypertrees, twigs and construction sequences.

Figure 1.  Two hypergraphs on {W,X,Y,Z}.  The hypergraph h1 is a hypertree,
hyperedges {W,X} and {Y,Z} are twigs, and {W,X}{X,Y} {Y,Z} is a
construction sequence.  The hypergraph h2 is not a hypertree and it has no twigs.

h1:  W X ZY
h2:  

W X

Z
Y

Since each hyperedge we add as we construct a hypertree is a twig when it is added, it

has at least one branch in the hypertree at that point.  Suppose we choose such a branch,

say β(h), for each hyperedge h we add.  By doing so, we define a mapping β from h-{h1}

to h, where h1 is the root of the hypertree construction sequence.  We will call this

function a branching for the hypertree construction sequence.

Since a twig may have more than one branch, a hypertree construction sequence may

have more than one branching.  In general, a hypertree will have many construction

sequences.  In fact, for each hyperedge of a hypertree, there is a construction sequence

beginning with that hyperedge.

Hypertree Covers of Hypergraphs.  As we will show, local computation requires

two things.  The joint probability distribution with which we are working must factor into

functions each involving a small set of variables.  And these sets of variables must form a

hypertree.

If the sets of variables form instead a hypergraph that is not a hypertree, then we must

enlarge it until it is a hypertree.  We can talk about this enlargement in two different

ways.  We can say we are adding larger hyperedges, keeping the hyperedges already

there.  Or, alternatively, we can say we are replacing the hyperedges already there with

larger hyperedges.  The choice between these two ways of talking does not matter much,



Probability Propagation

5

because the presence of superfluous twigs (hyperedges contained in other hyperedges)

does not affect whether a hypergraph is a hypertree, and because the computational cost

of the procedures we will be describing depends primarily on the size of the largest

hyperedges, not on the number of the smaller hyperedges (Kong [12]).

We will say that a hypergraph h* covers  a hypergraph h if for every h in h there is

an element h* of h* such that h⊆h*.  We will say that h* is a hypertree cover for h if h*

is a hypertree and it covers h.  Figure 2 shows a hypergraph that is not a hypertree and a

hypertree cover for it.

Figure 2.  Left:  A hypergraph that is not a hypertree.  Right:  A hypertree cover
for it obtained by replacing hyperedges {S,L} and {S,B} with hyperedges
{S,L,B} and {L,E,B}.

A

T

S

L
B

E

X
D

A

T

S
L

B

E

X
D

Finding a hypertree cover is never difficult.  The hypertree {x}, which consists of the

single hyperedge x, is a hypertree cover for any hypergraph on x.  The problem of

finding a hypertree cover whose largest hyperedge is as small as possible is NP-complete

(Arnborg, Corneil and Proskurowski [1]).  Heuristics for finding good hypertree covers is

the subject of a growing literature; see e.g., Rose [20], Bertele and Brioschi [4], Tarjan

and Yannakakis [33], Kong [12], Mellouli [18], and Zhang [34].  This paper makes no

contribution to this problem.  Our purpose is rather to explain the process of finding

marginals using local computation once a factorization relative to a hypertree is in place.

Trees.  A graph is a pair (v,e), where v is a non-empty set and e is a set of two-ele-

ment subsets of v.  We call the elements of v vertices, and we call the elements of e

edges.

Suppose (v,e) is a graph.  If {v,v'} is an element of e, then we say that v and v' are

neighbors.  We call a vertex of a graph a leaf if it is contained in only one edge, and we

call the other vertex in that edge the bud for the leaf.  If v1v2...vn is a sequence of distinct

vertices, where n>1, and {vk,vk+1}∈e for k=1,2,...,n-1, then we call v1v2...vn a path from

v1 to vn.
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We call a graph a tree if there is an ordering of its vertices, say v1v2...vn such that vk

is a leaf in the graph ({v1,v2,...,vk},ek), where ek is the subset of e consisting of those

edges that contain only vertices in {v1,v2,...,vk}.  We call any such ordering of the

vertices a tree construction sequence for the tree.  We call the first vertex in a tree

construction sequence the root of the tree construction sequence.

Since each vertex we add as we construct a tree is a leaf when it is added, it has a bud

in the tree at that point.  Given a tree construction sequence and a vertex v that is not the

root, let β(v) denote the bud for v as it is added.  This defines a mapping β from v-{v1}

to v, where v1 is the root.  We will call this mapping the budding for the tree construction

sequence.

The budding for a tree construction sequence is analogous to the branching for a

hypertree construction sequence, but there are significant differences.  Whereas there

may be many branchings for a given hypertree construction sequence, there is only one

budding for a given tree construction sequence.  In fact, there is only one budding with a

given root.

Markov Trees.  We call a tree (h,e) a Markov tree if the following conditions are

satisfied:

(i)  h is a hypergraph.

(ii)  If {h,h'}∈e, then h∩h'≠∅.

(iii)  If h and h' are distinct vertices, and X is in both h and h', then X is in every

vertex on the path from h to h'.

This definition does not state that h is a hypertree, but it implies that it is:

Proposition 1.  (i)  If (h,e) is a Markov tree, then h is a hypertree.  Any leaf in

(h,e) is a twig in h.  If h1h2...hn is a tree construction sequence for (h,e), with β
as its budding, then h1h2...hn is also a hypertree construction sequence for h, with

β as a branching.  (ii)  If h is a hypertree, h1h2...hn is a hypertree construction

sequence for h, and β is a branching for h1h2...hn, then (h,e) is a Markov tree,

where e = {(h2,β(h2)),...,(hn,β(hn))}; h1h2...hn is a tree construction sequence for

(h,e), and β is its budding.

See Shafer and Shenoy [24] for a proof of proposition 1.

If (h,e) is a Markov tree, then we call (h,e) a Markov tree representative for the

hypertree h.  As per proposition 1, every hypertree has a Markov tree representative.

Most hypertrees have more than one.  Figure 3 shows a Markov tree representative for

the hypertree in figure 2.
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Figure 3.  A Markov tree representative for the hypertree in Figure 2.

{A, T}

{T, L, E}

{E, X}

{S, L, B}

{L, E, B}

{E, B, D}

Notice that as we delete leaves from a Markov tree (a visually transparent operation),

we are deleting twigs from the hypertree.

3.  Arrays, Potentials, and Probability Distributions

We use the symbol wX for the set of possible values of a variable X, and we call wX

the frame for X.  Given a non-empty set h of variables, we let wh denote the Cartesian

product of wX for X in h; we call wh the frame for h.  We will consider only variables

with finite frames and only finite sets of variables.

We will call elements of wh configurations of h.  We will use lower-case, bold-faced

letters such as x, y, etc. to denote configurations.  If x is a configuration of h, y is a

configuration of g, and h∩g=∅, then (x,y) is a configuration of h∪g.

We call any real-valued function on wh an array on h.  An array is a potential if its

values are non-negative and not all zero.  A potential is a probability distribution if its

values add to one.

4.  Marginalizing Arrays

Marginalization, familiar from probability theory, means reducing a function on one

set of variables to a function on a smaller set of variables by summing over the variables

omitted.

Suppose g and h are sets of variables, h⊆g, and G is an array on g.  The marginal of

G on h, denoted by G↓h, is an array on h.  It is defined by

G↓h(x) = Σ{G(x,y) | y∈wg-h}

for all x∈wh.  For example, if G is an array on the variables {W,X,Y,Z}, then the

marginal G↓{W,X} is given by G↓{W,X}(w,x) = Σ{G(w,x,y,z) | (y,z)∈w{Y,Z}}.

If k⊆h⊆g and G is an array on g, then (G↓h)↓k = G↓k.
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When h⊆g and P is a probability distribution on g, the marginal P↓h is P's marginal on

h in the usual probabilistic sense; P↓h(x) is the probability that the variables in h take the

values in x.

5.  Multiplying and Factoring Arrays

In order to develop a notation for the multiplication of arrays, we first need a notation

for the projection of configurations.  Here projection means dropping extra coordinates; if

(w,x,y,z) is a configuration of {W,X,Y,Z}, for example, then the projection of (w,x,y,z)

to {W,X} is simply (w,x), which is a configuration of {W,X}.   If g and h are non-empty

sets of variables, h⊆g, and x∈wg, then we will let x↓h denote the projection of x to h.

Note that x↓h∈wh.

Multiplication.  When we refer to multiplication of arrays, we mean pointwise

multiplication; if G and H are arrays on g and h respectively, then their product GH is the

array on g∪h given by (GH)(x)=G(x↓g)H(x↓h) for all x∈wg∪h.  If G and H are potentials,

their product GH need not be a potential; it is possible that (GH)(x) = 0 for all x∈wg∪h.

Factorization.  Suppose A is an array on a finite set of variables x, and suppose h is

a hypergraph on x.  If A is equal to the product of arrays on the hyperedges of h, say A =

Π{Ah | h∈h}, where Ah is an array on h, then we say that A factors on h.

When A does factor on h, the arrays Ah are not unique.  We can multiply one of the

Ah by a non-zero constant if we compensate by dividing another by the same constant.

More generally, if g and h overlap, then we can multiply Ag and divide Ah by any array

on g∩h that has no zero values.

When an array factors on a hypergraph, it also factors on any larger hypergraph.

More generally, when an array A on x factors on a hypergraph h on x, it also factors on

any hypergraph h* on x that covers h.

Though the theory in this chapter applies to arrays in general, we will be interested in

practice in factorizations of probability distributions.  Then means that we will be con-

cerned primarily with arrays that are potentials, for when a probability distribution P

factors on a hypergraph h, the arrays Ah in the factorization can be assumed to be

potentials.  Indeed, since P is not identically zero, none of the Ah can be identically zero.

And we can assume that none of the values of the Ah are negative.  Since P does not take

any negative values, we could change the sign of any negatives values of the Ah without

changing the validity of the factorization.
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After we condition on observations, we are often left working with factorizations of

potentials that are proportional to probability distributions that interest us.  Suppose, in-

deed, that we begin with a factorization of a joint probability distribution on h; P =

Π{Ah | h∈h}.  If we observe the values of the variables in g, say y∈wg, then we will be

interested in the conditional distribution P|g=y, which will be proportional to

(Π{Ah | h∈h}) Ig=y, where Ig=y is the potential on g given by Ig=y(x) = 0 if x≠y, and

Ig=y(x) = 1 if x=y.  We call Ig=y the indicator potential for g=y.

The following proposition plays a key role in making local computation possible for

propagation of probabilities.

Proposition 2.  Suppose G and H are arrays on g and h respectively, and g∩h≠∅.

Then (GH)↓g = G(H↓g∩h).

The result stated in proposition 2 follows directly from the definitions of multiplication

and marginalization of arrays.

6.  Marginalizing Factorizations

In this section, we learn how to adjust a factorization on a hypergraph to account for

the deletion of a twig.  This can be accomplished by local computation, computation in-

volving only the arrays on the twig and a branch for the twig.

Suppose h is a hypergraph on x, t is a twig in h, and b is a branch for t.  The twig t

may contain some vertices that are not contained in any other hyperedge in h.  These are

the vertices in the set t-b.  Deleting t from h means reducing h to the hypergraph h-{t}

on the set x'=x-(t-b).

Suppose A is an array on x, suppose A factors on h, and suppose we have stored A in

factored form, i.e., A = Π{Ah | h∈h}.  The following proposition tells us how to adapt

this factorization to a factorization of A↓x' on h-{t}, with a computation that involves

only t and its branch.

Proposition 3.  Under the assumptions of the preceding paragraph,

A↓x' = (Π{Ah | h∈h-{t,b}})(AbAt
↓t∩b), (6.1)

where b is any branch for t.  Thus the marginal A↓x' factors on the hypergraph h-

{t}.  The potential on b is multiplied by At
↓t∩b, and the potentials on the other

elements of h-{t} are unchanged.

The result stated in proposition 3 follows directly from proposition 2 by letting

Π{Ah | h∈h-{t}} = G and At = H.
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Proposition 3 is especially interesting in the case of hypertrees, because repeated

application of (6.1) allows us to obtain A's marginal on any particular hyperedge of h.  If

we want the marginal on a hyperedge h1, we choose a construction sequence beginning

with h1, say h1h2...hn.  Let xk denote h1∪...∪hk, and let hk denote {h1, h2, ..., hk}, for

k=1,...,n-1.    We use (6.1) to delete the twig hn, so that we have a factorization of A↓xn-1

on the hypertree hn-1.  Then we use (6.1) again to delete the twig hn-1 so that we have a

factorization of A↓xn-2 on the hypertree hn-2.  And so on, until we have deleted all the

hyperedges except  h1, so that we have a factorization of A↓h1 on the hypertree {h1}, i.e.,

we have the marginal A↓h1.  At each step, the computation is local, in the sense that it

involves only a twig and its branch.

We are most interested, of course, in the case where A is a probability distribution.  In

this case, as we mentioned in the preceding section, the factorization we wish to

marginalize may be a proportionality rather than an equality.  In other words, we may

begin with a factorization of a potential that is only proportional to the probability

distribution that interest us.  Eventually, we will need to find the constant of

proportionality, but since marginalization preserves proportionality, we may postpone the

normalization until the final step, where we have reduced the potential to its marginal on

the single hyperedge with which we are concerned, and hence normalization requires

summation only over the frame for this hyperedge.

7.  Computing Marginals in Markov Trees

As we learned in section 2, the choice of a branching for a hypertree determines a

Markov tree for the hypertree.  We now look at our scheme for computing a marginal

from the viewpoint of this Markov tree.  This change in viewpoint does not necessarily

affect the implementation of the computation, but it gives us a richer understanding.  It

gives us a picture in which message passing, instead of deletion, is the dominant

metaphor, and in which we have great flexibility in how the message passing is

controlled.

Why did we talk about deleting the hyperedge hk as we projected hk's array to the

branch β(hk)?  The point was simply to remove hk from our attention.  The "deletion" had

no computational significance, but it helped make clear that hk and the array on it were of

no further use.  What was of further use was the smaller hypertree that would remain

were hk deleted.

When we turn from the hypertree to the Markov tree, deletion of twigs translates into

deletion of leaves.  But a tree is easier to visualize than a hypertree.  We can remove a
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leaf or a whole branch of a tree from our attention without leaning so heavily on

metaphorical deletion.  And a Markov tree also allows another, more useful, metaphor.

We can imagine that each vertex of the tree is a processor, and we can imagine that the

projection is a message that one processor passes to another.  Within this metaphor, ver-

tices no longer relevant are kept out of our way by the rules guiding the message passing,

not by deletion.

Translating to the Markov Tree.  The algorithm of the preceding section requires a

hypertree construction sequence h1h2...hn and a branching β for h1h2...hn.  We repeatedly

apply

Operation H.  Marginalize the array now on hk to β(hk).  Change the array now on

β(hk) by multiplying it by this marginalization.

We apply Operation H first for k=n, then for k=n-1, and so on, down to k=2.  The array

assigned to h1 at the end of this process is the marginal on h1.

Now consider the Markov tree (h,e) determined by the branching β.  The vertices of

(h,e) are the hyperedges h1, h2, ..., hn.  We imagine that a processor is attached to each hi.

The processor attached to hi can store an array defined on hi, can compute the

marginalization of this array to hj, where hj is a neighboring vertex, can send the

marginalization to hj as a message, can accept an array on hi as a message from a

neighbor, and can change the array it has stored by multiplying it by such an incoming

message.

The edges of (h,e) are {hn,β(hn)}, {hn-1,β(hn-1)}, ..., {h3,β(h3)}, {h2,h1}.  When we

move from hn to β(hn), then from hn-1 to β(hn-1), and so on, we are moving inwards in the

Markov tree, from the outer leaves to the root h1.  The repeated application of Operation

H by the processors located at the vertices follows this path.

Let Curh denote the array currently stored by the processor at vertex h of (h,e).  In

terms of the local processors and the Curh, Operation H becomes the following:

Operation M1.  Vertex h computes Curh
↓h∩β(h), the marginalization of Curh to

h∩β(h).  It sends Curh
↓h∩β(h) as a message to vertex β(h).  Vertex β(h) accepts the

message Curh
↓h∩β(h) and changes Curβ(h) by multiplying it by Curh

↓h∩β(h).

At the outset, Curh = Ah for every vertex h.  Operation M1 is executed first for h=hn, then

for h=hn-1, and so on, down to h=h2.  At the end of this propagation process, the array

Curh1, the array stored at h1, is the marginal of A on h1.
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An Alternative Operation.  Operation M1 prescribes actions by two processors, h

and β(h).  We now give an alternative, Operation M2, which is executed by a single

processor.  Operation M2 differs from Operation M1 only in that it requires a processor to

multiply together the messages it receives all at once, rather than incorporating them into

the product one by one as they arrive.

Operation M2a.  Vertex h multiplies the array Ah by all the messages it has

received, and it calls the result Curh.  Then it computes Curh
↓h∩β(h), the

marginalization of Curh to h∩β(h).  It sends Curh
↓h∩β(h) as a message to β(h).

Operation M2a involves action by only one processor, the processor h.  When Op-

eration M2a is executed by hn, there is no multiplication, because hn, being a leaf in the

Markov tree, has received no messages.  The same is true for the other leaves in the

Markov tree.  But for vertices that are not leaves in the Markov tree, the operation will in-

volve both multiplication and marginalization.

After Operation M2a has been executed by hn, hn-1, and so on down to h2, the root h1

will have received a number of messages but will not yet have acted.  To complete the

process, h1 must multiply together all its messages and its original array Ah1, thus obtain-

ing the marginal A↓h1.  We may call this Operation M2b:

Operation M2b.  Vertex h1 multiplies the array Ah1
 by all the messages it has

received, and it reports the result to the user of the system.

Operation M2 simplifies our thinking about control, or the flow of computation, be-

cause it allows us to think of control as moving with the computation in the Markov tree.

In our marginalization scheme, control moves from one vertex to another, from the outer

leaves inward towards the root.  If we use Operation M2, then a vertex is computing only

when it has control.

Formulas for the Messages.  We have described verbally how each vertex computes

the message it sends to its branch.  Now we will translate this verbal description into a

formula that constitutes a recursive definition of the messages.

Let Mh→β(h) denote the message sent by vertex h to its bud.  Our description of Op-

eration M2a tells us that Mh→β(h) = Curh
↓h∩β(h), where Curh = Ah Π{Mg→β(g) | g∈h and

β(g)=h}.  Putting these two formulas together, we have

Mh→β(h) = (Ah Π{Mg→β(g) | g∈h and β(g)=h})↓h∩β(h). (7.1)

If h is a leaf, then there is no g∈h such that h=β(g), and so (7.1) reduces to



Probability Propagation

13

Mh→β(h) = Ah
↓h∩β(h), (7.2)

by the convention that an empty product is equal to one.

Formula (7.1) constitutes a recursive definition of Mh→β(h) for all h, excepting only

the root h1 of the budding β.  The special case (7.2) defines Mh→β(h) for the leaves; a fur-

ther application of (7.1) defines Mh→β(h) for vertices one step in towards the root from the

leaves; a third application defines Mh→β(h) for vertices two steps in towards the root from

the leaves; and so on.

We can also represent Operation M2b by a formula:

A↓h1 = Ah1
 Π{Mg→β(g) | g∈h and β(g)=h1}. (7.3)

Flexibility of Control.  Whether we use operation M1 or M2, it is not necessary to

follow exactly the order hn, hn-1, and so on.  The final result will be the same provided

only that a processor never send a message until after it has received and absorbed all the

messages it is supposed to receive.

This point is obvious when we look at a picture of the Markov tree.  Consider, for

example a Markov tree with 15 vertices, as in figure 4.  The vertices are numbered from 1

to 15 in this picture, indicating a construction sequence h1h2...h15.  Since we want to find

the marginal for vertex 1, all our messages will be sent towards vertex 1, in the directions

indicated by the arrows.  Our scheme calls for a message from vertex 15 to vertex 3, then

a message from vertex 14 to vertex 6, and so on.  But we could just as well begin with

messages from 10 and 11 to 5, follow with a message from 5 to 2, then messages from

12, 13, and 14 to 6, from 6 and 15 to 3, and so on.

Figure 4.  A tree with 15 vertices.
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Returning to the metaphor of deletion, where each vertex is deleted when it sends its

message, we can say that the only constraint on the order in which the vertices act is that
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each vertex must be a leaf when it acts; all the vertices that used it as a branch must have

sent their messages to it and then been deleted, leaving it a leaf.

The different orders of projection that obey this constraint correspond, of course, to

the different tree construction sequences for (h,e) that use the branching β.

So far, we have been thinking about different sequences in which the vertices might

act.  This is most appropriate if we are really implementing the scheme on a serial com-

puter.  But if the different vertices really did have independent processors that could

operate in parallel, then some of the vertices could act simultaneously.  Figure 5

illustrates one way this might go for the Markov tree of figure 4.  In step 1, all the leaf

processors project to their branches.  In step 2, vertices 4, 5, and 6 (which would be

leaves were the original leaves deleted) project.  And so on.

Figure 5.  An example of the message-passing scheme for computation of the
marginal of vertex 1.
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If the different processors take different amounts of time to perform Operation M2 on

their inputs, then the lock-step timing of figure 5 may not provide the quickest way to
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find the marginal for h1.  It may be quicker to allow a processor to act as soon as it re-

ceives messages from its leaves, whether or not all the other processors that started along

with these leaves have finished.

In general, the only constraint, in the parallel as in the serial case, is that action move

inwards towards the root or goal, vertex h1.  Each vertex must receive and absorb all its

messages from vertices farther away from h1 before sending its own message on towards

h1.

If we tell each processor who its neighbors are and which one of these neighbors lies

on the path towards the goal, then no further global control or synchronization is needed.

Each processor knows that it should send its outgoing message as soon as it can after

receiving all its incoming messages.  The leaf processors, which have no incoming

messages, can act immediately.  The others must wait their turn.

A Simple Production System.  In reality, we will never have a parallel computer

organized precisely to fit our problem.  Our story about passing messages between

independent processors should be thought of as metaphor, not as a guide to implementa-

tion.  Implementations can take advantage, however, of the modularity the metaphor re-

veals.

One way to take advantage of this modularity, even on a serial computer, is to im-

plement the computational scheme in a simple forward-chaining production system.  A

forward-chaining production system consists of a working memory and a rule-base, a set

of rules for changing the contents of the memory.  (See Brownston et al. [5]).

A very simple production system is adequate for our problem.  We need a working

memory that initially contains Ah for each vertex h of (h,e), and a rule-base consisting of

just two rules, corresponding to Operations M2a and M2b.

Rule 1:  If Ah is in working memory and Mg→β(g) is in working memory for every

g such that β(g)=h, then use (7.1) to compute Mh→β(h), and place it in working

memory.

Rule 2:  If Ah1
 is in working memory and Mg→β(g) is in working memory for

every g such that β(g)=h1, then use (7.3) to compute A↓h1, and print the result.

Initially, there will be no Mg→β(g) at all in working memory, so Rule 1 can fire only

for h such that  there is no g with β(g)=h - i.e., only for h that are leaves.  But eventually

Rule 1 will fire for every vertex except the root h1.  Then Rule 2 will fire, completing the

computation.  Altogether, there will be n firings, one for each vertex in the Markov tree.
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Production systems are usually implemented so that a rule will fire only once for a

given instantiation of its antecedent; this is called refraction (Brownston et al. [5, pp. 62-

63]).  If our simple production system is implemented with refraction, there will be no

unnecessary firings of rules; only the n firings that are needed will occur.  Even without

refraction, however, the computation will eventually be completed.

Since refraction allows a rule to fire again for a given instantiation when the inputs

for that instantiation are changed, this simple production system will also handle updating

efficiently, performing only those recomputations that are necessary.

8.  Simultaneous Propagation in Markov Trees

In the preceding section, we were concerned with the computation of the marginal on

a single vertex of the Markov tree.  In this section, we will be concerned with how to

compute the marginals on all vertices simultaneously.

Computing all the Marginals.  If we can compute the marginal of A on one hyper-

edge in h, then we can compute the marginals on all the hyperedges in h.  We simply

compute them one after the other.  It is obvious, however, that this will involve much

duplication of effort.  How can we avoid the duplication?

Notice first that we only need one Markov tree.  Though there may be many Markov

tree representatives for h, any one of them can serve for the computation of all the

marginals.  Once we have chosen a Markov tree representative (h,e), then no matter

which element h of h interests us, we can choose a tree construction sequence for (h,e)

that begins with h, and since this sequence is also a hypertree construction sequence for

h, we can apply the method of section 7 to it to compute A↓h.

Notice also that the message passed from one vertex to another, say from f to g, will

be the same no matter what marginal we are computing.  If β is the budding that we use

to compute A↓h, the marginal on h, and β' is the budding we use to compute A↓h', and if

β(f)=β'(f)=g, then the message Mf→β(f) that we send from f to g when computing A↓h is

the same as the message Mf→β'(f) that we send from f to g when computing A↓h'.  So we

may write Mf→g instead of Mf→β(f) when β(f)=g.

If we compute marginals for all the vertices, then we will eventually compute both

Mf→g and Mg→f for every edge {f,g}.

We can easily generalize the recursive definition of Mg→β(g) that we gave in section 7

to a recursive definition of Mg→h for all neighbors g and h.  To do so, we merely restate
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(7.1) in a way that replaces references to the budding β by references to neighbors and

the direction of the message.  We obtain

Mg→h = ( Ag Π{Mf→g | f∈(ng-{h})} )↓h, (8.1)

where ng is the set of all g's neighbors in (h,e).  If g is a leaf vertex, then (8.1) reduces to

Mg→h = Ag
↓h.

After we carry out the recursion to compute Mg→h for all pairs of neighbors g and h,

we can compute the marginal of A on each h by

A↓h = Ah Π{Mg→h | g∈nh}. (8.2)

There is exactly twice as much message passing in our scheme for simultaneous

computation as there was in our scheme for computing a single marginal.  Here every

pair of neighbors exchange messages; there only one message was sent between every

pair of neighbors.  Notice also that we can make the computation of any given marginal

the beginning of the simultaneous computation.  We can single out any hyperedge h

(even a leaf), and forbid it to send a message to any neighbor until it has received

messages from all its neighbors.  At that point, h can compute its marginal and can also

send messages to all its neighbors; the second half of the message passing then proceeds,

with messages moving back in the other direction.

The General Architecture.  To implement (8.1) and (8.2), we must imagine that our

processors have a way to store incoming messages. We simply have two storage registers

between every pair of neighbors g and h.  One register stores the message from g to h; the

other stores the message from h to g.

Figure 6 shows an architecture for the simultaneous computation.  In addition to the

storage registers that communicate between vertices, this figure shows registers where the

original arrays, the Ah, are put into the system and the marginals, the A↓h, are read out.
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Figure 6.  Several vertices, with storage registers for communication between
themselves and with the user.
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Flexibility of Control.  In the architecture of figure 6, computation is controlled by

the requirement that a vertex g must have messages in all its incoming registers except

the one from h before it can compute a message to send to h.

This basic requirement leaves room for a variety of control regimes.  Most of the

comments we made about the flexibility of control for the computation of the marginal

for a single vertex carry over to figure 6.

It may be enlightening to look at how the lock-step control we illustrated with figure

5 might generalize to simultaneous computation of the marginals for all vertices.  Con-

sider a lock-step regime where at each step, each vertex looks and sees what messages it

has the information to compute, computes these messages, and sends them.  After all the

vertices working are done, they look again, see what other messages they now have the

information to compute, compute these messages, and send them.  And so on.  Figure 7

gives an example.  At the first step, the only messages that can be computed are the mes-

sages from the leaves to their branches.  At the second step, the computation moves in-

ward.  Finally, at step 3, it reaches vertex 2, which then has the information needed to

compute its own marginal and messages for all its neighbors.  Then the messages move

back out towards the leaves, with each vertex along the way being able to compute its

own marginal and messages for all its other neighbors as soon as it receives the message

from its neighbor nearest vertex 2.
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Figure 7.  An example of the message-passing scheme for simultaneous
computation of all marginals.
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In the first phase, the inward phase, a vertex sends a message to only one of its

neighbors, the neighbor towards the center.  In the second phase, the outward phase, a

vertex sends k-1 messages, where k is the number of its neighbors.  Yet the number of

messages sent in the two phases is roughly the same, because the leaf vertices participate

in the first phase and not in the second.

There are seven vertices in the longest path in the tree of figure 7.  Whenever the

number of vertices in the longest path is odd, the lock-step control regime will result in

computation proceeding inwards to a central vertex and then proceeding back outwards to

the leaves.  Whenever this number is even, there will instead be two central vertices that

send each other messages simultaneously, after which they both send messages back out-

wards towards the leaves.

If we really do have independent processors for each vertex and we want to get the

job done as quickly as possible, we will demand that each processor go to work as

quickly as possible subject to this constraint.  But the job will get done eventually
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provided only that all the processors act eventually.  It will get done, for example, if each

processor checks on its inputs periodically or at random times and acts if it has those

inputs (Pearl [19]).

Updating Messages.  Suppose we have computed A↓h for each hyperedge h.  And

suppose we now find reason to change one or more of our inputs, the Ah.  If we have

implemented the architecture just described, with storage registers between each of the

vertices, then we may be able to update the marginals A↓h without discarding all the work

we have already done.

Unnecessary computation can be avoided without global control.  We simply need a

way of marking arrays, to indicate that they have received any needed updating.  Suppose

the processor at each vertex h can recognize the mark on any of its inputs (on Ah, our

direct input, or on any message Mg→h from a neighboring vertex g), and can write the

mark on its own output, the message Mh→g.  When we wish to update the computation of

A↓h, we put in the new values for those Ah we wish to change, and we mark all the Ah,

both the ones we have changed, and the others, which we do not want to change.  Then

we run the system as before, except that a processor, instead of waiting for its incoming

registers to be full before it acts, waits until all its inputs are marked.  The processor can

recognize when an input is marked without being changed, and in this case it simply

marks its output instead of recomputing it.

The idea of updating is important because of conditioning.  We often want to con-

dition a probability distribution on the observed values of one or more variables.  Condi-

tioning on a variable X can be achieved by multiplying a factorization of the probability

distribution by an indicator potential on X.  Since this new potential on X can be in-

corporated in the potential on any hyperedge containing X, conditioning on X can be

achieved by changing the input potential in just one of the hyperedges in the hypertree.

If we change just one of the inputs, then efficient updating will save about half the

work involved in simply reperforming the entire computation.  To see that this is so, con-

sider the effect of changing the input Ah in figure 6.  This will change the message Mg→f,

but not the message Mf→g.  The same will be true for every edge; one of the two

messages will have to be recomputed, but not the other.

The Corresponding Production System.  Implementing simultaneous computation

in a production system requires only slight changes in our two rules.  The following will

work:
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Rule 1':  If Ag is in working memory, h∈ng, and Mf→g is in working memory for

every f in ng-{h}, then use (8.1) to compute Mg→h, and place it in working

memory.

Rule 2':   If Ah is in working memory, and Mg→h is in working memory for every

g in nh, then use (8.2) to compute A↓h, and print the result.

Initially, there will be no Mf→g at all in working memory, so Rule 1' can fire only for

g and h such that ng-{h} is empty - i.e., only when g is a leaf and h is its bud.  But

eventually Rule 1' will fire in both directions for every edge {g,h}.  Once Rule 1' has

fired for all the neighbors g of h, in the direction of h, Rule 2' will fire for h.  Altogether,

there will be 3n-2 firings, two firings of Rule 1' for each of the n-1 edges, and one firing

of Rule 2' for each of the n vertices.

As the count of firings indicates, our scheme for simultaneous computation finds

marginals for all the vertices with roughly the same effort that would be required to find

marginals for three vertices if this were done by running the scheme of section 7 three

times.

Relation to Other Work.  As we mentioned in the introduction, the algorithm

described in this section can be related to the generalization of Bayes' theorem developed

by Kelly and Barclay [11] and Pearl [19] and to Lauritzen and Spiegelhalter's [14] algo-

rithm for marginalization of a factored distribution.  We will now sketch the relation.  For

a detailed account, see Shafer and Shenoy [24].

The simplest factored joint probability distributions arise when conditional

independence relations allow us to express the distribution as the product of the marginal

for one variable, the conditional for a second variable given the first, the conditional for

the third given just one of the first two, and so on.  In this case, only pairs of variables are

involved in the factorization, and they immediately form a hypertree.  The most

convenient Markov tree is one that includes vertices for both the pairs and the single

variables.  Begin with a vertex for the first variable alone, say {X0}, then for each

successive variable, say Xi, attach {Xi} to {Xi,Xj}, where Xj is the variable on which Xi

is conditioned, and attach {Xi,Xj} to {Xj}.  If we enter  the marginal  for  X0 on  {X0},

and the conditional for Xi given {Xj}. on {Xi,Xj}, and then propagate, then the

simultaneous propagation described in this section will really be propagation downward

from X0 ; the messages sent upwards will be vectors of ones and hence will have no

effect.  However, if we then enter vectors to indicate observations (for a variable that is

observed, we enter a vector that has a one for the observed value and a zero for other
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values), then the propagation both ways will be meaningful.  The messages sent upwards

will be likelihoods and the messages sent downwards will be probabilities, just as in

Pearl's description.

Lauritzen and Spiegelhalter's general scheme starts with a arbitrary factorization on a

hypertree, just as ours does.  The propagation is more controlled, however, and messages

sent are used immediately and not stored.  First we propagate inward to a particular

vertex; then we propagate outward from that vertex.  On the inward sweep, every

message sent is divided out of the array stored at the sender and multiplied into the array

stored at the recipient.  The division means that no harm will be done when the same

information is, in effect sent back (this solves the problem that our algorithm solves by

multiplying only messages from other neighbors when computing the message to send to

one neighbor).  It also has the effect of making the messages stored at the different nodes

conditional probabilities; the factorization has in effect been transformed into a

factorization into a marginal and conditionals, analogous to the factorization in Pearl's

simpler trees.  The outward sweep is then analogous to Pearl's downward propagation.

9.  An Example

We will now illustrate our propagation scheme using a simple example.  The example

is adapted from Shachter and Heckerman [23].  Consider three variables D, B and G

representing diabetes, blue toe and glucose in urine, respectively.  The frame for each

variable has two configurations.  D=d will represent the proposition diabetes is present

(in some patient) and D=~d will represent the proposition diabetes is not present.

Similarly for B and G.  Let P denote the joint probability distribution for {D, B, G}.  We

will assume that diabetes causes blue toe and glucose in urine implying that variables B

and G are conditionally independent (with respect to P) given D.  Thus we can factor P as

follows:

P = PD PB|D PG|D (9.1)

where PD is the potential on {D} representing the marginal of P for D, PB|D is the

potential for  {D,B} representing the conditional distribution of B given D, and PG|D is

the potential for {D,G} representing the conditional distribution of G given D.  For

example, PB|D(d,b) represents the conditional probability of the proposition B=b given

that D=d.  Thus P factors on the hypertree {{D}, {D,B}, {D,G}}.  Since we would like to

compute the marginals for B and G, we will enlarge the hypertree to include the

hyperedges {B} and {G}.  It is easy to easy to expand (9.1) so that we have a

factorization of P on the enlarged hypertree - the potentials on these additional
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hyperedges consist of all ones.  Suppose that the potentials PD, PB|D, and PG|D are as

shown in Table 1.

Table 1.  The potentials PD, PB|D, and PG|D.

     
  d   .1
~d   .9

P
D

  d,b     .014
  d,~b   .986
~d,b     .006
~d,~b   .994

P
B|D

  d,g     .9
  d,~g   .1
~d,g     .01
~d,~g   .99

P
G|D

The enlarged hypertree and a Markov tree representation are shown in figure 8.

Figure 8.  The hypertree and a Markov tree representation.
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Suppose we propagate the potentials using the scheme described in section 8.  The

results are as shown in figure 9.  For each vertex h, the input potentials are shown as Ih

and the output potentials are shown as Oh.  All the messages are also shown.  Note that

the output potentials have been normalized so that they represent marginal posterior

probabilities.
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Figure 9.  The initial propagation of potentials.
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  d   .1000
~d   .9000

  g   .0990
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  g   .0990
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Now suppose we observe that the patient has blue toe.  This is represented by the

indicator potential for B=b.  The other potentials are the same as before.  If we propagate

the potentials, the results are as shown in figure 10.

Figure 10.  The results of propagation after the presence of blue toe is observed.
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Note that the posterior probability of the presence of diabetes has increased (from .1

to .2059) and consequently the presence of glucose in urine has also increased (from

.0990 to .1932).  Now suppose that after the patient is tested for glucose in urine, the
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results indicate that there is an absence of glucose in urine.  This information is

represented by the indicator potential for G=~g.  The other potentials are as before.  If we

propagate the potentials, the results are as shown in figure 11.

Figure 11.  The results of propagation after the observation that patient does not
have glucose in urine.

{D,B} {D,G}

{G}{B}

{D}

M
{B}→{D,B}

M
{D}→{D,G}

M
{D,B}→{B}

M
{D,G}→{G}

M
{G}→{D,G}

I
{B,D}

 = P
B|D

  d,b     .0140
  d,~b   .9860
~d,b     .0060
~d,~b   .9940

  d,g     .9000
  d,~g   .1000
~d,g     .0100
~d,~g   .9900

I
{D,G}

 = P
G|D

  d   .1000
~d   .9000

I
{D}

 = P
D

O
{D}

I
{B}

O
{B}

I
{G}

O
{G}

  d   .0255
~d   .9745

M
{D,B}→{D}

  d   .0140
~d   .0060

M
{D,G}→{D}

  d   .1000
~d   .9900

M
{D}→{D,B}

  d   .0100
~d   .8910

  b   1.000
~b   0.000

  b   1.000
~b   0.000

  b   .0055
~b   .8955

  b    1.000
~b    0.000

  g   0.000
~g   1.000

  g   0.000
~g   1.000

  d   .0014
~d   .0054

  g   .0013
~g   .0055

  g   0.000
~g   1.000

Note that the posterior probability of the presence of diabetes has decreased (from

.2059 to .0255).  This concludes our example.
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