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Abstract: We consider the relation between 
knowledge and certainty, where a fact is known if it 
is true at all worlds an agent considers possible and 
is certain if it holds with probability 1. We iden­
tify certainty with probabilistic b elief. We show 
that if we assume one fixed probability assignment, 
then the logic KJH5, which has been identified as 
perhaps the most appropriate for belief, provides 

a complete axiomatization for reasoning about cer­
tainty. Just as an agent may b elieve a fact although 

IP i!l false, he may be certain that a fact tp is true al­
though IP is false. However, it is easy to see t.hat an 
agent can have such false (probabilistic) beliefs only 
at a set of worlds of probability 0. 1£ we restrict at­
tention to structures where all worlds have positive 

probability, then S5 provides a complete axiomati­
zation . If we consider a more general setting, where 
there might be a different probability assignment at 
each world, then by pl acing appropriate cond itions 
on the .mppnrt of the probability function (the set 

of worlds which have n on -zero probability) , we can 

capture man y otl1er wdl-known modal logics, such 
as T and S-1. Finally, we consid er which axioms 
characteri7.e structures satisfying llfi{{cr '·' principle. 

1 Introduction 

II. great d eal of interest has focussed recently on 
logics of knowledge and probability (sec , for exam­
ple, the volumes [llal86, Var88, KL86, KL87]). Re 
searchers have used the possible-world s  approach 
to give semantics to knowledge hy saying an agent 
f.now.� a fad <.p if tp is true at all the world s  the agent 

com1idcr!l possible. We can also give !lcmantics to 
formulas involving probability in a possible-worlds 

framework by saying tp hold!! with probability a if 
the set or worlds when� !p is true is a set of proba� 
bility Ci. 
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lt is wel l  known that we can capture d ifferent 
notions of knowledge by varying the conditions on 

the acceuibility relation which defines the set of 
worlds that an agent considers p oRsiblc (sec [HM85) 
for an overview). One particular set of require­
ments on the accessibility relation, namely tnat it 
be uri a/, Eudidr.an, and tran�itivc (we define these 
terms helow) resu lts in the logic K015 which has 

been considered the logic most appropriate for be­
lief [Lev81a, FH88a). 

We can also give a probabilistic interpretation to 
belief. The greater the probability of'{' (according 

to an agent's subjective probability function), the 

stronger an agent's belief is in IP· ln this pap er, we 

identify certainty - where an agent is said to be cer­
tain of tp if IP hold!! with probability 1 - with prob­
abilistic belief. We show that such an identification 
is well motivated: If we have one fixed probability 

assignment on the set of possible worlds, then cer­

tainty satisfieR precisely the axioms of KD1.5. Jn 

KIH5, an agent may hold false beliefs; i.e. , he may 
believe a fact IP that is fahe. Similarl y, an agent 

may be certain about a fact which is false. How­
ever, we show that an agent can have such false be­
liefs on l y  at worlds with probability 0; i.e. , almost 
surely, his (probabilistic) b el iefs arc correct. If we 

restrict attention to structures where all possibl e  
worlds have non-7.cro probability, then S5 gives a 
complete axiomati7-al.ion for certainty: an agent no 

longer can have false beliefs. 

We can extend these re�wlts by considering more 
general probability structures, where the agent may 
have a different probability function at each state 
of the world . .Just M d ifferent axioms for knowledge 
can be captured by placing appropriate conditions 
on the set of worlds an agent considers possible, so 
different axioms for certainty can he captured by 
placing appropriate conditions on the support of 
the probability f•1nction, that is, the set of worlds 
to which the probability function assigns non-7:cro 

measu re. Indeed, we show that many other wel1-



known modal logics, such as T, 04, and S4, corre­
spond in a natural way to conditions on the sup­
port. 

This is not the first paper to consider the rela­
tionship between knowledge, belief, and certainty; 
Gaifman [Gai86) and Frisch and Iladdawy [FH88c) 
also consider these issues. Both of these papers 
focu:; on structures that satisfy Miller'� principle 
[Mil66 , Sky80b] (this principle is discussed in detail 
later). Gaifman [Gai86] shows that the valid formu­
las of S5 are precisely those which hold with prob­
ability 1 in his logic (when restricted to structures 
sat isfying MiUer 's principle), while Frisch and Had­
da.wy IFH8!k} argue that tl1e valid formulas of the 
modal logic 04 are precisely those that hold with 
probability 1 in their logic (which is also intended 
to capture Miller 's principle). We show that in our 
framework, there is a precise sense in which KD45 
characterizes certainty in those structures satisfy­
ing Miller's principle. We remark that Morgan has 
also considered the relationship between axioms for 
probability and axioms for more standard modal 
logics [Mor82a, Mor82b] , but his focus is on con­
ditional probabilities and the resulls have a much 
different flavor from ours. 

The rest of this paper is organized as follows. In 
the next section, we present the formal model for 
reasoning about probability (which is a slight vari­
ant of the model discussed in [FilM88, FH88bJ). In 
Section 3 we review tl1e formal semantics for rea­
soning about knowledge, stating a number of re­
sults that are needed in the sequel. In Section 4 we 
show that KD45, the logic of belief, is a complete 
axiomatization for reasoning about certainty (with 
respect to the probability structmes introd uced in 
Section 2), and that if we restrict attention to struc­
tures where all world s have non-zero probability, 
tlwn S5 is a r.omplete axiomatization. In Section 5 
we consider generalized probability structures, ami 
�how how dilferenl conditions on u.e support of the 
probabil i ty measure correspond to dilferent axiom­
atizations. In particular, we show that many of the 
classical modal logics can be captured by placing 
t�e appropriate conditions on the probability struc­
tures. While these rcsu Its are all quite straightfor­
ward, they do sl1ow an interesting and not alto­
gether obvious connedion between certainty and 
knowledge. In Section 6 we briefly discuss some 
extensions to our results. J n Section 7, we con­
sider structures satisfy ing Miller's principle andre­
late our results to those of [Gai86) and [FH88c]. We 
conclude in Section 8 with some further discm;sion. 
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2 Reasoning about probability 

We are interested in making statements about cer­
tainty; that is we would like a logic that allows 
formulas of the form "The probability of cp is 1." 
In order to accommodate such statements we start 
with a more general logic, essentially th�t consid­
ered in [FHM88, FH88b]. In this logic, statements 
of the form w(�p) � 1/2 and w(cp) < 2w(7Jr) are al­
lowed, which can be interpreted as "the probability 
of cp is greater than or equal to 1/2" and "the prob­
ability of cp is less than twice the probability of ·'· 

. I 
'�-'• 

respective y. More generally, linear combinations of 
expressions involving probability are allowed. 

The formal syntax of the logic is quite straight­
forward. Well-formed formulas are formed by 
starti!lg with primitive propositions, and closing 
off under Boolean connectives (conjunction and 
negation ) , as well as allowing weir�ht formulas of 
the form a1w(<p!) + ... + a.�:w(cpt) 2: b, where 
a,!, ... , a_�:, b are arbitrary integers and 'I'll· . •  , cpk 
are arbitrary formulas. We call the resulting lan­
gu�ge [/'. A formula �uch as w(cp) 2: 1/2 is, 
stnctly speaking, a.n abbreviation of the t:.P for­
mula 2w(cp);::: 1, while w(cp) < 2w(.P) is an abbre­
viation for •( w( !p) 2: 2w( 1/J) ) . We also use a num­
ber of other obvious abbreviations without further 
comment, such as w(cp) ::=; b for -w(cp) > -band 
w(fP) = b Cor (w(cp) 2: b) 1\ (w(cp) :$b). 

-

Just as in [F1188b], we allow arbitrary nesting of 
probability formulas, so that w(w('P) 2: I/2) < 1/3 
is a legal formula of t:. P .1 Such higher-order prob­
ability statements will be one of our main interests 
here. They are not as unmotivated as they might 
first appear. Suppose we take cp to be the statement 
"it will rain tomorrow," and we have just heard the 
weatherman say that it is likely to rain tomorrow. 
Thus, according to the weatherman, w(cp) � 1/2 
holds. However, suppose we have found this weath­
erman to be quite unreliable in the past, so Lhat 
his predictions turn out to be wrong far more often 
than they are right. Thus, we might place proba­
bility less than 1/3 on his statement, which leads us 
exa�tly to the formula w(w(<p) 2: l/2) < 1/3. (See 
[Ga186, Sky80b] for further discussion of higher­
order probabil ities.) 

We usc a possible-worlds approach to give se­

mantics to the formulas in t:.P. (This is essen­
tially the same approach as that taken by Nilsson 
(Nil86].) We take a proha.hility !!ructure N to be 
a tuple ( S, 1r, pr ) , where S is a finite or countably 

l N�oting wao not conoidered in (FHM88) to simplify the 
presento.tion, 11Hhough there is no technic11.l difficulty in­
volv�d in ll,dding it there ��-• wd!. 



infinite set of state., or po.ui6le worlds, ?r associates 
with every state ·' E S a truth assignment 1r{ s) 
on the primitive propositions (so that ?r(s)(p) is ei­
ther true or false for every primitive proposition 
p and state ·' E S), and pr is a. discrete probability 
function on S (so that pr( .'!) � 0 for each s E S 
and L •ES pr( ·') = l ). We can tl1 ink of pr as being 
the agent's subjective probability assignment to the 
worlds in S. As usual, for every subset A � S, we 
define pr(A):::: LreA pr(.•). We have restricted S 
l1ere to he cmmt.able and pr to be a discrete proba­
bility function for case of exposition. We discuss in 
Section 6 how our results can be extended to more 
general setting�. 

We can now define the satisfaction relation 1=, 
where (N, .<r) I= rp is read "rp is true (or satis­
fied), in st.a.l.e ,, of the probability structure N", 
by induction on the structure of cp. The definitions 
for the propositional conner:tives arc the standard 
ortes. Jntuitively, we would like a formula such a.� 
11!( cp) � l/2 to he true if the probability of the 
set of states where cp is true is at least 1/2. To 
make this precise, given a formula '¢, suppose we 
IHwe defined (N, .�)I= 'if! for all states s E S. Let 
S.p :::: {.! E S : (N,.�) I= '¢}. Then we define 
(N, ;'!) I= w(cp) � 1/2 if pr(S'I') � 1/2. The com­
plete formal definition of F= i!l given below: 

(N, s) I= p (for a primitive proposition p) ilf 
11"(-�)(p):::: true 

(N, ;'!)I= cp 1'1 '¢iff (N,.�) I= cp and (N, .,) I=!/; 

(N, s) I= •v; iff (N, ") � rp 
(N, s) I= a1w(v;I) + . .  · + a.k11!('Pk) � b iff 

a.1pr(S'I'1) + · · · + akpr(S'I'1) �b. 
As usual, we say a formula v; is valid with reaped 

to prohability 5tructure N :::: (S, ?r, pr ), written N I= 
cp, if (N, ,,) I= cp for all.! E S. A formula is valid 
with re.,pcct to a clru.! .N of prohahility ltrur.l!Lrc.,, 
writ.ten .N F v;, if N I= cp for all N E N. Similarly, 
we say v; is ,,ati.!fiable with re.,pect to N if ( N, s) I= v; 
for somes E S, and satisfiable with respect to N if 
rp is satisfiable wit.l1 respect to N for some N E N. 

Tn [FTIM88}, a complete axiomatization is pro­
vided [or the sublangua.ge of .CP that allows only 
Roolean combinations of weight formulas with 
propositional arguments (i.e., if v; occurs in the 
context w(v;), then cp is a propositional formula), 
while in [Fll88b], techniques are sketched for ex­
tending this axiomatization to the full logic (in­
deed, in [FH88b], a complete axiomatization is pro­
vided for a richer language witl1 modal operators 
for knowledge). Here, our interest is in a differ­
ent suhlanguage of .cP, where the only probability 
statements are those that involve certainty, that is, 
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those of the form w( r.p) = 1 (with nesting allowed); 
we abbreviate such a formula as Cetl(rp). We caU 
this sublanguage .cc. Thus, a typical formula of 
.cc is --.q A Cert(·C�rt(p) A Cert(q)). 

3 Reasoning about knowledge 

The possible-worlds model can also be used to cap­
ture reasonitJg about kllowledge. We brieHy review 
the necessary ideas here; the interested reader is 
referred to [HM85) for more details . 

The intuitive idea is that an agent knows tp if r.p is 
true in all the worlds the agent considers possible. 
For now, we restrict our discussion to a situation in­
volving only one agent; in Section 6 we discuss how 
our results can he extended to a situation involving 
many agents. 

In order to reason about knowledge, we use a 
modal logic with a modal operator K, where f( r.p 
is read "the agent knows cp." The wdl-forrncd for­
mulas arc formed by starting with primitive propo­
sitions, and closing off under Boolean connectives 
and applications of K. Thus, if rp and !/; are formu­
las, then so are •!p, 1.p 1'1 !/;, and J( cp. We call this 
language cl<. 

In order to gh·e semantic� to such formulas, wr 
use A: no wled,qe ,,lr!Lc!!Lre!? A knowledge Rtructurc 
!&( is a tuple (S, �. K), where S is a set of states (not 
necessarily countable), .,.. associates a truth assign­
ment with every state in S, just as in the case of 
probability structures, and K. is a binary relation 
on S. Jntuitivdy, ( .�, t) E K. if, in state ,,, the agent 
considers l possible. For future reference, we define 
K.(s) = {t : (., , t) E ,q; thus, JC(s) is the set. of 
states the agent considers possible in state .<r. 

Again, we define truth for formulas in cK hy 
induction on structure. The only clause that dilfcrs 
from that for .cc is that for formulas of the form 

1( cp: 
(M, .,) I= T<cp iff (M, 1) I= rp for all I such that 

(s, t ) E X.�. 

This captures the intuition that the agent knows 
r.p in state ,, if cp is true at all t.he worlds that the 
agent considers possihle in state s. 

We define validity and satisfiability with respect 
to a knowledge structure and a class or knowledge 
struct urcs just as in the case or probability struc­
tures. 

We arc often interested in classes of know ledge 
structures where certain restrictions are placed on 

2 Our m�ge of the term know lodge structure here differs 
from tha.t of [FJIV81]. We us" it here in contmst to probn.­
bility �trudure�. 



the binary relation K, since by restricting A.: we 
can capture a number of interesting properties of 
knowledge. Recall that a binary relation K on S 
is refle:xivr. if (.•, -') E K for all ·' E S, lra.ruitive if 
(s, t) E K and (t, u) E K implies (s, v.) E K, .•ym­
mclric if ( .•, I) E K implies ( t, s) E K, Euclidean if 
(.,,t) E K and (s,u) E /C: implies (t,u) E K, and 
urial if for all s E S, there is sorrte t such that 
( s, t) E K. Let M be the class of all knowledge 
structures. \11/e restrict M by using superscripts r, 
.,, l, e, and l to denote reHcx:ive, symmetric, transi­
tive, Euclidean, and serial structures, respectively. 
Thus, M'1 denotes the cla."s of all reflexive and 
transitive knowledge structures, Mel! denotes the 
class of Euclidean, serial, and transitive structures, 
and so on. 

Consider the following collection of axioms: 

P All instances of axioms of proposlllonallogic 

K (/(cpA K(cp :::> 1/;)) =>[('if; 

T K 'P :::> 'P 
4 Kcp :::> KKcp 
5 -.Kcp:::} 1(---,J(cp 

D --.Kfa.lu 

and rules of inference: 

Rl From cp and cp :::} 1/; infer 1/; 
R.2 From <p infer /( cp3 

We get various systems by combining some sub­
set of K, T, 4, 5, and D with P, Rl, and R2. 
Thus, we get the logic K by combining K with P, 
Rl, and R2, KT by combining K andT with P, 
Rl, and R2, and so on. Traditionally, KT4 has 
been called S4, and KT15 has been called S5; KD45 
is sometimes called weak S5 [FII88a]. As well, the 
K is often omitted, so that KT becomes T, KD 
becomes D, and so on. We try to use the most 
common notation throughout this paper, and hope 
the reader will bear with us. 

Different authors have argued for the appropri­
ateness of different logics to capture knowledge. 
For example, S5 has been used to capture a notion 
of knowledge appropriate for analyzing distributed 
systems [IIM84, Hal87] and synchronous digital 
machines [RK86]. Moore used 54 in [Moo85]. On 
the other hand, since the knowledge represented in 
a knowledge base is typically not required to be 

3The names K, T, 4, 5, �.nd D are fn.irly stand,.rd, and 
�re to.ken from [Che80J. The •.xiorn D given in [Che80] is 
dif!"erent from that given here, although the two veroions e.re 
equivalent in the presence of P, K, Rl, •nd R2. 

145 

true, T hM been thought to be inappropriate for 
these applications; thus, KD45 is considered, for 
example, in [Lev81aJ. KD15 is also considered to 
be an appropriate logic for ch.araderi7.ing the be­
liefs of an agent who might believe things that in 
fact turn out to be false [FH88a, Lev84h]. 

We say that an axiom system A is Jound with re­
spect to a class of (knowledge or probability) struc­
tures Q if all the axioms in A are valid with respect 
to Q and the rules of inference preserve validity; A 
is complete wi th respect to a class Q if all the valid 
formulas in Q are provable using the axioms and 
rules of inference of A. 

It turns out that there is a close connection be­
tween condition!! placed on K and the axiom�. In 
particular, T corresponds to K being reflexive, 4 to 

K being transitive, 5 to /C being Euclidean, and D 
to K being serial. To make this precise, we define 
an axiom system A to be normal if it consists of 
the axioms P, K, rules of inference R.l, R2, and 
some subset (possibly empty) of the axioms T, 4, 
5, and D. The class of structures corre.!ponding to 
A is that class that results by restricting to the 
relations corresponding to the axioms as discussed 
above. For example, M..tr is the class correspond­
ing to KD45 and M' is the class corresponding to 
T. 'We usc M A to denote the class of structures cor­
responding to the normal axiom system A. We then 
get the following well-known result (whose proof 
can be found in (Che80, HM85J): 

Theorf!m 3.1 :  If A is a. normal axiom system, 
tken A i� �ound and complet£ with re�pect to MA 
(for the language If). 

/\s a consequence of Theorem 3.1, we get, for 
example, that KD45 is a sound and complete ax­
iomati:�:ation witl1 respect to Mdl and tl1at T is a 
sound ami complete axiomati:�:ation with respect to 
M'. Since a binary relation is reflexive, symmet­
ric, transitive (i.e., an equivalence relation) iff and 
only if it is reflexive, Euclidean, and transitive, we 
get that S5 is a sound and complete axiomatization 
with respect to M .. 1• 

We need two more re!lults from modal logic. The 
proof of tl1c first can be found in [Che80, II M85] . 
It says that although we have aJiowed the set of 
states in a knowledge 11tructure to be infinite and 
even uncountable, we can without loss of generality 
(at least aR far as satisfiability and validity arc con­
cerned) restrict at. tention to finite knowledge struc­
ture�, i.e., t}wse where the set of states is finite. We 
say a formula cp is con.!i.,tr.nt with an axiom system 
A if ..,'P cannot be proved from A. 



Theorem 3.2: TJ A i� a normal axiom �1J6tem and 
cp i8 con.•i,tr:nt with A, ·then cp i.J ,,ati.Jfiahle in a 
finite l:nowled,qe htructure in M A. 

The second result relates S5 provability to KD45 
provability. The re1mlt is undoubtedly known to 
experts, although a proof does not seem to appear 
in the literature. 

Theornm 3.3: The formula cp i.• S5 provable iff 
f( cp i8 KD-/,5 provable. 

4 Relating certainty and knowledge 

We first show that if we consider /v0, the class of all 
probability structures a.� defined in Section 2, then 
certainty is characterized by the axioms of KD15. 
We first define some notation: if cp is a formula in 
Lc, let cpl<.' be the formula in _cK that re�mlts by 
replacing all occurrences of Cert by K. Similarly, 
if cp is a formula in _cK, let cpc be the formula in 
.cc that results by replacing aiJ occurrences of [( 
by Cert. For each axiom system A discussed in 
Section 3, let Ac be the result of replacing all oc­
c11rrences of/( in the axioms and in ference ruleR of 
A by Cert. 

Theorem 4.1: KD4,Sl i! a 1ound and complete 
axiomatization for the language .cc with re.Jpr:ct to 
No. 

Corollary 4.2: If cp i1 a formula in r,K, then cp i.• 
S!i provahfr. iff .No I= Cert(cpc). 

Corollary 4.2 is closely related to Theorem 5 of 
[Gai86] ; we discuss the precise relationship in Sec­
tion 7. 

Note that KD15 allows the agent to have false 
beliefs; -.cp /1. K cp is consistent with KD15. By in­
terpreting l( as certainty (by translating a formula 
cp to cpc), we get some added insight into the prob­
ability of having false beliefs. Given a probabiHty 
structure N = (S,w,pr), let FB consist of those 
states .v E S where the agent has some false belief� , 
i.e., those states ,, where for some formula cp we 
have ( N, ·•) I= -.cp 1\ Cert( cp ). Then it is easy to sec 
that FB is a set of measure 0. 

Proposition 4.3: pr(FB) = 0. 

Proposition 4.3 shows that if there arc no states 
of measure 0, then the agent will not have false 

beliefs. This suggests that S5 will form a com­
plete axiomatization in this case. To make this 
precise, let N1 consist of those probability struc­
tures where all s tates have positive measure (thus 
N = (S, 1r, pr) E N1 iff pr(s) > 0 for all .9 E S). 
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Theorem 4.4: sse j$ a 4ound and Ct)mplete ax­
iomatization with re.•ped to N1• 

It is well-known that using the axioms of KD45, 
we can prove that any formula in _cK is equivalent 
to a formula with no nesting of /Cs. {This is proved 
by using the equivalences K(cp /1. '!/!):: (Kcp /1. T<'!/1), 
Kl<tp:: T<cp, I<--.Krp =: Kcp, K(cp v /('1/J) =: (/(cp v 
K'!/1), and K(cpV -.K '!/!):: (Kcp V -.1( '1/1), all of which 
arc ea."lily seen to be valid with respect to M"1t; we 
omit details here.) Using Theorem 4.1, it follows 
that 

Corollary 4.5: For every formula cp in .cc, there 
i! a formula cp' which ha' no ne�ting of Cer t 'uch 
that cp i$ equivalent to cp1 in all pro6ability .•true­
lure.,; i.e., .N f= cp := tp1• 

A fortiori, the result also holds for N1• This says 
that we do not gain any expressive power by allow­
ing nesting of the Cert modality. Note that we do 
gain expressive power if we can make statements 
that involve probabilities other than l; the formula 
111( w(p) � 1/2) < 1/3 is not equivalent to any [or­
mula without nested probability statements. 

5 Generalized probability structures 

There are situations for which the probability struc­
tures discussed in Section 2 may not be general 
enough to capture what is going on. In particular, 
since there is only one probability function in the 
picture, we cannot capture situations where there 
is some uncertainty about the probability function . 

For example, consider an agent tossing a coin, 
which he k nows to be either a fair coin (so that 
the probability of both heads and tails is l/2) or 
a biMecl coin (s0 that the probability of heads is, 
say, 1/3, while the probability of tails is 2/J). This 
suggests that we allow one possible world where the 
probability function assigns probability l/2 to the 
event heads ( i.e., to the set of possible worlds where 
the coin lands heads) and another possible world 
where the probability function assigns probability 
l/3 to the event heads. We might even consider a 
situation where the agent does not know his own 
probability function (this is analogous to situations 
regarding the modelling of knowledge , where we 

want to allow an agent who does not know what he 
know�), and thus considers a number of worlds pos­
sible where he has different probability functions. 

These scenarios lead us to a more general ap­
proach: associating a (posRibly different) probabil­
ity function with each posRible world. We capture 
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this i n t u i t ion by means of generalized pro 6a6 iliiy 
�tructure.,. A generali1:ed probab il ity structure N 
is a tuple ( 8, 11", PH), where 8 is a finite or count­
ahly in fi n ite set of state�, 1r ( ·') is a truth assignment 
to the pri m it i ve propositions for each state 3 E 8, 
and P R( ., ) is a probability [unction on S for each 
state 3 E S. General ized probabili ty structures can 
he viewed as a generalization of knowledge struc­
tures. Tnstead of just having a set of states that 
an agen t considers possible from each state ,, , each 
world that tl1e agent r:onsidcrs possi ble is assigned a 
probahil i ty ( w h ere the worlds that the agent docs 
not consider possible arc assigned probability 0). 
We remark that t h e  Kripl:e Jtruclure! for knowl­
edge and p ro b a b ility of [FII88b] are in fact a gcn­
erali�>:ation of generalized probability struc:tures ( in  
that they allow many agents anrl include modal  op­
erators for know ledge) . 

We give semantics to probabili ty formu las just as 

bdorc, except that when eval uat i ng the trnth of a 
weight formula i n  t he state s, we use the probability 
fu nct ion PR(., ) .  Thus, we get 

(N, s) F a , w ( t,e t )  + . . . at 111('fk) � b ( l ) 
iff a t PR( .•)( S'�' 1 ) + - . .  a.�: l' R( � )( S�", ) � b_ (2) 

Note that  the prohability struct ures of Section 2 
can be viewed as a special case of generalized pro b. 
ability structures, where PR(., )  = pr for all states 

s E S. 
When rea.'loning about certainty, i t  is clear t hat, 

in some sense, all that is relevan t arc the stales 
with non-zero measure. G iven a generalized prob­
ability structu re N = (8, 11', PR) , let the .!uppo rt 

relation SuppN on S he defined by: {s,  t) E SuppN 
if P R( s)( t)  > 0; i .e. ,  ( s , t) E .'iuppN if the probabil­
ity funct ion in state s assigns positive probabil i ty 
to state t. Tt is easy to r:heck from the defin itions 
t h at (N, .! ) I= Cer l(t,e) iff ( N, t)  f= <p for all I such 
that (s ,  t) E 811.PPN · This suggests that the SuppN 
relat ion plays the same role in generalized proba­
bility structures as the x: relation does in k nowl­
edge slrud ures. To make this precise, given a gen­
eralized probabil ity structure N = ( 8, 1r ,  I'll), let 
JI'(N = (S, 1r, X:) be t h e  knowledge struct ure where 
X..� = S 1Lpp N .  Then we have 

Theorem 5 . 1 : /f rp E cc , then (N, ,) F= <p iff 

(MN ,  ·' )  F <p K . 

For reason ing about  knowledge, we obtain d i ffer­
ent axioms by varying the cond i tions on the relation 
X..: .  We can obtain analogous axioms for reasoning 
about  certai nty by vary ing the condit ions on the 

support relation. Note th at the support relat ion 
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is always serial: there must be at least one state t 
such that P R( s )(t)  > 0, since if we sum P R( .• )(I) 
over all states t we get l .  We can impose ot her 
restrictions on the support relation, just as we did 
for the accessibility relat ion X..::; we then get anal­
ogous classes of generali1:ed probability structures 
N• , N�11 , and i'!O on. Just at'! in the r:ase of knowl­
edge, gi ven a normal axiom system A ,  we can talk 
about the class of generalized probabili ty structures 
N11 correspond ing to A .  

Theon!m 5 . 2 :  If A i� a n ormal axiom �y.•t em th a t  
inc lu de� T o r  D ,  then A c  i!! ,,ound a n d  comp lete  
with re,pect to NA (for the lan,quage cc ).  

This  result shows that  most  of the standard log­
ics of knowledge can be interpreted as logics of cer­

tainty. 

6 Extensions 

As we ment ioned above, we can easily ex tend our 
stru ct u res to allow for many agents . Suppose we 
have many agents, each with h is own subjective 

probability function. In the case of probabili ty 
structnres, t his would arnonn t to considering struc­
tures of the form (S, 1r , pr" . . . , pr,. ), where pr; is 
agent i's probability function , while in the case of 
general ized probability structures, we would have 
structures of the form ( S, 1r, P R1 , • • •  , P R,. ), where 
PR; (.•) is agent i's probability function in stale ·'· 
We wou ld then ex tend the language to allow for­
rnulaR of the form Cer (j (r.p): agent i is certain that 
<p holds. The analogous changes can he made in  
the case of know ledge structures too, and the ax­

iom systems can he extended in tl1e obvious way to 

allow reason ing about many agents (d. [1 JM85])_ 
A I I  our results then go tlJ Tough with essent ially no 
change. 

Gaifman's H O Ps (h igher-
order probability stmctn res) arc equ ivalent to gen­

eralized probability structu rci'l with two agents, one 
of whir:h is taken to be the agent doing the rea� . .  n­
ing , and the other wh ich is taken to be the expert . 
The agent's probabil i ty function is takm• to be in­
dependent of the state (and so is like the probabi l­
ity fu nction in our probabil ity structures in Section 
2), wh ile the ex pert may have a d ilfcrent proba­
bili ty fu n ct ion at each :.tate_ It is not qu i te clear 
why the expert ha.:. dilfercnt probabil i ty fu nct ion:. 
in each state w h i le the agent docs not, but in any 
case Gaifman's model can be easily ex tended to al­
low the agent to have rl i lfercnt probability funct ions 
at each state. Gaifman goes on to consider ,q r.n eral 



llOP.t, in which the expert's probability function 
can be time-dependent. We can easily deal w ith 
this in our framework by adding temporal opera­
tors, and a temporal accessibility relation. 

Frisch and Haddawy [FH88c] present a structure 
along the same lines as those of Gaifman, except 
that they actually allow the agent to have different  
probability functions at each state. However [Had], 
they view their structure as only appropriate for 
giving semantics to formulas with depth of nesting 
at most two (and thus inappropriate for a formula 
of the form Cert(Cer t(Certp))} .  In order to deal 
with deeper nesting, they require a whole sequence 
of probability functions. This makes their approach 
for nested formulas quite different from ours and 
that of Gaifman. 

Another way we can extend our structures is by 

dropping the assumptions that the set of possible 
worlds is countable and that the probability func· 
tion is discrete. We briefly discuss how to do so 
here. 

Ir we drop the assumption that the probabil­
ity function is discrete, we have to explicitly de­
scribe with each probability function i ts domain,  
the set of sets to which the function assigns a prob­
ability. These sets are called the m �a.,ura b le .t el ,,, 
We then have to slightly redefine the semantics of 
Cert( cp) to take into account the possibility that 
the set S"' might not be measurable. If N is  a 
probability structure, we define (N, .'!) p Cert(cp) 
if  there is some measurable �et A such that A � 
S"' and 11(A) = 1. This essentially amounts to 
considering the inner m ea8ure induced by 11. (see 
[FHM88, FH88b] for more details). It is easy to 
check that this definition agrees with our old defi­
nition if S"' is  measurable. We make similar modi­
fications if  N is a generalized probability structure. 
In this case, we also redefine the support relation 
so that ( ... , t) E SuppN iff t E n{A :PR(s)(A)=l} A. 
Again, this definition agrees with our old definition 
of support if all sets are measurable. We leave it to 
the reader to check that, with these modifications, 
all our proofs go through with essentially no change. 
These modifications also enable us to deal with the 
case that the set of possible worlds is uncountable. 
We leave details to the reader. 

7 Miller's principle 

Gaifman [Gai86] and Frisch and Iladdawy [FH88c] 
are mainly interested in structures that embody 
Miller's principle [Mil66, Sky80a, Sky80b]. In 
[Sky80a, Sky80b] , a number of variants of Miller's 
principle are presented. The one of most interest 
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to us here can b e  expressed 

where w 1  and w2 can be viewed as the probability 
functions of two agent� (we present possible inter­
pretations for these agents below) and I is an in­
terval, which for the purposes of this discussion we 
can take to be a dosed interval [a, b) where a and 
b arc rational endpoints with 0 � a � b � 1 .  Intu­
i tively this says that the conditional probability of 
cp with respect to W t , given that the probability of 
If! w ith respect to w2 is a , is a. 

There arc a number of possible interpretations 
of w 1  and w2• One is to view w 1  as referring to 
rational degree.• of beliP-j of an agent and w2 to 
refer to propen1itie8 or objective probab ililie1 (see 
[Sky80a, Sky80b, Hal89] for further discussion of 
these issues) .  Another viewpoint is taken by G aif­
man [G ai86] , where as we mentioned in the previous 
section, w1 is  taken to represent the expert and 'U.I2 
the agent about whom we are reasoning. A third 
possibility men tioned by Skyrms [Sky80aJ is that 
we can identify �v 1 and w2 as degrees of belief of an 
agent who docs not necessarily know his own mind.  
This last interpretation is  easily captured within a 
generalized probability structure. We focus on that 
interpretation for now, and then relate our resu lts 
to those of Gaifman and Frisch and I laddawy. 

Since we assume that w1 and w2 in Miller's 
principle now represent the same probability func­
tion, we replace both by w. This still does not 
does not correspond to a formula in  t:P, since We 
do not allow conditional probabilities. But since 
w( cplt/1) = w( cp 1\ 1/1 )/ w( 1/J ) , Miller's principle can be 
rewritten as 

aw(w(cp) E I ) �  w(cpl\(w(cp) E I)) � bw(w(cp) E J ) , (*) 

where we take I to be the interval [a, b] and w( cp) E 
I to be an abbreviation of a � w( cp) � b. This is 
(an abbreviation of) a formula in £P .4 

Miller's principle (the axiom ( *)} for the full Ian· 
guage £P is not sound with respect to any of the 
classes of structures we have considered so far.  This 
is perhaps not surprising, since information about 
support is not sufficient to capture an axiom that 
talks about arbitrary probabilities, rather than jttst 
certainty. In [FH88b], probability structures satis­
fying a condition called uniformity are considered; 

� Note that our requirement that I be an interval with 
rational endpoints is necessary in order to m.-.ke this " for­
mul" in c;P.  We also remark t h 11 t  r"ther than expressing the 
conditional probability "" one term divided by another, we 
h�.ve cle�tted the denomin e.tor to avoid having to deol wi t h  
the problems th a t  a.rise when the denomi n11 lor is  0.  



these arise naturally in distributed systems appli­
cations. In the notation of this paper, a general­
ized probability structure N = (S, 1r, P R) is uni­
form if for all s, t E S, if ( .• ,  t )  E SuppN, then 
PR(s) = PR( t).  As we now show, uniform struc­
tures do capt ure Miller's principle. 

To make this precise, define a prohabilit71 frame 
to b e  a pair F = (S, PR), where S is a set of states 
and P R( s) is a discrete probability funct ion on S 
for each � E S. Thus, a frame is a ( generalized) 
probability structure without the truth assignment 
11. A probability structure (S1, 1f1, PR') is baud on 
frame (S, PR) if S = S' and PR = PR'. Unifor­
mity and all the conditions on support that we have 
considered can be viewed as conditions on frames, 
rather than conditions on struct ures, since they do 
not depend on the truth assignment at all. Thus, 
for example, we can define a frame { S, P R) to be 
uniform if  for all s, t E S, if ( .1, t) E SuppF, then 
p R( II) = r R( t). No te a frame F ill uniform iff some 
probability structu re based on F is uniform iff ev­
ery probability structure based on F is uniform. 
We say a formula 'f! is valid in frame F, written 
F I= '{!, if N I= 'f! for every probability structure 
N based on F. The following theorem shows that 
Miller's principle characterizes uniform frames. 

Theorem 7 . 1 : Th e follo wing two con dition/! are 
equivalent: 

1. F ill a uniform frame. 
£. Every inlltance of Miller '_, p rinciple (i. e . ,  th e 

axiom (*)) ill valid in F.5 

5 We rem3.rk that usi �g fro.rnes t o  characterize axioms i s  
a well-known tech niqu e i n  modal logic [Gol87, H C 8 4 ] .  Con­
oid er, for example, the axtom T for knowledge. Although we 
have noted t hat it i• •ou n d  for reflexive k n owledge struct u res 
( i . e . ,  k nowledge struct ures where t h e  1C rdo.tion i s ren�xive) 
8.n d ,  together with P, K, R l ,  and R2 provides !l co m p l e t e  
axiornalizo.tion for s u c h  structures, i t  is  not h ard to construct 
a.  non-reflexive st ructu re where every i n stance o f T is va,lid 
(see [HM8.1] ). On the other hB.n d ,  T dMs charoderi7.e reflex. 
i ve knotl>ledge fmme.• ( where a k n owledge frame i s  j ust 11 p n i r  
( 8, K ) ,  a n d  It reflexive k n owlerlge frB me io a knowledge frame 
where t h e  relation /( is reflexive), i n  t h a t  every i n stn.nce o f  
T i s  val id i n  11 k nowledge frame F "  i ff  F io reflexive . Simi­
lar rem• rks hold for nil  t h e  other axioms we con sid ered for 
knowledge. However, al though :Mi ller's principle does cha.r­
acterize uniform frames, it i s nnt the case that Miller'• prin­
ciple together with I he other a><ioms of probability disc:us•ed 
in [FHM88, FH811bJ provides a complete ax iomati zat ion for 
the langu a.ge cP w i th respect to u n i form frames. For ex­
smple, the formula (w(p) > a) ::} w(w(p) > a ) ;: L, w h ich 
is valid in uniform frames, can be shown not to be prov­
able from Miller'• principle and the other axioms. (Roughly 
spe�tking, this is  becau se • model where probabili ties get 
va.l ues in •· non-otandard field can be fo u n d  where all of the 
a.xioms of probabi l i t y  and Miller's p ri nci ple hold, and this  
formula is not satisfied.) 
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We now want to show that when w e  restrict to 
reasoning about certainty, KD45 provides a com­
plete axiomatization for uniform structures. Let 
.N ..... if be the class of uniform structures. 

Theorem 7 . 2 : If <p i� a formula in £C , th en 
,N•II F <p iff ,Nuif F cp .  

Corollary 7 . 3 : KD.{ � i� a ! o t m d  a n d  comp lete 
with re.•peci to .Nnif for the language £C . 

Thus KD45c is a sound and complete axiom­
atization for the class of structures characterized 
by Miller's principle, given our interpretation of 
Miller's principle with w 1  and w2 identified. Com­
bining Corollary 7.3 with Theorem 3.3, we get 

Corollary 7.4: If 'f! i11 a form ula in £K , then 'f! i! 
pro vable in S5 iff .N ... i/ f: Cert('f!c) .  

A s  w e  mentioned above, G aifman does n o t  iden­
t ify w1 and w2 ; rather, he associates Wt with the 
expert '::� probabilities and w2 with the agent's prob­
abili ties. In addition, Gaifman actually considers a 
stronger form of Miller's principle, namely 

where t/1 is a conju nction of formulas of the form 
w2 ( 'l/;1 E 1') .6 Ile shows that structures satisfying 
this stronger principle can be characterized in a way 
rather similar to Theorr.m 7. l. We provide a few 
of the dr.tails here. Su ppose we are given a gener­
a\izr.d probability structme N = (S, 1r, PR1 , PR2) 
for two agents. Recall that G aifman assumes that 
the agent's probability assignment PR2 is i nde­
pendent of the state, thus t here is a fixed proba­
bility fun d  ion pr such that I' R2( ·') = pr for all 
states � E 8. G i ven a slate ·' E 8, let  C( .• )  
be the e q u i ,,aJr.nce cla�s o f  states in 5 consist­
ing of all states ·' ' such that /'R 1 ( .•')  = I'Rl ( -•) .  
Thus,  C( ·• ) is t h e  sr:t  of states w here th e expert 

has the  same probability fu nct ion t hat he dor:s i n  

s.  N o w  consider the set of s t ates Sgood where the 
expert believes that w ith pmhability I ,  his prob­
abil ity d istribu tion is the right o n e ,  i .e. ,  Sgood = 
{ .• : f'R t ( -• ) (G(s))  = 1 } .  G ai fman shows that the 
strongr.r form of Miller's principle is equivalent to 
the condition pr( 8good) = 1, which Frisch and I lad­
dawy call the cqu ivalencF. cla.u con.,traint. Namely, 
Gaifman shows tltat the stronger form of Miller's 
principle is sound in  all 11tructures satisfying the 

6It is  n<>i hud to �xtend our proof thai Miller's pri nciple 
i s  sound i n  u ni form structures' to show t hRI i f we iden t i fy 
WJ 1tnd 1112 , then this  s \ rong<>r princi ple is sou nd i n  uni forrn 
struc t u res M well. 



equivalence class constraint, and that the equiva­
lence class constraint holds in all frames where the 
stronger form of M iller's prin ciple i11 valid.  More­
over, Gaifrnan Rl10ws that if cp is provable in S5,  
tl1cn cp hold!! with probability 1 (with rcRpcc: t to 
pr ) in all !ltructures !latisfying the equivalence class 
constraint . Note that by Corollary 7.4, the analo­
gous re!!ult holds for u n iform structures. 

A!! mentioned in the prev ious section, in [FII88c], 
where they only discus!! ptobabi1ity formulas of 
depth 2 ,  Frisch and I l addawy do not assume that 
1' n2 is t.he same for all agents. Since t hey ai!!O 
want to consider structu res where Miller's princi­
ple holds ( th ey do not consider the stronger ver­
sion of Miller's principle) , they assume that the 
equivalence class constraint holds for every prob­
ability function rn2(., ) ,  i .e. ,  they assume that 
l' R2(·1 )(89,.,,1) :::: 1 for all 10tates s .  However, in  
order to deal with more deeply nested formulas, 
Frisch and l larldawy plan to have a sequence of 
probabi lity fu nctions. Thus, in their structure!! 
they will ha1•e fu nction11 P R 1 , I' R2 , P R.3 , . . . , when� 
l' R; (s) gives a probability function at each state 
. �. They do not provide interpretations for these 
probabili t)' fu nctions, but they want to con sider 
structures where Miller's principle holds between 
all consecu t i ve pairs o[ probahility functions given 
by l' R; and J '  R;+1 • Thus, they plan to assume 
that the equi valence class constraint holds between 
consecu t ive pairs of probability functions. Miller's 
principle is easily seen to be sound in structure!! 
satisfying this constraint. Rather than having a 
d ifferent m odal operator for each of t hese p robabil­
ity assignmen ts , they only hM·e one modal operator 

C cr t .  They usc I. he r Il; 's to give semantics to more 
deeply ne!il.ed occurrences of Cer t. More formally 
(us ing ou r notation) , in order to in terpret an oc­
cu rrence of the m odal operator C r.r t appearing at 
depth i at state ., , t hey use the probability fu nction 
/ 'rob;( .,), where l'rob 1 ( .,) = /' HJ ( ., )  and for i >  1, 
we define !'rob; ( ·') as the mean value of I' R; ( ·' ' )  
over  all stales ·'' ,  where the wt�ighting is done wilh 
resped to l'rob; _ 1 • Thus, if S' i!! a subset of 8, tl1cn 
/ 'rob; ( .� ) (8')  is L•'ES l'U; ( .,)( ., ') · l'rob; - 1 ( ·� ' ) (5") 
I l iad ] .  They show that  under th is interpretation 
for Gcrl, the axioms of K JHC are sound , but not 
necessarily com plcte. 

8 Conclusions 

We have exam i11cd tl1c relationsh ip between know l­
edge, belief, and probability. We showed that, just  
a� we can capt ure di fferent properties of knowledge 
by placing appropriate cond it ions on the acccssibil-
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ity relationship, w e  can capture properties of cer­
tainty by placin g conditions on the support. In 
particular, if we aasum e one fi xed prohability fu nc­
tion, we !lhowed that KD45 provides a complete 
axiomatization. Moreover , the set of worlds where 
an agent has false beliefs has probability 0. Inter­

estingly, KD45 also prov ides a complete axiomali­
zation with respect to st ructures sati!!fying Miller's 

principle. 

Many researchers have rejected S5 as an appro­

priate axiomatization for an agent's beliefs since 
they want to allow an agent to have false beliefs. 

Instead , they consider K TH 5 ,  which allow!! false be­
liefll. Our results suggest that there is a reason­
able interpretation for belief that is charac::terized 
by the K D 4 5  ax ioms, but still make!! rather strong 
assum ptions about the corredne!ls of an agent's be­
liefs. 

These resu l ts show how the tools of modal logic 
can he brought to bear on reason ing about prob­
ability. We bel ie ve that further work along these 
]jncs should yield fu rther insights into probabil i t.y, 
b elief, and knowledge . 
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