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Abstract: We consider the relation between
knowledge and certainty, where a fact is known il it
is true at all worlds an agent considers possible and
is certain il it holds with probability 1. We iden-
tily certainty with probabilistic beliel. We show
that il we assume one fixed probability assignment,
then the logic KID45, which has been identified as
perhaps the most appropriate for beliel, provides
a complete axiomatization for reasoning about cer-
tainty. Just as an agent may believe a fact although
 is lalse, hc may be certain that a lact o is true al-
though ¢ is false. However, it is easy to see that an
agent can have such false (probabilistic) beliefs only
at a sct of worlds of probability 0. T we restrict at-
tention to structures where all worlds have positive
probability, then S5 provides a complete axiomati-
zation. If we consider a more general setting, where
there might be a diflerent probability assignment at
each world, then by placing appropriate conditions
on the support of the probability function {the set
of worlds which have non-zero probability), we can
capture many other well-known modal logics, such
as T and S4. Finally, we consider which axioms
characterize structures satislying Miller’s principle.

1 Introduction

A grcat deal of intcrest has focusscd recently on
logics of knowledge and probability (see, for exam-
ple, the volumes [I1al86, Var88, K186, K1.87]}. Re-
scarchers have used the possible-worlds approach
to give semantics Lo knowledge by saying an agent
knows afact @il pis true at all the worlds the agent
considers possible. We can also give semantics to
formulas involving probability in a possible-worlds
framework by saying ¢ holds with probability « if
the sct of worlds where ¢ is true is a set of proba-
bility «.
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It is well known that we can capture diffcrent
notions of knowledge by varying the conditions on
the accessibility relation which defines the set of
worlds that an agent considers possible (see [HM85]
for an ovcrview). One particular set of require-
ments on the accessibility rclation, namely that it
be serial, Euclidean, and iransitive {we define these
terms below) results in the logic KN45 which has
been considered the logic most appropriate for be-
lief [[.ev84a, F1188a4).

We can also give a probabilistic interpretation to
belief. The grcater the probability of ¢ (according
to an agent’s subjective prebability function), the
stronger an agent’s beliel is in . In this paper, we
identily certainty — where an agent is said to be cer-
tain of ¢ il ¢ holds with prebability 1 — with prob-
abilistic belicf. We show that such an identification
is well motivated: Il we have one fixed probability
assignment on the set of possible worlds, then cer-
tainty satisfies precisely the axioms of KD45. In
KD45, an agent may hold false beliels; i.e., he may
believe a fact ¢ that is false. Similarly, an agent
may be certain about a fact which is false. How-
ever, we show that an agent can have such false be-
licfs only at worlds with probability 0; i.e., almost
surcly, his {probabilistic) beliels are correct. If we
restrict attention to structures where all possible
worlds have non-zero probability, then S5 gives a
complete axiomatization for certainty: an agent no
jonger can have false beliels.

We can cxtend these results by considering more
general probability structures, where the agent may
have a different probability function at each state
of the world. Just as different axioms for knowledge
can be captured by placing appropriate conditions
on the set of worlds an agent considers possible, so
different axioms for certainly can be captured by
placing appropriaie conditions on the support of
the probability function, that is, the set of worlds
to which the probability function assigns non-zcro
measure. Indeed, we show that many other well-




known modal logics, such as T, D4, and 54, corre-
spond in a natural way to conditions on the sup-
port.

This is not the first paper to consider the rela-
tionship between knowledge, belief, and certainty;
Gaifman [Gai86] and Frisch and Haddawy [FH88c|
also consider these issues. Both of these papers
focus on structures that satisly Miller’s principle
[Mil66, Sky80b] (this principle is discussed in detail
later). Gaifman [Gai86] shows that the valid formu-
las of S5 are precisely those which hold with prob-
ability 1 jn his logic (when restricted to structures
satislying Miller’s principle), while Frisch and Had-
dawy [F1188c} argue that the valid formulas of the
modal logic D4 are precisely those that hold with
probability 1 in their logic (which is also intended
to capture Miller's principle). We show that in our
framework, there is a precise sense in which KD45
characterizes certainty in those structures satisfy-
ing Miller’s principle. We remark that Morgan has
also considered the relationship between axioms for
probability and axioms for more standard modal
logics [Mor82a, Mor82b], but his focus is on con-
ditional probabilities and the results have a much
different flavor from ours.

The rest of this paper is organized as follows. In
the next section, we present the formal model for
reasoning about probabijlity (which is a slight vari-
ant of the model discussed in (FIIM88, FI{88b]). In
Section 3 we review the formal semantics for rea-
soning about knowledge, stating a number of re-
sults that are needed in the sequel. In Section 4 we
show that KD45, the logic of belief, is a complete
axiomatization for reasoning about certainty (with
respect to the probability structures introduced in
Section 2), and that if we restrict attention to struc-
tures where all worlds have non-zero probability,
then S5 is a complete axiomatization. In Scction 5
we consider generalized probability structures, and
show how different conditions on the support of the
probability mcasure correspond to different axiom-
atizations. In particular, we show that many of the
classical modal logics can be captured by placing
the appropriate conditions on the probability struc-
tures. While these results are all quite straightfor-
ward, they do show an interesting and not alto-
gether obvious connection between certainty and
knowledge. In Section 6 we briefly discuss some
extensions to our results. In Section 7, we con-
sider structurcs satisfying Miller’s principle and re-
late our results to those of [Gai86] and [F1188c]. We
conclude in Section 8 with some further discussion.
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2 Reasoning about probability

We are interested in making statements about cer-
tainty; that is we would like a logic that allows
formulas of the form “The probability of ¢ is 1.”
In order to accommodate such statements, we start
with a more general logic, essentially that consid-
ered in [FHMB88, FH88b]. In this logic, statements
of the form w{p) > 1/2 and w(p) < 2w(P) are al-
lowed, which can be interpreted as “the probability
of ¢ is greater than or equal to 1/2" and “the prob-
ability of ¢ is less than twice the probability of ,
respectively. More generally, linear combinations of
expressions involving probability are allowed.

The formal syntax of the logic is quite straight-
forward. Well-formed formulas are formed by
starting with primitive propositions, and closing
off under Boolean connectives (conjunction and
negation), as well as allowing weight formulas of
the form ayw(e1) + ... + arw(pr) > b, where
ay,...,ax,b are arbitrary integers and @1,--+, ¥k
are arbitrary formulas. We call the resulting lan-
guage L7, A formula such as w(yp) > 1/2 is,
strictly speaking, an abbreviation of the £ for-
mula 2w(y) > 1, while w(y) < 2w(¥) is an abbre-
viation for =(w(y) > 2w(¥)). We also use a num-
ber of other obvious abbreviations without further
comment, such as w(y) < b for —w(p) > —b and
w(s) = b Tor (w(p) > b) A (w(p) < b).

Just as in [F1188b), we allow arbitrary nesting of
probability formulas, so that w(w(¢) > 1/2) < 1/3
is a legal formula of £L”.! Such higher-order prob-
ability statements will be one of our main interests
here. They are not as unmotivated as they might
first appear. Suppose we take ¢ to be the statement
“it will rain tomorrow,” and we have just heard the
weatherman say that it is likely to rain tomorrow.
Thus, according to the weatherman, w(p) > 1/2
holds. However, suppose we have found this weath-
erman Lo be quite unreliable in the past, so that
his predictions turn out to be wrong far more often
than they arc right. Thus, we might place proba-
bility less than 1/3 on his statement, which leads us
exactly to the formula w(w(e) > 1/2) < 1/3. (See
[Gai86, Sky80b] for further discussion of higher-
order probabilities.)

We usc a possible-worlds approach to give sc-
mantics to the formulas in £”. (This is essen-
tially the same approach as that taken by Nilsson
[Nil86].) We take a probability structure N to be
a tuple (S, 7, pr), where S is a finite or countably

'Nesting was not considered in [FHMA88] to simplify the
presentation, although there is no technical difficulty in-
volved in adding it there as well.




infinite set of states or possible worlds, * associates
with every state s € S a lruth assignment #(s)
on the primitive propositions (so that 7(s)(p) is ei-
ther true or false for every primitive proposition
» and state s € §), and pr is a discrete probability
function on § (so that pr(s) > 0 for each 5 € S
and 3~ .5 pr(s) = 1). We can think of pr as being
the agent’s subjective probability assignment to the
worlds in S. As usunal, for every subset A C S, we
define pr(A) = 37, 4 Pr(s).- We have restricted S
here to be countable and pr to be a discrete proba-
bility function for case of exposition. We discuss in
Section 6 how our results can be extended to more
general settlings.

We can now define the satisfaction relation |,
where (N,3) = o is read “p is true (or satis-
fied), in stale s of the probability structure N7,
by induction on the structure of ¢. The definitions
for the propositional connectives are the standard
ones. Intuitively, we would like a formula such as
w(p) > 1/2 to be true il the probability of the
set of states where ¢ is true is at least 1/2. To
make this precise, given a formula i, suppose we
have defined (N, s) | 9 for all states s € S. Let
Sy ={s €8 :(N,s)E ¢}. Then we deline
(N,s) E w(y) > 1/2if pr(S,) > 1/2. The com-
plete formal definition of = is given below:

(N,s) = p (for a primitive proposition p) iff
7(s)(p) = true

(N,s)E @Ay il (N,s)EEpand (N,s)E ¥

(Nys) b=~ i (N, ) I

(N,s) E ayw(er) + - + arw(er) > b ilf
a1r(Sp,) -+ + axpr(Spy) 2 b

As usual, we say a formula ¢ is valid with respect
to probability structure N = (S, x, pr), written N |=
@, il (N,s) = pforall s €S. A formula is valid
with respect to a class N of probability structures,
written A = ¢, it N | ¢ forall N € N. Similarly,
wesay y is satisfiable with respect to N if (N, s) E ¢
for some s € S, and satisfiable with respect to A if
@ is satisfiable with respect to N for some N € V.

In [FIIM88], a complete axiomatization is pro-
vided for the sublanguage of £ that allows only
Boolean combinations of weight formuias with
propositional arguments (i.e., il ¢ occurs in the
context w(y), then ¢ is a propositional formula},
while in [IF1188b], techniques are sketched for ex-
tending this axiomatization to the full Jogic (in-
deed, in [F1188b], a complete axiomatization is pro-
vided for a richer language with modal operators
for knowledge). Here, our intercst is in a differ-
ent sublanguage of L”, where the only probability
statements are those that involve certaiuty, that is,
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those of the form w(g) = 1 (with nesting allowed);
we abbreviate such a formula as Ceri(p). We call
this sublanguage £¢. Thus, a typical formula of
LE is =g A Cert(~Ceri(p) A Ceri(q)).

3 Reasoning about knowledge

The possible-worlds model can also be used to cap-
ture reasoning about knowledge. We briefly review
the necessary ideas here; the interested reader is
referred to [HMB85] for more details.

The intuitive idca is that an agent knows g if ¢ is
true in all the worlds the agent considers possible.
For now, we restrict onr discussion to a situation in-
volving only one agent; in Section 6 we discuss how
our results can be extended to a situation involving
many agents.

In order to reason about knowledge, we use a
modal logic with a modal operator K, where K¢
is read “the agent knows ¢.” The well-lormed for-
mulas are formed by starting with primitive propo-
sitions, and closing off under Boolean connectives
and applications of K. Thus, il v and ¥ are formu-
las, then so are —w, ¢ A Y, and ICp. We call this
language LK.

In order to give semantics to such formulas, we
use knowledge struclures.? A knowledge structure
M is a tuple (S, 7, X), where S is a set of states (not
necessarily countable), x associales a truth assign-
ment with every state in S, just as in the case of
probability structures, and X is a binary relation
on S. Intuitively, (s,t) € K if, in state s, the agent
considers ¢ possible. For [uture reference, we define
K(s) = {t: (s,t) € K}; thus, K(s) is the set of
stales the agent considers possible in state s.

Again, we definc truth for formulas in £¥ by
induction on structure. The only clause that differs
from that for £© is that for formulas of the forin
I p:

(M,3) E Ko it (M,t) | ¢ for all ¢ such that
(s, 1) € K.

This captures the intuition that the agent knows
¢ in state 3 il ¢ is true at all the worlds that the
agent considers possible in state s.

We deline validity and satisfiability with respect
to a knowledge structure and a class of knowledge
structures just as in the case of probability struc-
tures.

We are often intercsted in classes of knowledge
structures where certain restrictions are placed on

20Qur usage of the tern knowledge siructure here differs
from that of [F1IV84]. We use it here in contrast to proba-
bility structures,




the binary relation K, since by restricting K. we
can capture a number of interesting properties of
knowledge. Recall that a binary relation K on §
is reflexive if (3,3) € K for all s € S, transitive if
(s,t) € K and (i,z) € K implies (s,2) € K, sym-
melric if (s,1) € K implies ({,3) € K, Fuclidean if
(syt) € X and (s,z) € K implies {f,1) € X, and
serial if for all s € S, there is some ¢ such that
(s,1) € K. Let M be the class of all knowledge
structures. We restrict M by using superscripts 7,
s, 1, ¢, and ! to denote reflcxive, symmetric, transi-
tive, Kuclidean, and serial structures, respectively.
Thus, M™ denotes the class of all reflexive and
transitive knowledge structures, M®!* denotes the
class of Fuclidean, serial, and transitive structures,
and so on.

Consider the following collection of axioms:

All instances of axioms of propositional logic
(Ko AK(p = $)) = K¢

Ko =

Ky => KKy

-Kg = K-Kyp

-~ K false

P
K
T
4
5

D

and rules of inference:

R1 From ¢ and ¢ = ¥ infer ¢
R2 From ¢ infer K3

We get various systeins by combining some sub-
set, of K, T, 4, 5, and D with P, R1, and R2.
Thus, we get the logic K by combining K with P,
R1, and R2, KT by combining K and T with P,
1, and R2, and so on. Traditionally, KT4 has
been called S4, and KT 45 has been called S5; KD45
is sometimes called weak S5 [['1188a). As well, the
K is often omitted, so that KT becomes T, KD
becomes D, and so on. We try to use the most
comrmon notation throughout this paper, and hope
the reader will bear with us.

Diflcrent authors have argued for the appropri-
ateness of different logics to capture knowledge.
For example, S5 has becn used to capture a notion
of knowledge appropriate for analyzing distributed
systems [[IM84, 11al87] and synchronous digital
machines [RK86]. Moore used 54 in [Moo85]. On
the other hand, since the knowledge represented in
a knowledge base is typically not required to be

3The names K, T, 4, 5, and D are fairly standard, and
are teken from [Che80]. The axiom D given in [Che80] is
different from that given here, although the two versions are
equivalent in the presence of P, K, R1, and R2.
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truc, T has been thought to be inappropriate for
these applications; thus, KD45 is considered, for
example, in [l.ev84al. KDA45 is also considered to
be an appropriate logic for characterizing the be-
liefs of an agent who might believe things that in
fact turn out Lo be false [F1188a, l.ev84b).

We say that an axiom systemn A is sound with re-
spect to a class of (knowledge or probability) struc-
tures @ if all the axiomsin A are valid with respect
to Q and the rules of inference preserve validity; A
is complete with respect to aclass @ if all the valid
formulas in @ are provable using the axioms and
rules of inference of A.

It turns out that therc is a close connection be-
tween conditions placed on K and the axioms. In
particular, T corresponds to K being reflexive, 4 Lo
K being transitive, 5 to X. being Fuclidean, and D
to K being serial. To make this precise, we define
an axiom systern A to be normal if it consists of
the axioms P, K, rules of inference R1, R2, and
some subset (possibly empty) of the axioms T, 4,
5, and D. The class of structures corresponding lo
A is that class that results by restricting to the
relations corresponding to the axioms as discussed
above. I'or example, M is the class correspond-
ing to KI)45 and M" is the class corresponding to
T. We use M4 to denote the class of structures cor-
responding to the normal axiom system A. We then
get the following well-known result (whose proof
can be found in [Che80, 11IM85]):

Theorem 3.1: If A 1s a normal aziom sysiem,
then A is sound and complele with respect to M
(for the language CX ).

As a consequence of Theorem 3.1, we get, for
example, that K145 is a sound and complete ax-
iomatization with respect to M®* and that 1'is a
sound and compiete axiomatization with respect to
M?T". Since a binary relation is reflexive, symmet-
ric, transitive (i.c., an equivalence relfation) iff and
only if it is reflexive, ISuclidean, and transitive, we
get that S5 is a sound and complete axiomatization
with respect to M™*¢,

We need two more results from modal logic. The
proof of the first can be found in [Che80, [1M85].
It says that although we have allowed the sct of
states in a knowledge structurc to be infinite and
even uncountable, we can without loss of generality
(at least as far as satisfiability and validity are con-
cerned) restrict attention to finite knowledge struc-
tures, i.e., those where the sct of states is finite. We
say aformula g is conststent with an axiom system
A il = cannot be proved from A.




Theorem 3.2: If A 15 a normal aztom system and
@ ts consisient with A, then @ 1s salisfiable in a
finite knowledge structure in M4,

‘The second result relates S5 provability to KD45
provability. The result is vndoubtedly known to
experts, although a proof does not seem to appear
in the literature.

Theorem 3.3: The Jormula ¢ 19 S5 provable 1ff
ICp 1s KDAS provable.

4 Relating certainty and knowledge

We first show that if we consider A, the class of all
probability structures as defined in Section 2, then
certainty is characterized by the axioms of KD45.
We first define some notation: if ¢ is a formula in
L%, let ¥ be the formula in £X that results by
replacing all occurrences of Cert by K. Similarly,
il  is a formula in £¥, let ©© be the formula in
LC that results by replacing all occurrences of K
by Cert. For each axiom system A discussed in
Section 3, let A€ be the result of replacing all oc-
currences of J( in the axioms and inference rules of

A by Cerl.

Theorem 4.1: KD45° i3 a sound and complete
aziomatization for the language £LC with respect to

M.

Corollary 4.2: If ¢ i3 a formula in L% then ¢ is
S5 provable if My |= Cert(p”).

Corollary 4.2 is closely related to Theorem 5 of
[Gai86]; we discuss the precise relationship in Sec-
tion 7.

Note that KD45 allows the agent to have [alse
beliefs; @ A K¢ is consistent with KD15. By in-
terpreting # as certainty (by translating a formula
¢ to ¢©), we get some added insight into the prob-
ability of having false beliefs. Given a probability
structure N = (S, #,pr), let I'B consist of those
states s € S where the agent has some false beliels,
i.e., those states s where for some formula ¢ we
have (N, s) = —~¢ A Cert(p). Then it is easy to sec
that £ B is a set of measure 0.

Proposition 4.3: pr(FB) = 0.

Proposition 4.3 shows that il there are no states
of measure 0, then the agenl will not have false
beliefs. This suggests that S5 will form a com-
plete axiomatization in this case. To make this
precise, let A} consist of those probability struc-
tures where all states have positive measure (thus

N = (S,7,pr) € M iff pr(s) > 0 for all 3 € S).
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Theorem 4.4: S5€ is a sound and complele az-
fomatizalion with respect to V.

It is well-known that using the axioms of KD45,
we can prove that any formula in £X is equivalent
to a formula with no nesting of J('s. (This is proved
by using the equivalences K{p A %) = (K¢ A K4),
KKp =Ko, K-Ko =Ko, K(p v K¢) = (K Vv
K+), and K(pV-Kvy) = (Ko V-K3), all of which
arc casily seen to be valid with respect to M®; we
omit details here.) Using Theorem 4.1, it follows
that

Corollary 4.5: For every formula ¢ in L€, there
is a fJormula ¢’ which has no nesting of Cert such
that v is equivalent to ¢' in ail prodability struc-
tures; e, N E o =o'

A fortiort, the result also holds for ;. This says
that we do not gain any expressive power by allow-
ing nesting of the Cert modality. Note that we do
gain expressive power if we can make statements
that involve probabilities other than 1; the formula
w(w{p) > 1/2) < 1/3 is not equivalent to any lor-
mula without nested probability statements.

5 Generalized probability structures

There are situations for which the probability struc-
tures discussed in Section 2 may not be general
enough to capture what is going on. In particular,
since there is only one probability function in the
picture, we cannot capture situations where there
is some uncertainty about the probability function.

For example, consider an agent tossing a coin,
which he knows Lo be either a fair coin (so that
the probability of both heads and tails is 1/2) or
a biascd coin (so that the probability of heads is,
say, 1/3, whilc the probability of tails is 2/3). This
suggests that we allow one possible world where the
probability function assigns probability 1/2 to the
event heads (i.e., to the sct of possible worlds where
the coin lands heads) and another possible world
where the probability function assigns probability
1/3 to the event heads. We might even censider a
situation where the agent does not know his own
probability function (this is analogous to situations
regarding the modelling of knowledge, where we
want to allow an agent who does not know what he
knows}, and thus considers a number of worlds pos-
sible where he has different probability functions.

These scenarios lead us to a more general ap-
proach: associating a (possibly different) probabil-
ity function with each possible world. We capture




this intuition by mecans of generafized probadility
structures. A generalized probability structure N
is a tuple (S, x, 'R}, where S is a finite or count-
ably infinitc set of states, 7(s) is a truth assignment
to the primitive propositions for each state s € §,
and P’(s) is a probability {unction on S for each
state s € S. Genceralized probability structures can
be viewed as a generalization of knowledge struc-
tures. Tnstead of just having a set of states that
an agent considers possible from each state 3, each
world that the agent considers possible is assigned a
probability (where the worlds that the agent does
not consider possible are assigned probability 0).
We remark that the Kripke structures for knowl-
edge and probability of [F1I88b] are in fact a gen-
eralization of gencralized probability structures (in
that they allow many agents and include modal op-
erators for knowledge).

We give semantics to probabilily formulas just as
before, except that when evaluating the truth of a
weight formula in the state s, we use the probability
function PR(s). Thus, we get

(Mys)E ayw(e) + - arw(ee) 26 (1)
Wl @y PR(3)(Sp, )+ - ax PR(3)(Sps) 2 b (2)

Note that the probability structures of Section 2
can be viewed as a special case of generalized prob-
ability structures, where PI}(s) = pr for all states
s€S.

When rcasoning about certaiuty, it is clear that,
in some sense, all that is relevani are the stales
with non-zero measure. Given a gencralized prob-
ability structure N = (S, ~, I’R), let the support
relation Suppy on S be delined by: (s, ¢t) € Suppn
il PR(3)(t) > 0; i.e., (s,t) € Suppy if the probabil-
ity function in stale s assigns positive probability
to state L. It is easy to check from the definitions
that (N, s) = Cert(y) iff (N,t) E ¢ for all t such
that (s, t) € Suppy. This suggests that the Suppny
relation plays the same role in generalized proba-
bility structures as the X. relation does in knowl-
edge structures. To make this precise, given a gen-
eralized probability structure N = (S, ~, ’R?), let
My = (S, 7, K)) be the knowledge structure where
K. = Suppn. Then we have

Theorem 5.1: If ¢ € L, then (N,s) | ¢ iff
(Mle] E e’

IFor reasoning about knowledge, we obtain difler-
ent axioms by varying the conditions or the relation
K. We can obtain analogous axioms [or reasoning
about certainty by varying the conditions on the
support refation. Note that the support relation

147

is always serial: there must be at least one state {
such that PR(s)(t) > 0, since if we sum P’ R(.s)(1)
over all states { we get 1. We can impose other
restrictions on the support relation, just as we did
for the accessibility relation K; we then get anal-
ogous classes ol generalized probability structures
N7, N°" and s0 on. Just as in the case of knowl-
edge, given a normal axiom system A, we can talk
about the class of generalized probability structures
N4 corresponding to A.

Theorem 5.2; Jf A s a normal aziom system thal
includes T or D, then A is sound and complete
with reapect to N A (for the language Lfc).

T his result shows that most of the standard log-
ics of knowledge can be interpreted as logics of cer-
tainty.

6 Extensions

As we meationed above, we can easily extend our
structurcs to allow for many agents. Suppose we
have many agents, each with his own subjective
probability function. In the case of probability
structures, this would amount to considering strnc-
tures of the form (S, pry,...,pr,), where pr; is
agent t's probability function, while in the case of
generalized probability structures, we would have
structures of the form (S, =, PR;,..., PR,), where
PR;(s) is agent i’s probability function in stale s.
We would then extend the language to allow for-
rnulas of the form Cer(;(y): agent ¢ is certain that
@ holds. The analogous changes can be made in
the case of knowlcdge structures too, and the ax-
jom systems can be extended in the obvious way to
allow reasoning about many agents (cf. [1TM85]).
A1l our results then go throngh with essentially no
change.

HOPs (higher-
order probability stractures) are equivalent to gen-
cralized probability structures with two agents, one
of which is taken to be the agent doing the reas n
ing, and the other which is taken to be the expert.
The agent’s probability lunction is taken to be in-
depcndent af the state (and so is like the probabil-
ity function in our probability structures in Scction
2), while the expert may have a diflcrent proba-
bility function at each state. It is nol quite clear
why the expert has diffcrent probability functions
in cach state while the agent docs not, but in any
case Gaifman’s modecl can be casily extended to al-
low the agent to have dilferent probability [unctions
at cach state. Gaifman gocs on to consider general

jaifman’s



HHOPs, in which the expert’s probability function
can be time-dependent. We can easily deal with
this in our framework by adding temporal opera-
tors, and a temporal accessibility relation.

Frisch and Haddawy [F1188¢] present a structure
along the same lines as those of Gaifman, except
that they actually allow the agent to have different
probability functions at each state. However [I1ad],
they view their structure as only appropriate for
giving semantics to formulas with depth of nesting
at most two (and thus inappropriate for a formula
of the form Cert(Cert(Cerip))). In order to deal
with deeper nesting, they require a whole sequence
of probability functions. This makes their approach
for nested formulas quite different from ours and
that of Gaifman.

Another way we can extend our structures is by
dropping the assumptions that the set of possible
worlds is countable and that the probability func-
tion is discrete. We briefly discuss how to do so
here.

If we drop the assumption that the probabil-
ity function is discrete, we have to explicitly de-
scribe with each probability function its domain,
the set of sets to which the function assigns a prob-
ability. These sets are called the measureble seis.
We then have to slightly redefine the semantics of
Cert(y) to take into account the possibility that
the set S, might not be measurable. If & is a
probability structure, we define (N, s) | Cert(v)
if there is some measurable set A such that A C
S, and p(A) = 1 This essentially amounts to
considering the tnner measure induced by p (see
[FHM88, FH88b] for more details). It is casy to
check that this definition agrees with our old defi-
nition if S, is measurable. We make similar modi-
fications if NV is a generalized probability structure.
In this case, we also redefine the support relation
so that (.s, t) € Suppy T t € N{A:PR(s)(A)=1) A.
Again, this definition agrees with our old definition
of support if all sets are measurable. We leave it to
the reader to check that, with these modifications,
all our proofs go through with essentially no change.
These modifications alse enable us to deal with the
case that the set of possible worlds is uncountable.
We leave details to the reader.

7 Miller’s principle

Gaifman [Gai86] and Frisch and [Taddawy [FH88c]
are mainly interested in structures that embody
Miller’s principle [Mil66, Sky80a, Sky80b]. In
[Sky80a, Sky80b], a number of variants of Miller’s
principle are presented. The one of most interest
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to us here can be expresscd

wi(el(wa{v) € I)) € 1,

where w; and wy can be viewed as the probability
functions of two agents (we presert possible inter-
pretations for these agents below) and f is an in-
terval, which for the purposes of this discussion we
can take to be a closed interval [a, b] where a and
b are rational endpoints with 0 < a < b < 1. Tntu-
itively this says that the conditional probability of
¢ with respect to w;, given that the probability of
@ with respect to wq is a, is a.

There are a number of possible interpretations
of w; and w;. One is to view w, as referring to
rational degrees of belief of an agent and w; to
refer to propensities or objective probabililies (sce
[Sky80a, Sky80b, [Ial89] for further discussion of
these issues). Another viewpoint is taken by Gail-
man [Gai86], where as we mentioned in the previous
scction, w, is taken to represent the expert and w,
the agent about whom we are reasoning. A third
possibility mentioned by Skyrms [Sky80a| is that
we can identify w; and w, as degrees of belief of an
agent who does not necessarily know his own mind.
This last interpretation is easily captured within a
generalized probability structure. We focus on that
interpretation for now, and then relate our results
to those of Gaifman and Frisch and Iladdawy.

Since we assume that w, and wy in Miller'’s
principle now represent the same probability func-
tion, we replace both by w. This still does not
does not correspond to a formula in £, since we
do not allow conditional probabilities. But since
w(p|y) = w(p A¥) /w(¥), Miller’s principle can be
rewritten as

au(u(e) € 1) < wlen(e(e) € 1)) < bu(uw(p) € 1), (+)

where we take 7 to be the interval [a, b] and w(yp) €
I to be an abbreviation of ¢ < w(p) < b. This is
(an abbreviation of) a formula in £F.*

Miller’s principle (the axiem (%)) for the full lan-
guage L7 is not sound with respect to any of the
classes of structurcs we have considered so far. This
is perhaps not surprising, since information about
support is not sufficient to capture an axiom that
talks about arbitrary probabilities, rather than just
certainty. In [FH88b], probability structures satis-
fying a condition called uniformity are considered;

{Note that our requirement that I be an interval with
rafional endpoints is necessary in order to make this a for-
mula in £P. We also remark that rather than expressing the
conditional probability as one term divided by another, we
have cleared the denominator to avoid having to desl] with
the probtems that arise when the denominatoris 0.




these arise naturally in distributed systems appli-
cations. In the notation of this paper, a general-
ized probability structure N = (S, =, PR) is uni-
Jorm if for all s,t € S, if (s,t) € Suppn, then
PR(s) = PR(t). As we now show, uniform struc-
tures do capture Miller's principle.

To make this precise, define a probability freme
to be a pair F = (S, PR), where S is a set of states
and I’R(s) is a discrete probability function on S
for each s € S. Thus, a frame is a (generalized)
probability structure without the truth assignment
7. A probability structure (S’, 7', PR') is based on
frame (S,PR)if § = §' and PR = PR'. Unifor-
mity and all the conditions on support that we have
considered can be viewed as conditions on frames,
rather than conditions on structures, since they do
not depend on the truth assignment at all. Thus,
for example, we can define a frame (S, PR) to be
uniform if for all s,¢ € S, if (s,t) € Suppp, then
PR(s) = PR(t). Note a frame F'is uniform iff some
probability structure based on F' is uniform ifl ev-
ery probability structure based on F is uniform.
We say a formula ¢ is valid in frame F, written
F | ¢, if N & ¢ for every probability structure
N based on F'. The following theorem shows that
Miller’s principle characterizes uniform frames.

Theorem 7.1:
equivalent:

The following two conditions are

1. F is a uniform frame.

2. Every instance of Miller’s principle (i.c., the
aziom (*)) is valid in F .5

5We remark that using frames to characterize axioms is
a well-known technique in modat logic [Gol87, HC84). Con-
sider, for example, the axiom T for knowledge. Although we
have noted that it is sound for rejlezive knowledge structures
(i.e., knowledge structures where the K relation is reflexive)}
and, together with P, K, R1, and R2 provides a complete
axiomatization forsuch structures, it is not hard to construct
a. non-reflexive structure where every instance of T is valid
(see [HIMB5]). On the other hand, T does characterize refiex-
ive knowledge frames(where a knowledge framc is just a pair
(8, K), and a reflexive knowledge frame is a knowledge frame
where the relation K is reflexive), in that every instance of
T is valid in a knowledge frame F'iff F is reflexive. Simi-
lar remarks hold for all the other axioms we considered for
knowledge. However, although Miller's principle does char-
acterize uniform frames, it is not the case that Miller’s prin-
ciple together with the other axioms of probability discusscd
in [FIIMB88, Fi188b] provides a complete axiomatization for
the language P with respect to uniform frames. For ex-
ample, the formula (w(p) > a) = w(w(p) > a) = 1, which
is valid tn uniform frames, can be shown not to be prov-
able from Miller's principle and the other axioms. (Roughly
speaking, this is because a model where probabilities get
values in a8 non-standard field can be found where all of the
axioms of probability and Miller’s principle hold, and this
formuta is not satisfied.)
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We now want to show that when we restrict to
reasoning about certainty, KD45 provides a com-
plete axiomatization for uniform structures. Let
N*"/ be the class of uniform structures.

Theorem 7.2: If ¢ is a formula in LC, then
Nc" ‘: w0 iﬂNsni[ t= ©.

Corollary 7.3: KD45C ts a sound and complete
with respect 1o N**/ for the lenguage £C.

Thus KD45% is a sound and complete axiom-
atization for the class of structures characterized
by Miller’s principle, given our interpretation of
Miller’s principle with w, and w, identified. Com-
bining Corollary 7.3 with Theorem 3.3, we get

Corollary 7.4: If ¢ is a formula in LK, then ¢ is
provable in S5 iff A**/ = Cert(¢©).

A's we mentioned above, Gaifman does not iden-
tify wy and wy; rather, he associates w, with the
experl’s probabilities and wy with the agent’s prob-
abilities. In addition, Gaifman actually considers a
stronger form of Miller’s principle, namely

wi(eld A (wae) € 1)) €1,

where ¥ is a conjunction of formulas of the form
wy(¢' € I').8 Ile shows that structures satisfying
this stronger principle can be characterized in a way
rather similar to Theorem 7.1. We provide a few
of the details here. Suppose we are given a gener-
alized probability structure N = (5, n, PR;, PR;)
for two agents. Recall that Gaifman assumes that
the agent's probability assignment PR, is inde-
pendent of the state, thus there is a fixed proba-
bility function pr such that P’Ry(s) = pr for all
states s € S. Given a stale s € S, let C(s)
be the cquivalence class ol states in S consist-
ing of all states s’ such that I’R((s') = I’Ry(s).
Thus, C(s) is the sct of states where the expert
has the samc probability function that he does in
3. Now consider the set of states Sgo02 Where the
expert belicves that with probability 1, his prob-
ability distribution is the right one, i.e., Sgo0a =
{s: PR (3)(C(s)) = 1}. Gaifman shows that the
stronger forin of Miller’s principle is equivalent to
the condition pr(Sgeed) = 1, which Frisch and ITad-
dawy call the cquivalence class consirainl. Namely,
Gaifman shows that the stronger form of Miller’s
principle is sound in all structures satisfying the

81t is not hard to extend our proof that Miller’s principle
is sound in uniform structures to show that if we ideuntify
wy and wz, then this stronger principle is sound in uniform
structures as well.




equivalence class constraint, and that the cquiva-
lence class constraint holds in all frames where the
stronger form of Miller’s principle is valid. More-
over, Gaifman shows that il ¢ is provable in S8,
then ¢ holds with probability 1 (with respect to
pr) in all structures satislying the equivalence class
constraint. Note that by Corollary 7.4, the analo-
gous result holds for uniform structures.

As mentioned in the previous section, in [FI188c],
where they only discuss probability formulas of
depth 2, Frisch and lladdawy do not assume that
PR, is the same for all agents. Since they also
want to consider structures where Miller's princi-
ple holds (they do not consider the stronger ver-
sion of Miller's principle), they assume that the
equivalence class constraint holds for every prob-
ability function I’Rp(s), i.e., they assume Lthat
PI3(3)(Sg004) = 1 for all states s. However, in
order to deal with more deeply nested formulas,
Frisch and Haddawy plan to have a sequence of
probability functions. Thus, in their structurcs
they will have functions PRy, IR, PR3, . .., where
PR;(s) gives a probability lunction at each state
3. They do not provide interpretations for these
probability functions, but they want to consider
structures where Miller’s principle holds betwecn
all consecutive pairs ol probability funciions given
by PR; and I’R;;,. Thus, they plan to assume
that the equivalence class constraint holds between
consecutive pairs of probability functions. Miller’s
principle is casily seen to be sound in structures
satislying this constraint. Rather than having a
different modal operator for cach of these probabil-
ity assignments, they only have one modal operator
Cert. They use the I’[i;’s to give semantics to nore
deeply nested occurrences of Cert. More formally
(using our notation), in order to interpret an oc-
currence of the modal operator Cert appcearing at
depth ¢ at state s, they use the probability function
Probi(s), where Prob,(s) = PRy(s) and for i > 1,
we define I’robi(s) as the mean value of PR;(s")
over alt states s', where the weighting is done with
respect Lo ’rob; _,. Thus, if §' is a subset of S, then
Probi(s)(S') is Y ,es PRi(s)(8') - Probi_i(s")(S)
[lfad]. They show that under this interpretation
for Cert, the axioms of KD4¢ are sound, bul not
nccessarily complcte.

8 Conclusions

We have examined the relationship between knowl-
cdge, beliel, and probability. We showed that, just
as we can capture different properties of knowledge
by placing appropriate conditions on the accessibil-
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ity relationship, we can capture properties of cer-
tainty by placing conditions on the support. In
particular, il we assume one fixed probability func-
tion, we showed that KD45 provides a complete
axiomaltization. Moreover, the set of worlds where
an agent has false beliels has probability 0. Tnter-
estingly, KD45 also provides a complete axiomati-
zation with respect to structures satisfying Miller’s
principle.

Many rescarchers have rejected S5 as an appro-
priate axiomatization for an agent’s beliefs since
they want to allow an agent to have false belicfs.
Instead, they consider KID45, which allows false be-
Kefs. Our resulls suggest that there is a reason-
able interpretation for belief that is characterized
by the KD45 axioms, but still makes rather strong
assummptions about the correctness of an agent’s be-
liefs.

These results show how the tools of modal logic
can be brought to bear on reasoning about prob-
ability. We belicve that further work along these
lines should yicld further insights into probability,
beliel, and knowledge.

Acknowledgments: This paper was inspired by
discussions with Peter Haddawy. Moshe Vardi
made a number of vseful comments on an earlier
draft of the paper.
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