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In this paper, we present optimal parallel algorithms for optical clustering on a 
mesh-connected computer. Optical clustering is a clustering technique based on 
the principal of optical resolution, and is of particular interest in picture 
analysis. The algorithms we present are based on the application of parallel 
algorithms in computational geometry and graph theoryl In particular, we show 
that given a set S of N points in the Euclidean plane, the following problems 
can be solved in optimal O(x/-N ) time on a mesh-connected computer of size N. 

1. Determine the optical clusters of S with respect to a given separation 
parameter. 

2. Given an interval [a,b] representing the number of optical clusters 
desired in the clustering of S, determine the range of the separation 
parameter that will result in such an optical clustering. 

KEY WORDS:  Mesh-connected computer; optical clustering; image 
processing; computationai geometry; connected components. 

1. I N T R O D U C T I O N  

This paper is concerned with parallel solutions to two problems in the area 
of clustering on a mesh-connected computer. We study the parallelization 
of optical clustering, ~) which is a clustering technique based on the prin- 
cipal of optical resolution, and which is of particular interest in picture 
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analysis. The algorithms we present are asymptotically optimal for the 
mesh-connected computer. 

The input to both problems is a set of N points in the plane, which 
usually represent the pixels of an image (see Fig. 1). For  the mesh- 
connected computer, each processor initially stores one of the input points, 
with an arbitrary assignment of points to processors. For optical clustering, It) 
a relation connected is defined as follows. Two points are connected if 
and only if there exists a circle with radius ~<r containing the two points. 
Since the transitive closure of this relation is an equivalence relation, the 
connected components of a set of points are defined to be the equivalence 
classes generated by the transitive closure over the relation connected. The 
first clustering problem studied in this paper consists of computing the 
equivalence classes (i.e., determining the connected components) for a 
given parameter r. The second clustering problem, which is more difficult, 
is the inverse problem. As input we specify a range over the number of 
connected components we expect. The problem is to determine a maximal 
interval for the parameter r such that the number of components of the 
respective clusterings is within the specified range. Sequential O(Nlog N) 
time solutions to both problems have been presented in Ref. 1. In this 
paper, we present optimal (O(,f-N) time parallel algorithms for the mesh- 
connected computer. A direct parallelization of the algorithms presented in 
Ref. t would yield O(x/ -NlogN ) time parallel solutions on the mesh- 
connected computer. The main contribution of this paper is a nontrivial 
data compression technique which reduces the time of the mesh-connected 
computer algorithm to O(x//N), which is optimal�9 Our solutions to these 
clustering problems involve parallel techniques and algorithms from 
computational geometry and graph theory. 

' . . . f ' -  

.""!!!i!i!i!!!~ 
.:" U:i:: 

�9 . r 

-._. 
-_ : . . � 9  :. 
;_  -. ? ;:  

,'--:~ .: ..:L..::: ..-i ...:.....:;-::.'.:: 

�9 : . .-.-.-. ... :.::'.::':'Z :::.-'-':. 
- �9 . ... ...- ~ . . .  

":"'iii" ""'i:. !ii "'"'"'ii: :::: "." .';'" -~. .-.- - 
"'" ;'.';:" -:- :-F'-'-" "-'"-'.'-" 
, ,  

Fig. l. Sample images. (a) relation r-connected for a set S'; (b) the graph (S', Q)r). 
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Our main motivation for studying parallel optical clustering on the 
mesh is that (1) the mesh-connected computer is a very popular architec- 
ture for image processing and (2) optical clustering, as part of a picture 
recognition system, often has on-line response time requirements, which 
can only be met by using parallel architectures or by creating customized 
hardware. Next, we outline particularly interesting applications of our 
techniques which have such on-line requirements. These problems were 
brought to our attention by Ed Cohen and Jon Hull from the CEDAR 
project at the University of Buffalo. 

The second clustering problem outlined earlier has applications in 
pattern recognition systems where one knows a range in the number of 
objects that are anticipated, and would like to perform a clustering opera- 
tion that will yield the anticipated number of objects. For example, such 
knowledge can be exploited when considering the digitization of a hand- 
written social security number, where one would anticipate approximately 
11 distinct object (9 digits and two hyphens). In fact, since some of the 
handwritten digits in a social security number may overlap each other, 
while other individual digits might not even be connected, a suitable range 
in the number of clusters expected for a handwritten social security number 
might be, say, between 7 and 15. Once the objects are identified, there are 
numerous strategies, such as template matching or recognition based on 
feature sets, for attempting to recognize the digits. Another interesting 
application of optical clustering arises in the problem of determining the 
location of a handwritten address on an envelop. (2) 

The remainder of this paper is organized as follows. In Section 2, the 
mesh-connected computer and the two problems considered in this paper 
are defined. In Section 3, we present optimal mesh solutions to both 
clustering problems. Section 4 outlines how these results can also be 
applied to images represented by chain codes, and Section 5 concludes the 
paper. 

2. D E F I N I T I O N S  

In this section, we define the mesh-connected computer and the optical 
clustering problems considered in this paper. 

2.1. The  M e s h - C o n n e c t e d  C o m p u t e r  

The mesh-connected computer (rues) of size N is an SIMD machine 
with N simple processors arranged in a square lattice. To simplify exposi- 
tion, it is assumed that N = 4  c, for some integer c. For all 
i, j ~  [0  ..... N 1/2-  1], let Pi.j represent the processor in row i and column j. 
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Processor Pi, j is connected via bidirectional unit-time communication links 
to its four neighbors, P~-I,j, Pi+l,j, Pi, j-1, and Pi, j+I, assuming they 
exist. Each processor has a fixed number of O(log N)-bit words of memory 
(registers), and can perform standard arithmetic and Boolean operations 
on the contents of these registers in unit time. Each processor can also send 
or receive a word of data to or from each of its neighbors in unit time. 

The communication diameter of a mesh of size N is O(x//N), as can be 
seen by examining the distance between processors in opposite corners of 
the mesh. This means that if a processor in one corner of the mesh needs 
data from a processor in another corner of the mesh at some time during 
an algorithm, then a lower bound on the running time of the algorithm is 

g2(~/-N). It is easy to see that, because of the communication diameter, the 
problems in this paper have time complexities (2(x/N). 

In this paper, we will frequently use O(xf-N ) time standard mesh 
operations such as sorting, random access read, random access write, 
compression, and parallel prefix. The reader is referred to Refs. 3-7, and the 
references contained therein, for complete descriptions, algorithms, and 
analyses of these operations. 

2.2. Optical  Clustering 

This section gives a brief review of the definition and some basic 
properties of optical clustering as described in Ref. 1. 

Let S = {sl ..... SN} be a set of N disjoint objects in n-space, 9t n (i.e., 
compact subsets of ~n without holes). Let d: 9tn• 9tn--* ~fl + be a convex 
distance function, where ~1t + is the set of positive real numbers. For  two 
objects s, s 'e S, define d(s, s') as the minimum distance d(x, x') between 
two points xes ,  x 'es ' .  Finally, let c(P,r)= {x~9tnld(P,x)<~r} denote 
the ball with center P ~ 9t n and radius r. 

Consider two objects si, sj~ S. We say that si and sj are r-connected, 
denoted by si Q)r sj, if and only if there exists a ball c(P, r'), with r' ~ r, 
such that c(P, r ' ) n s i~  (~ and c(P, r')c~sj~ ~ .  

Since the transitive closure of the r-connected relation, denoted cl(Qr), 
is an equivalence relation, we define the optical clusters with respect to 
separation parameter r as the equivalence classes of cl(Qr). 

Figure 2a illustrates the optical clusters of an 11 object set S' in 9~ 2. 
Notice that the optical clustering of S' for the given value of r (illustrated 
by the balls of radius r) results in three clusters, namely, {s, ..... ss}, 
{s6,..., S,o} and {s,,}. 

Let m(S, r) denote the number of optical clusters of S with respect to 
r. Clearly, as r increases to infinity, the number of optical clusters re(S, r) 
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Fig. 2. Illustration of the relation r-connected. (a) relation Delaunay connected for a set S'; 
(b) the graph (S', 3r). 

decreases to 1. In fact, m(S, r) is a monotonically decreasing function in r. 
That is, r<~r' ~ m ( S ,  r)>~m(S, r'). 

Given the task of constructing the optical clusters of a set S of 
geometric objects with respect to a separation parameter r, a naive solution 
would be to compute the graph (S, Qr) (see Fig. 2b), and then find the 
connected components of (S, (Dr)- The drawback to this approach is that 
it involves computing the connected components of the graph (S, Qr), 
which has size O(N2), since in the worst case it may be a complete graph 
on the N vertices. As an illustration, of this, consider the optical clusters of 
the set S " =  {s6,...,slo} from Fig. 2a. Every object in S" is r-connected to 
every other in S" (witness the ball in the center of S"), implying that 
(S", Q)r) has IS"] 2 edges. The O(N 2) size of (S, Qr) implies that the 
processor-time product of the naive algorithm is g2(N 2) in the worst case. 

Consider si, sj ~ S. We say that si and sj are Delaunay connected with 
respect to r, denoted by siArsj, if and only if there exists an r'<~r and 
P~9~" such that d(P,s~)=r'=d(P, si) and for all skES--{S~,Sj}, 
d(P, sk)> r'. ~1) Figure 3a illustrates the Delaunay connected relation with 
respect to the same set of objects S' given in Fig. 2a. 

It has been shown in Fig. 3 that c/(A~) = cl(Qr) and, for object sets in 
~R 2, IA ~] = O(N). Hence, relation A~ induces the same clustering of S as 
relation Q)r, but it has only a linear number of elements. 

S ince  we are only interested in the equivalence classes of cl(Qr), we 
can avoid the ~Q(N 2) wors t -case  time-processor bound of the naive algo- 
rithm by using instead the relation A~. The optical clusters of S with 
respect to separation parameter r are exactly the connected components of 
the graph (S, At), where (S, At) denotes the graph with vertex set S and 
edge set containing all edges between all pairs of vertices (s,s')~Ar. 
(See Fig. 3b.) 
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Fig. 3. 
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Illustration of the relation Delaunay conected. 

Let V(S) and DT(S) denote the Voronoi Diagram, and its dual, the 
Delaunay Triangulation, of S, respectively Refs. 8 and 9; see Fig. 4. It is easy 
to see that DT(S)= Ur~>0Ar. Define for every edge (s, s')EDT(S) with 
corresponding dual edge e in V(S) a label 

min(s, s ')  = min{d(s, x) = d(s', x) lx e e} 

and call the labeled graph (S, DT(S)), with laveling (s, s ' ) ~  min(s, s'), the 
cluster graph of S, denoted CG(S). As shown in Ref. 1, it follows that  

Ar= U[(s,s')~DT(S),min(s,s')<~r] (S, S'). 

sl 7 
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Fig. 4. A Voronoi diagram (solid lines) and Delaunay triangulation (dashed lines). 
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3. PARALLEL OPTICAL CLUSTERING OF POINTS SETS IN E 2 

3.1. Comput ing Optical Clusters wi th  Respect to a Given 
Separat ion Parameter  r 

Let S =  {sl,...,sN} be a set of distinct planar points, arbitrarily 
distributed one per processor on a mesh of size N. In this section, we 
consider the problem of determining the optical clusters of S with respect 
to a given separation parameter r. The algorithm consists of first 
constructing CG(S), and then computing the connected components of an 
edge-restricted subgraph of CG(S). 

In O(x/~) time, we can construct the Voronoi diagram V(S) and its 
dual, the Delaunay triangulation DT(S), using the algorithm given in 
Ref. 10. At this stage, every processor stores one (arbitrary) edge of DT(S) 
and the corresponding edge of V(S). To complete the construction of 
CG(S), we compute in O(1) time, simultaneously for every edge (s, s')~ 
DT(S), its label min(s, s'). 

kemma 1. The cluster graph CG(S) of a set of N points in the 
Euclidean plane can be computed in optimal O(v/N) time on a mesh of 
size N. 

Given the cluster graph CG(S) and a real value r > 0, we can compute 
the optical clusters with respect to separation parameter r as follows. 
Delete all edges (s, s')~ CG(S) with label min(s, s ' )>  r, and compute the 
connected components of CG(S) with respect to the remaining edges. Note 
that this operation gives us the optical clusters of S with respect to r and 
allows us to compute the number of optical clusters, m(S, rt), by a parallel 
prefix operation. Since the connected components of a graph with O(N) 
edges can be computed in O(v/N ) time on a mesh of size N, ~II'I2) we have 
the following. 

Lemma 2. Given a set S of N points in the Euclidean plane, and a 
real number r > 0, the optical clusters of S with respect to separation 
parameter r can be computed in optimal O(w/N ) time on a mesh of size N. 
In addition, the number re(S, r) can be computed in optimal O(x/N ) time. 

3.2. Comput ing Optical Clusters wi th  Respect to a Given 
Range in the Number  of Clusters Desired 

In this section, we consider the problem of determining the maximal 
interval for the separation parameter r such that the number of clusters of 
the respective optical clusterings of a planar point set S is within a desired 
range. 

Consider Fig. 1. If we perform optical clustering (as described in 

828/~o/6-5 
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Section 3.1) with respect to an r value that is too small, each cluster will 
consist of exactly one point, providing us with little additional information 
about the structure of the image. On the other hand, if we perform optical 
clustering with respect to a value r that is too large, then all the points in 
the image will form a single cluster, again providing little additional infor- 
mation about the structure of the image. Clearly, knowledge of a suitable 
r implies considerable knowledge concerning the structure of the image. In 
some applications, whereas we may not know a "suitable" Value for r, we 
may have knowledge with respect to the number of optical clusters we 
expect the image to consist of. For example, suppose one is to process the 
digitization of some preprinted from. The fields might include information 
such as a social security number, credit card number, date of birth, age, 
height, weight, income, and so forth. For  such fields, we can exploit our 
knowledge with respect to an acceptable range of the number of clusters 
that is anticipated, as discussed in further detail in the Introduction. 

We will now show how knowledge about the expected number of 
clusters can be used to compute a suitable range of values for the separa- 
tion parameter r. Let [a, b], a ~< b, a, b ~ { 1 ..... N}, be an interval denoting 
the desired range of m(S, r), the number of clusters of S with respect to r. 
Let R(a, b)~ 9~ + denote the eorresponding set of separation parameters. 
That is, r~R(a, b) means that m(S, r)~ [a, b]. Let R(a) be the largest 
value r ' ~  + such that m(S, r')>~a. Similarly, let R(b) be the smallest 
value r ' ~  + such that m(S,r')<~b. Since m(S,r) is monotone and 
decreasing with respect to r, R(a, b) is the closed interval [R(b), R(a)].  
Let CG(S) have k edges, and let minl,...,min~ be the values of the labels 
of these edges in increasing sorted order. Thus, m(S, minl)~> 
re(S, rain2) ~> -.- ~>m(S, mink), and for all i, 1 <~i<k, if rE [mini, mine+l), 
then m(S, r) = re(S, min;). Given the definition of CG(S), notice that R(b) 
must be an element of {minl,-.,mink}, and R(a) must be a maximum 
end-point of some interval [mini, mini+ 1)- Therefore, we can determine 
R(a, b) by computing R(a) and R(b), where R(a) and R(b) can be 
computed independently. 

We will use a binary search type algorithm to determine R(a) and 
R(b). Our algorithm will consist of 0 ~< t ~< log2 N phases, where in a phase, 
the original graph CG will be further compressed. A similar compression 
technique was previously used in Ref. 11. Let CG, denote the compressed 
version of CG immediately following the t th stage of the algorithm. Let 
CG~' denote a copy of CG, where all edges with labels re(S, s') >~ r' have 
been removed. Phase 0 of the algorithm is defined by (i) setting CGo = 
G(S), where CG(S) is constructed as in Section 3.1, and (ii) setting qo to 
either a or b, depending on which one is being searched for. The non- 
increasing sequence ( q i ) =  qo . . . . .  qlog N iS used to keep track of the number 
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of optical clusters remaining to be identified following the termination of 
phase i. The tth phase of the algorithm is defined as follows. 

1. Let CGt_ 1 = (V, E) and CG, = ( V', E'), where CG,_ 1 is given and 
CGt is the graph to be constructed in the tth phase. Determine r', 
the median over the set of edge labels of CG,_ 1. 

2. (a) Construct the graph CG~,'I by eliminating all edges with 
labels greater than or equal to r'. 

(b) Label the connected components  of CG~'_ 1. 
(c) Compute the number of connected components of  CG~- 1. 

3. Terminating Cases: (T1) If the number of connected components 
of CG~,'_I= qt-1, then return r'. EXIT. (T2) If CG~'_ 1 consists of 
a single edge with lebel l, then return either the label just greater 
than l or  just less than l in the sequence minl,...,min k, depending 
on whether we are searching for R(a) or R(b), respectively. EXIT. 

4. Case A: The number of connected components of CG~'_ 1 is less 
than q, 1, i.e., r' is too large. Set E '  equal to the set of edges in 
CG~'_ 1. Notice that any vertex v s V not incident on an edge in E '  
will remain as a separate cluster for the remaining phases of the 
algorithm, since in this binary search procedure the set of edges is 
never increased. Therefore, identify the set U of connected com- 
ponents of CG~'_ 1 which contain exactly one vertex, and compute 
I U], the number of single vertex components in CG~' 1. Set V' 
equal to V -  U and q, = q,_ 1 - [U[. 

5. Case B: The number of connected components of CG~'_ 1 is greater 
than q,_ 1, i.e., r' is too small. This means that none of the edges 
in CG~'_ I has a label that results in qt-~ clusters, and that every 
edge in CG~'_ 1 links vertices that are members of the same optical 
cluster. Therefore, collapse the connected components of CG~, "_ 1 to 
form the set V' of "Super-Vertices," and let E '  be the set of edges 
(s, s') between elements of V' such that there exists an edge e in 
CGt-1 connecting the components represented by s and s'. (Note: 
Remove all loops and collapse multiple edges in E.) Notice that, 
as is Case A, any singleton vertex in (V', E ' )  will remain as a 
separate cluster for the remaining phases of the algorithm. There- 
fore, label the connected components of (V', E'),  and identify the 
set W of connected components of (V', E ' )  with exactly one 
vertex. Set V' = V' - W and q, = q,_ 1 - ] W[. 

For  this algorithm, the correctness and time complexity depend on the 
relationship between the size of graphs CGt and CGt_ 1- We show that in 
each phase, the graph is compressed by at least a factor of 6/5. 
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Lemma 3. ICG,I ~ l c a ,  11. 

Proof. Let C G  t _  1 have e edges and v vertices, and let CG, have e' 
edges and v' vertices. Since r' is the media over all edge labels in CG,_ 1, 
the result of either Case A or Case B is that half of the edges of CG,_ ~ are 
removed. Therefore, e'~< e/2. Further, since singleton vertices are removed 
from either the connected components of CG~'_ 1 (Case A) or the connected 
components of ( V', E ' )  (Case B), we know that v' <~ v. Let M = e + v be the 
size of CG,_1. Since there are no isolated vertices in CG,_I, we have 
v ~ 2e. Therefore, M = e + v ~< 3e. Finally, we obtain 

M ' = e '  +v' <~e' +v<~e/2 +v=e/2 + M - e = M - e / 2  

<~ M -  M/6 = ~ M [] 

Given the preceding lemma, we can use standard mesh techniques 
(c.f., and the references contained therein) to compress the new graph 
constructed at the end of each phase into the upper-left m • rn region of 
the mesh, where m2<~N/(6/5) ' i. Notice that standard mesh operations 
(c.f., Refs. 3, 4, and 13, and the references contained therein) such as 
sorting, broadcasting, component labeling, random access read, random 
access write, and parallel prefix can be used to complete the tth phase of 

the algorithm on a mesh of size N in O(x/N/(6) t-  1) time. Therefore, the 
running time of the algorithm is given by the recurrence T(N) = T(~N) + 
O(x/-N), which implies r (N)= O(x/N ). 

T h e o r e m  4. Given a set S of N points in the Euclidean plane and 
an interval [a, b] for the number m(S, r) of optical clusters desired in the 
completed clustering of S, the range of values for the separation parameter 
r that will result in such an optical clustering can be determined in 
asymptotically optimal O(~/N) time on a mesh of size N. 

4. OPTICAL CLUSTERING FOR CHAIN  CODE 
R E P R E S E N T A T I O N S  

In practice, the input is often not given as an image but in its chain 
code representation. Chain codes are a classical approach in image 
processing for representing regions by border codes. (~4'15) A chain code 
representation of a standard 8-connected component without holes is 
defined by the starting location (x and y coordinates) of a pixel on the 
border, followed by a sequence of directions indicating where the remaining 
border pixels are with respect to, say, the counterclockwise direction. Chain 
codes are used in many situations, such as handwriting analysis, where the 
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image is relatively sparse. This not only saves space, but because the 
representation is often more compact, the algorithms that work on the 
chain codes are much more efficient than algorithms that would work on 
the raw image. Optical clustering methods can also easily be applied to 
chain codes without expanding the chain code to the (in general much 
larger) image. Suppose that an image is initially represented as a set of 
chain codes to total length c, where each 8-connected component, as well 
as all holes of the component, is represented by a labeled chain code. 
Further, suppose that each such labeled chain code is stored in a 
contiguous set of processors on a mesh olf size c (c.f., Ref. 14). In time 

O(xf-c- ), the chain codes can be transformed into a labeled set S represent- 
ing the coordinates of the border pixels. Then, instead of solving the 
clustering problems for the chain codes, we simply apply our clustering 
methods to S, which yields the required result. Note that the size of s is 
still O(c).  

5. C O N C L U S I O N  

In this paper, we presented asymptotically optimal mesh-connected 
computer algorithms to solve two problems in optical clustering, both of 
which are important in certain areas of image analysis. To the best of our 
knowledge, these are the first parallel algorithms presented for these 
problems, mhese techniques allow one to determine on a mesh-connected 
computer (i) the optical clusters of a digitized picture for a given separation 
parameter r, and (ii) the maximal interval for the separation parameter r 
such that the number of clusters produced is within a certain range. This 
is important in applications such as on-line processing of handwriting 
(e.g., in the processing of handwritten forms) or determining the location 
of a handwritten address on an envelope. (2) 

A C K N O W L E D G M E N T S  

We would like to thank Ed Cohen and Jon Hull of the CEDAR 
project at the University of Buffalo for several discussions. 

R E F E R E N C E S  

1. F. Dehne, Optical clustering, The Visual Computer, 2:39-43 (1986). 
2. P. W. Palumbo, S. N. Srihari, and J. Soh, Real-Time Address Block Location Using 

Pipelining and Multiprocessing, IEEE Computer, special issue on Document Image 
Analysis Systems, accepted for publication, to appear (June 1992). 

3. F. T. Leighton, Introduction to Parallel Algorithms and Architecturis: Arrays, Trees, 
Hypercubes, Morgan Kaufmann Publishers, California (1992). 



486 Dehne, Miller, and Rau-Chaplin 

4. R. Miller and Q. F. Stout, Parallel Algorithms for Regular Architectures, manuscript to be 
published by MIT press. 

5. D. Nassimi and S. Sahni, Bitonic Sort on a Mesh-Connected Parallel Computer, IEEE 
Transactions on Computers, C-27(1):2-7 (January 1979). 

6. D. Nassimi and S. Sahni, Data Broadcasting in SIMD Computers, IEEE Transactions on 
Computers, C-30(2):101-107 (February 1981). 

7. C. D. Thompson and H. T. Kung, Sorting on a Mesh-Connected Parallel Computer, 
Communications of  the ACM, 20(4):263-271 (April 1977). 

8. M. I. Shamos and D. Hoey, Closest Point Problems, S lAM J. on Comp., pp. 744-757 
(1980). 

9. P. Chew and R. L. Drysdale, Voronoi Diagrams Based on Convex Distance Functions, 
Proc. of  First Symposium on Computational Geometry (1985). 

10. C. Jeong and D. T. Lee, Parallel Geometric Algorithms on Mesh-Connected Computers, 
Proc. of  Fall Joint Computer Conference (1987). 

11. S. E. Hambrusch and F. Dehne, Determining Maximum k-Width Connectivity on 
Meshes, Proc. Int. Parallel Proc. Symposium, pp. 234-241 (1992). 

12. J. Reif and Q. F. Stout, Optimal Component Labeling Algorithms for Mesh-Computers 
and VLSI (to appear). 

13. D. Nassimi and S. Sahni, Finding Connected Components and Connected Ones on a 
Mesh-Connected Parallel Computer, SIAM J. on Comp., pp. 744-757 (1980). 

14. T. Dubitzki, A. Wu, and A. Rosenfeld, "Parallel Computation of Contour Properties, 
1EEE Transactions on Pattern Analysis and Machine Intelligence, 3:331-337 (1981). 

15. H. Freeman, Computer Processing of Line-Drawing Images, Computing Surveys, 6:57-97 
(1974). 

16. R. Miller and Q. F. Stout, Mesh Computer Algorithms for Computational Geometry, 
IEEE Transactions on Computers, 38(3):321-340 (March t989). 


