Skip to main content
Log in

Molecular modeling of a putative antagonist binding site on helix III of the β-adrenoceptor

  • Research Papers
  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Summary

In recent biochemical studies it was demonstrated that residue Asp113 of theβ-adrenoceptor (β-AR) is an indispensable amino acid for the binding ofβ-AR antagonists. Earlier fluorescence studies showed that a tryptophan-rich region of theβ-AR is involved in the binding of propranolol, the prototypeβ-AR antagonist. Bearing these two biochemical findings in mind, we explored theβ-AR part containing Asp113, for an energetically favorable antagonist binding site. This was done by performing molecular docking studies with the antagonist propranolol and a specificβ-AR peptide which included, besides Asp113, two possibly relevant tryptophan residues. In the docking calculations, the propranolol molecule was allowed to vary all its internal torsional angles. The receptor peptide was kept in anα-helix conformation, while side chains relevant to ligand binding were flexible to enable optimal adaptations to the ligand's binding conformation. By means of force-field calculations the total energy was minimized, consisting of the intramolecular energies of both ligand and receptor peptide, and the intermolecular energy. We found an antagonist binding site, consisting of amino acids Asp113 and Trp109, which enabled energetically favorable interactions with the receptor-binding groups of propranolol. According to these results, binding involves three main interaction points: (i) a reinforced ionic bond; (ii) a hydrogen bond; and (iii) a hydrophobic/charge transfer interaction. The deduced binding site shows a difference in affinity between the levo- and dextrorotatory isomers of propranolol caused by a difference in ability to form a hydrogen bond, which is in conformity with the experimentally observed stereoselectivity. Moreover, it also provides an explanation for theβ 1-selectivity ofp-phenyl substituted phenoxypropanolamines like betaxolol. Thep-phenyl substituent of betaxolol was shown to be sterically hindered upon binding to theβ 2-AR peptide, whereas this hindrance is very likely to be much less with theβ 1-AR peptide. Finally, the proposed antagonist binding site is discussed in the light of some recent biochemical findings and theories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

β-AR:

β-adrenergic receptor

cDNA:

complementary DNA

H-bond:

hydrogen bond

VdW:

van der Waals

QSAR:

quantitative structure-activity relationship

125I-pBABC:

p-(bromoacetamido)benzyl-1-[125I]iodocarazol

References

  1. Dohlman, H.G., Caron, M.G. and Lefkowitz, R.J., Biochemistry, 26 (1987) 2657–2664.

    PubMed  Google Scholar 

  2. Stiles, G.L., Caron, M.G. and Lefkowitz, R.J., Physiol. Rev., 64 (1984) 661–742.

    PubMed  Google Scholar 

  3. Dixon, R.A.F., Kobilka, B.K., Strader, D.J., Benovic, J.L., Dohlman, H.G., Frielle, T., Bolanowski, M.A., Bennett, C.D., Rands, E., Diehl, R.E., Mumford, R.A., Slater, E.E., Sigal, I.S., Caron, M.G., Lefkowitz, R.J. and Strader, C.D., Nature, 321 (1986) 75–79.

    PubMed  Google Scholar 

  4. Kobilka, B.K., Dixon, R.A.F., Frielle, T., Dohlman, H.G., Bolanowski, M.A., Sigal, I.S., Yang-Feng, T.L., Francke, U., Caron, M.G. and Lefkowitz, R.J., Proc. Nat. Acad. Sci. U.S.A., 84 (1987) 46–50.

    Google Scholar 

  5. Yarden, Y., Rodriguez, H., Wong, S.K.-F., Brandt, D.R., May, D.C., Burnier, J., Harkins, R.N., Chen, E.Y., Ramachandran, J., Ullrich, A. and Ross, E.M., Proc. Nat. Acad. Sci. U.S.A., 83 (1986) 6795–6799.

    Google Scholar 

  6. Frielle, T., Collins, S., Daniel, K.W., Caron, M.G., Lefkowitz, R.J. and Kobilka, B.K., Proc. Nat. Acad. Sci. U.S.A., 84 (1987) 7920–7924.

    Google Scholar 

  7. Dohlman, H.G., Bouvier, M., Benovic, J.L., Caron, M.G. and Lefkowitz, R.J., J. Biol. Chem., 262 (1987) 14282–14288.

    PubMed  Google Scholar 

  8. Dixon, R.A.F., Sigal, I.S., Rands, E., Register, R.B., Candelore, M.R., Blake, A.D. and Strader, C.D., Nature, 326 (1987) 73–77.

    PubMed  Google Scholar 

  9. Strader, C.D., Sigal, I.S., Register, R.B., Candelore, M.R., Rands, E. and Dixon, R.A.F., Proc. Nat. Acad. Sci., U.S.A., 84 (1987) 4384–4388.

    Google Scholar 

  10. Strader, C.D., Sigal, I.S., Candelore, M.R., Rands, E., Hill, W.S. and Dixon, R.A.F., J. Biol. Chem., 263 (1988) 10267–10271.

    PubMed  Google Scholar 

  11. Ijzerman, A.P., Aué, G.H.J., Bultsma, T., Linschoten, M.R. and Timmerman, H., J. Med. Chem., 28 (1985) 1328–1334.

    PubMed  Google Scholar 

  12. Cherksey, B.D., Murphy, R.B. and Zadunaisky, J.A., Biochemistry, 20 (1981) 4278–4283.

    PubMed  Google Scholar 

  13. Ijzerman, A.P. and Van Vlijmen, H.W.Th., J. Comput.-Aided Mol. Design, 2 (1988) 43–53.

    Google Scholar 

  14. Chem-X: Molecular modeling system, Chemical Design Ltd., Oxford, U.K.

  15. CSD: Cambridge Crystallopgraphic Database, Cambridge Crystallographic Data Center, Lensfield Road, Cambridge, U.K.

  16. Stewart, J.P., MOPAC: A general molecular orbital package, QCPE Bull., 3 (1983) 43.

    Google Scholar 

  17. Allinger, N.L. and Yuh, Y.H., QCPE Program No. 395, MM2.

  18. Gasteiger, J. and Marsili, M., Tetrahedron, 36 (1980) 3219–3228.

    Google Scholar 

  19. Morris, T.H. and Kaumann, A.J., Naunyn-Schmied. Arch. Pharmacol., 327 (1984) 176–179.

    Google Scholar 

  20. Andrews, P.R., Craik, D.J. and Martin, J.L., J. Med. Chem., 27 (1984) 1648–1657.

    PubMed  Google Scholar 

  21. Ijzerman, A.P., Dorlas, R., Aué, G.H.J., Bultsma, T. and Timmerman, H., Biochem. Pharmacol., 34 (1985) 2883–2890.

    PubMed  Google Scholar 

  22. Dohlman, H.G., Caron, M.G., Strader, C.D., Amlaiky, N. and Lefkowitz, R.J., Biochemistry, 27 (1988) 1813–1817.

    PubMed  Google Scholar 

  23. Hargrave, P.A., McDowell, J.H., Feldmann, R.J., Atkinson, P.H., Rao, J.K.M. and Argos, P., Vision Res., 24 (1984) 1487–1499.

    PubMed  Google Scholar 

  24. Applebury, M.L. and Hargrave, P.A., Vision Res., 26 (1986) 1881–1895.

    PubMed  Google Scholar 

  25. Wheatley, M., Hulme E.C., Birdsall, N.J.M., Curtis, C.A.M., Eveleigh, P., Pedder, E.K. and Poyner, D., In Levine R.R., Birdsall, N.J.M., North, R.A., Holman, M., Watanabe, A. and Iversen, L.L. (Eds.) Subtypes of Muscarinic Receptors III, Proc. Third Int. Symp. Subtypes of Muscarinic Receptors, Elsevier Publications, Cambridge, 1988, pp. 19–24.

    Google Scholar 

  26. Albert, A., Selective Toxicity and Related Topics 4th ed., Methuen & Co. Ltd., London, 1971, pp. 182–187.

    Google Scholar 

  27. Kobilka, B.K., Matsui, H., Kobilka, T.S., Yang-Feng, T.L., Francke, U., Caron, M.G., Lefkowitz, R.J. and Regan, J.W., Science, 238 (1987) 650–656.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Vlijmen, H.W.T., Ijzerman, A.P. Molecular modeling of a putative antagonist binding site on helix III of the β-adrenoceptor. J Computer-Aided Mol Des 3, 165–174 (1989). https://doi.org/10.1007/BF01557726

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01557726

Key words

Navigation