o MGuow 303

Cc\\(\j.{\; L
Structural Analysis of
Polynomial Time Query Learnability
Osamu Watanabe
Ricard Gavalda
Report LSI-92-7-R
BIBLIOTECA

R. QHRR, 19 Mine nam
“rry—1892

Structural Analysis of

Polynomial Time Query Learnability*

Osamu WATANABE Ricard GAVALDA
Department of Computer Science Department of Software (L.S.I.)
Tokyo Institute of Technology Universitat Politécnica de Catalunya
Meguro-ku Ookayama 1-12-1 Pau Gargallo 5
Tokyo 152, JAPAN 08028 Barcelona, Spain
watanabe@cs.titech.ac.jp gavalda@Isi.upc.es
ABSTRACT

For some representation classes, we relate its polynomial time query learnability to
the complexity of representation finding problems of P/poly oracles. For example,
for CIR, a representation class by logical circuits, the following relations are proved:
If for some A € P/poly, the representation finding problem of A4 is not in PNP 14,
then CIR is not polynomial time query learnable even by using any sorts of queries
considered in [Ang88]. On the other hand, if a certain representation subclass of CIR
is not polynomial time query learnable by using subset and superset queries, then some

B € P/poly exists such that its representation finding problem is not in PNPT,

1. Introduction

The following type of learning is called query learning or learning via queries: a teacher
has a representation of some set, concept, in his mind, and a learner tries to identify it
by asking queries to the teacher. In the preceding paper [Wat91], we have established
a framework for investigating learnability problems in computational complexity theory.
Here one such investigation is demonstrated; we discuss relations between polynomial

time query learnability and computational complexity of representation finding problems.

*This is an extended version of a part of [Wat90]. The first author was supported in part by Grant
in Aid for Scientific Research of the Ministry of Education, Science and Culture of Japan under Grant-
in-Aid for Co-operative Research (A) 02302047 (1991). The second author was supported in part by
ESPRIT II Basic Research Actions Program of the EC under contract No. 3075 (project ALCOM), and
by the National Science Foundation under grant CCR89-13584, while visiting the University of California,

Santa Barbara.

e——

One can define many kinds of “polynomial time query learnability” questions by
varying the following factors: (1) a learning notion that determines a learning criteria,
(2) a computational model (more precisely, a class of learning systems) that is to be
used, and (3) a target concept class (more precisely, a representation class) that is to be
learned. Here we consider “learnability” in the following context. (See [Wat91] and the

next section for the definition of notions and notations.)

(1) For a learning notion, the bounded-learning is adopted and used throughout this
paper. That is, our learning goal is to obtain a representation that denotes a target
set correctly up to a given length.

(2) We use “learning system” to specify learning computation. In general, we consider
any query types discussed in [Ang88): membership query, equivalence query, sub-
set query, superset query, etc. On the other hand, each query is answered by yes/no,
yes/counterexample, or yes/ min-counterexample, where “min-counterexample” means
the lexicographically smallest counterexample. In this section, however, we mainly
use the following two particular query-answer types: (i) membership query (answered
by yes/no), subset query (answered by yes /min-counterexample), and superset query
(answered by yes/ min-counterexample), and (ii) subset query (answered by yes/no)
and superset query (answered by yes /no). These query-answer types are 1:espectively
denoted as (Mem;Sub[min],Sup[min]) and (Sub,Sup;).

(3) A target concept class is specified by “representation class” [PW88]. For a rep-
resentation class, we consider classes DFA, NFA, CFG, and CIR, which respectively
correspond to the nfa, cfg, and circuit representations. (In this paper, by dfa, nfa, cfg,
and circuit, we mean deterministic finite automaton, nondeterministic finite automa-
ton, context-free grammar, and logical circuit expression' respectively.) We sometimes

" consider the case where a target set has certain structure in common. For example,
we investigate the problem of learning circuit representations that denote sets of the

form LU L#L U~ for some set L C {0,1}". (Such sets are called repetitive.)

For any representation class C and any query-answer type, we take the following
strategy for investigating the polynomial time a-learnability of C. First estimate the

computational power of a-learning systems for C. Then using this estimation, we relate

1A logical circuit denotes a set of strings of some fixed length. Thus, in order to express sets containing

strings of different length, we use circuit ezpressions. The notion of “circuit expression” is a natural

generalization of “regular expression”. See §2.1.

the computational complexity of certain problems to the polynomial time a-learnability
of C. In the following, we explain this strategy in more detail and state our main results.

Query learning may be regarded as some variation of query computation. Thus,
we measure “computational power of learning systems” in terms of query machine types
such as NP0, PNP() etc. These machine types are defined inductively; for example, an
NPO-machine is a polynomial time nondeterministic machine that may ask queries to an
oracle, a PNPY_machine is a polynomial time deterministic machine that may ask queries
to some NPO-machine, etc. By restricting the way of asking queries, some more query
machine types are defined. An N Pg)-ma.chine is an NPO-machine that asks one query
on each nondeterministic computation path, and PNP p-machine is a polynomial time
deterministic machine that may ask queries to some NPg)-machine.

Cousider any representation class C and any query-answer type a. In order to estimate
the power of a-learning systems for C, we try to get some query machine types M() and
M() that satisfy the following conditions:

(a) Every a-learning system for C is simulated by some query machine of type MP.
(b) Every query machine of type M} (that is used to compute a representation of a

given oracle set) is simulated by some a-learning system for C.

If Mﬁ) satisfies (a), it is regarded as an upper bound of the power of a-learning systems
for C. On the other hand, a query machine type Mg) satisfying (b) is considered as a
lower bound of the power of a-learning systems for C.

We prove some upper bound and lower bound results for representation classes DFA,
NFA, CFG, and CIR. For example, we show that PNP is an upper bound of the
power of (Mem;Sub[min],Sup[min])-learning systems for CIR. (Clearly, the same up-
per bound holds for any weaker query-answer types such as (Sub,Sup;).) On the other
hapd, we can also show that some (Sub,Sup;)-learning systems for CIR can achieve PNP -
computation when they are used to learn repetitive sets. That is, PP also a lower
bound of the power of (Sub,Sup;)-learning systems for CIR that are used to learn repet-
itive sets. (Clearly, the same lower bound holds for any stronger query-answer types
such as (Mem;Sub[min],Sup[min]).) Therefore, pPy) exactly characterizes the power of
(Sub, Sup,) -learning systems for CIR that are used to learn repetitive sets. (In the same
way, pney exactl} characterizes the power of (Mem;Sub|min], Sup[min])-learning systems

for CIR that are used to learn repetitive sets?.) Similar (but partial) characterizations

?Hence, (Sub,Sup;) is as powerful as (Mem;Sub[min],Sup[min]). We prove this fact more directly at
Proposition 4.5.

are obtained for NFA and CFG.
Take CIR for example. We relate the polynomial time learnability of CIR to the com-

plexity of circuit representation finding problems. For any set A € P /poly, FIND-REP(A)
is to find, for a given input 0™, a circuit representation of AS™ by using A as an oracle set.
(P/poly [KL80] is the class of sets with polynomial size circuits.) For any query machine
type MO, we say that FIND-REP(A) is MQ-solvable if some M(O)-machine solves FIND-
REP(A). ;From the a.bove upper bound result, we can prove that if for some 4 € P /poly,
FIND-REP(A)is not pNP{) -solvable, then CIR is not (Mem;Sub[min],Sup[min])-learnable.
On the other hand, it follows from the above lower bound result that if circuit representa-
tions denoting repetitive sets are not (Sub Sup;)-learnable, then some B € P/poly exists
such that FIND-REP(B) is not PP solvable. Therefore, the polynomial time query
learnability of CIR is closely related to the following question: Is there any X € P/poly
such that FIND-REP(X) is not PNPU solvable?

Polynomial time learnability has been discussed in various contexts, and some of
those previous works are related to our subject. Angluin [Ang89] proved that, e.g., DFA
is not polynomial time (;Equ)-learnable, where (;Equ) means to use only equivalence
counterexample-queries. Although no assumption is necessary for this result, the proof

technique does not seem to apply some other query types nor more general representation

classes.
Kearns and Valiant [KV89] proved that if the RSA function is hard to invert, then

DFA is not PAC-learnable. Angluin and Kharitonov [AK91] strengthened it to show
that if the RSA function is hard to invert, then NFA is not PAC-learnable even if a
learner can use membership queries. As a consequence of this result, we have that if the
RSA function is hard to invert, then NFA is not polynomial time (Mem;Equ)-learnable,
wh.ere (Mem;Equ) means to use membership queries and equivalence counterexample-
queries. In more general, it has been known [Val84, GGMS86] that CIR is not polynomial
time (Mem;Equ)- lea.rna.ble if some cryptographic one-way function [ILL89] exists. No-
tice that these results use cryptographic assumptions, which concern the average case”

intractability. Such assumptions are in some sense necessary because they originally inves-
tigate PAC-learnability, i.e., approximate learnability. On the other hand, in this paper,
we directly relatel the polynomial time query learnability of CIR to the “worst case”

intractability of representation finding problems.

2. Preliminaries

In this paper we follow standard definitions and notations in computational complexity

theory. We assume that the reader is familiar with them and, in particular, with those
concerning the structure of complexity classes; the reader will ind them in (BDG8S].

We use the alphabet £ = {0,1,#]}, and by a string we mean an element of X*. The
length of a string z is denoted by |z|. Let AS", A2" and A™<<n denote respectively
{zeA:|z|<n},{cecAd:|z|>n},and {z€A:m < |z| < n}. We use a total order <
on X* that is defined as follows: (i) 0 < 1 < #, and (ii) z < y if either (2) |=| < |y| or (b)
|| = |y| and there is a string z such that z = zaz’ A ¥y =2zby’ A a <b. In this paper,
by lezicographic order we mean this order.

We assume some pairing function from $* x £* to ¥* that is polynomial time com-
putable and polynomial time invertible. For inputs z and Y, we denote the output of the
pairing function by (z,y); this notation is extended to denote every k tuple. Furthermore,
we assume some constant dpir such that Vay,...,zx [[(21, ..., zx)| < dpair Y1<i<k |2] In
order to simplify our notation, we write, e.g., f(z,y) for denoting f((z,y)).

In the following, we prepare necessary notions and notations concerning polynomial

time query learning, query machine types, difficulty of learning problems, and power of

learning systems.

2.1. Polynomial Time Query Learning

Since the notions and notations are explained in the preceding paper [Wat91], we keep

our explanation to a minimum.
We specify a learning problem by using “representation class” [PW88, War89].

Definition 2.1. A representation class is a three-tuple (R, ®,p), where R C £* is a

representation language, ® : R — 2% is a semantic function or concept mapping, and p :

R — N is a size function.

In this paper, we assume that p(r) = |r| and omit specifying p. Furthermore, we

assume that every representation class C = (R, ®) satisfies the following conditions:

(1) R€P,and

(2) for some polynomial time machine M,
¢ VrERYu€X [u€d(r) o M accepts (r,u)].

The second condition is called the Uniform P-Computability Condition.
We mainly consider the following representation classes. (Recall that dfa, nfa, and cig

are abbreviations respectively for deterministic finite automaton, nondeterministic finite

automaton, and context-free grammar.)

- A representation class for dfa: DFA
Let Ry, be the set of dfa (encoded in Z*), and for each r € Ryp, let ®4p(r) be
the set of strings accepted by the dfa (denoted by) 7. Then DFA is defined by
DFA = (Rya, Basa).

- A representation class for nfa: NFA
Let R, be the set of nfa (encoded in Y*), and for each r € R.tay let @,4(r) be the
set accepted by the nfa (denoted by) ». Then NFA is defined by NFA = (Rup, Bppa).

- A representation class for cfg: CFG
Let Ry, be the set of cfg, and for each r € Ry, let ®.1,(r) be the set generated by
the cfg 7. Then CFG is defined by CFG = (R.y, ®.y,).

- A representation class for circuits: CIR

Since each circuit can accept only strings of a fixed length, we extend the notion
of circuit. A circuit ezpression is an extended regular expression where we can use
circuits for constant symbols. For example, for any two circuits ¢ and ¢z, ¢; + ¢
denotes a set of strings accepted by either ¢; or ¢,. In this paper, by “circuit” we
mean a circuit expression. Let R,;, be the set of circuits, for each r € R, ®.ir(r) is

the language accepted by the circuit . Now CIR is defined by CIR = (R.r, ®..,).

We use “learning system” for our computation model. A learning syste;'n (S,T) is
a pair of a learner S and a teacher T, where S is a Turing machine and T is an oracle
function. Let (S,T) be a learning system for some representation class C = (R, ®).
Before executing (5,T'), a representation r € R is given to T, and an input (n,m) is
given to both § and T. Then in its computation, S can ask certain types of queries to
T, and finally S yields some output (which is usually some representation ' € R). This
computation is denoted as (5,T(r))(n,m). The goal of S, in such computation, is to
output some representation that denotes ®(r) up to length < m. (This type of learning

is called bounded-learning.) More precisely, it is to output some “m-representation” for r.

Definition 2.2. Let C = (R, ®) be any representation class. For any 7 € R and any
m 2 0, ' € R is m-representation for r if $(r')S™ = ®(r)<™. In general, for any set X

and any m > 0, v’ € R is m-representation for X if ®(r')Sm = X <m_
y []

A (Mem;Sub,Sup)-learning system consists of a learner S and a teacher T, where S
asks membership queries (Mem), subset queries (Sub), and superset queries (Sup), and T
provides yes/no to each membership query and yes/counterexample to each subset and

superset query. Such learners (resp., teachers) are called (Mem;Sub,Sup)-learners (resp.,

(Mem;Sub,Sup)-teachers). A tuple such as (Mem;Sub,Sup) is called a query-answer type.

In this paper, we consider the following variations of (Mem;Sub,Sup):

query-answer type query answer
(Sub,Sup;) subset, superset yes/no
(Mem;Equ) membership yes/no
equivalence counterexample
(Mem;Sub(min],Sup[min]) [membership yes/no
subset, superset yes/min-counterexample

Here by “min-counterexample” we mean the lexicographically smallest counterexample. A
query that is answered by yes/nois called an yes/no-query, answered by yes/counterexample
is called a counterezample-query, and answered by yes/min-counterexample is called a
min-counterezample-query.

In order to define “polynomial time learnability”, the following two notions are im-
portant: “polynomial time learner” and “polynomially bounded teacher”. A learner is
polynomaial time if for some polynomial p and for all input (n,m), it always halts within
p(n+m) steps. For any representation class C = (R, ®) and any function b on nonnegative
integers, a teacher T is a b-bounded teacher for C if in every computation (S, T(r))(n,m),
T answers to each query correctly w.r.t. ®<%("+™) That is, the correctness of an answer
from T is guaranteed if the answer concerns only strings of length < b(n + m). More

precisely, we follow the rule illustrated in the following examples.

(Let X be a target set, and let (n,m) be an input.)

query-answer type response from a legitimate b-bounded teacher
membership query ‘yes’ ~if |z L b(n+m) Az € X,
(i.e., ‘z € X7) ‘no’ if |z <b(n+m)A z¢gX, and

-

any answer otherwise.

subset yes/no-query r ‘yes’ if Q(T)Sb(fﬁm) C X Sb(ntm) and
(i.e., ‘®(r) C X7) ‘no’ if §(r)St(ntm) g X <b(ntm),

subset c.ex.-query r ‘yes’ if Q(r)sb(ﬂ+M) C X_<_b(n+m), and
(i.e., ‘®(r) C X7) z if z € @(r)Sblntm) _ X Sb(n+m)

The bound b(n +m) is called a (counterezample) length bound, and the function b is called

a (counterezample) length bound function (or, simply length bound). For any polynomial
b, a b-bounded teacher is generally called a polynomially bounded teacher.

Finally our learning notion — polynomial time bounded-learning — is formally defined

as follows.

Definition 2.3. For any representation class C = (R, ®), and any query-answer type a,

C is a-learnable from polynomially bounded teachers for C if

3§ : polynomial time a-learner, 3b : polynomial length bound,
VT :b-bounded a-teacher for C, Vr € R, Vn >lrl, Ym>0

[(S, T(r))(n,m) outputs an m-representation for r].

Remark. In the following we usually use simpler statements. The above notion is stated
more simply as C' is a-learnable, and the above learner S is called an a-learner for C. The
notion is sometimes extended to the problem of learning some representation subclass.

For any subset Q of R, Q is a-learnable if the condition in the above definition holds with

R being replaced by Q.

2.2. Machine Types and Complexity Classes

In this paper, we often use “machine type” in order to describe the power of a learning
system and the difficulty of a learning problem. Furthermore, since computation achieved
by learning systems corresponds to relativized computation, “query machine type” is
usually used. For example, we discuss whether a given learning system is “simulated”
by some polynomial time deterministic query machine (in short, P()-ma.chine). For this
purpose, we clarify concepts concerning “query machine type” and prepare necessary
notations. ,

We use the following Turing machine computation model. In general, machines are
transducers, and acceptorsare considered as special kind of transducers that always output
0 (i-e., reject) or 1 (i.e., accept). A transducer is deterministic; on the other hand, an
acceptor is either nondeterministic or deterministic. We assume that Turing machines are
“oracle machines”‘ (in this paper we call them query machines); that is, each machine can
ask queries to an oracle, where an oracle is either a set or another query machine that is
fixed prior to the computation.

Machines are usually denoted as M, M, etc. By M*(z), M(z), and M*X, we mean

respectively “M’s execution on input z relative to oracle X ", “M’s execution on input

2”, and “M with oracle X”. When M is a transducer, the notation MX (=) is also used
to denote M’s output on input z relative to X.

We define query machine types inductively. A PO-machine (resp., NP()-machine) is
a polynomial time deterministic query machine (resp., polynomial time nondeterministic
query acceptor). For any machine type M, PM-machine is a machine consisting of some
PO-machine M, that uses some M-machine M, as an oracle. NPM-machine is defined
similarly. A machine like M, is called a base machine. In this paper, we consider a robust
time bound. That is, for any PO)-machine M , there exists a polynomial p such that for
every oracle X and every input z, MX(z) halts within p(|z[) steps.)

Most of our results are stated by using a restricted type of relativized computation.
Thus, we introduce the following restricted query machine types:- N P,Q, N P,(TI), and N PP.
Intuitively, NP{)-, NPQ-, and N Pg)-machine is an NPO-machine that asks one query on
each nondeterministic computation path for ever input. Furthermore, on each nondeter-
ministic computation path, NP{)- (resp., N P{)-) machine enters an accepting state if and
only if it receives ‘yes’ (resp., ‘no’) to the query. (Recall that nondeterministic machines
are always used as acceptors.)

To be more precise, we assume that each N PQ-machine M is specified by some poly-

nomial pas and some polynomial time computable function fum in the following way:

for any oracle set X, and any input string =z,

a €re 1s a one-to-one and onto correspondence €iween e set o Z)'s nondeter-
(a) therei t d ont pond bet the set of MX(z)’ det

ministic paths and {0, 1}Pm(I=)),
(b) for any w € {0, 1}pm(l=) fm(z,w) is the query asked by M on the nondeterministic

path (denoted by) w, and
(c) MX accepts z Jw € {0, 1}pullaD | fu(z,w) e X).

N Pg-machines have similar functions. On the other hand, for each NPg)-ma.chine M, we
assume some polynomial pys, polynomial time computable function fm, and polynomial

time computable predicate E), that satisfy the above (a) and (b), and the following (c):

(c’) MY accepts z Jw € {0, 1}par(l=]) | En(z, xx(fr(z,w)))]

where x x is X ’s characteristic function).
X

Finally, let us define language classes by using these machine types. For any oracle

X, we consider the following language classes (relative to X):

PX (= 50" = APX = ATy & { L : Lis accepted by some PX-machine },

NPY (=27 %) ¥ (L : Lis accepted by some NP*-machine },
A;'lx def { L : L is accepted by some PNPY-machine }
AE‘X def { L : L is accepted by some PNP*-machine }
22P_'1X def { L : L is accepted by some NPNPPX -machine }, and

SPX LD Lis accepted by some NPNP* X_machine }

For other k& > 3, A,I:'X and Ef'x are defined similarly. The polynomial time hierarchy
(in short, PH) relative to X is the family of classes {Z%* I [Sto77]. Non-relativized
classes such as P, NP, etc., are defined to be the classes P% NP etc.

2.3. Representation Finding Problem

In order to investigate “complexity of learning problems” in the conventional framework
for computational complexity theory, we introduce some classes of problems related to
learning problems.

The class P/poly [BDG88] is the class of sets accepted by a sequence of polynomial
size circuits. In other words, P/poly is the class of sets L such that each L=" is represented

by some circuit representation of size < p(n) for some polynomial p. Here we extend this

notion in the following way.

Definition 2.4. For any representation class C = (R,®), and for any function p on

nonnegative integers, P/p(m)[C] is the class of sets L C £* such that

Ym >0, 3r € RSP(™) [LS = §(r)<m |,

Le., L has an m-representation of length < p(m) for every m > 0.
g

P/poly[C] is the class of sets L C £* such that L € P/p(m)[C] for some polynomial p.
Remark. By a straightforward argument, one can show that for every C, P/poly[C] C

P/poly, and that P/poly[CIR] = P/poly.

-

Let C = (R, ®) be any representation class. For any A € P/poly[C], we consider the
following problem. (Let p be a polynomial such that A € P/p(m)[C].)

FIND-REP(A): Representation Finding Problem for A.

Instance: 0™, where m is any nonnegative integer.

Question: By using A as an oracle, find r € R such that 4™ — o(r)sm,
Remark: When the representation class C' considered is not clear from

the context, the problem is written as FIND-REP(A|C).

10

We say that a query machine M solves FIND-REP(A) if for every m > 0, M 4(0™) yields
a required output. We will see that the difficulty of learning C is closely related to the
complexity of FIND-REP(A) for some A € P /poly[C].

Notice that FIND-REP(A) is not a decision problem. For the corresponding decision

problem, we consider the following.

PREF-REP(A): Prefix of Representation for A.
Instance: 0™ and u, where m > 0 and u € £<p(m).

Question: Is there any v € B<P(m)-lul gych that AS™ = ®(uv)Em?

Clearly, some PO)-machine solves FIN D-REP(A) using PREF-REP(A) as an oracle.

3. Upper Bounds and Their Applications

Our goal is to describe the power of polynomial time learners in terms of query machine
types. In this section, we discuss upper bounds and their applications. For example,
we prove that the power of (Mem;Sup)-learning systems cannot exceed that of PNPS.
machines, and then prove a non-learnability result based on the limitation of PNPG.
machines.

Here we had better clarify the notions of “upper bound” and “lower bound”. First
consider the intuitive meaning of these notions. Suppose that we are estimating the power
a-learning systems for some representation class C , where « is some query-answer type,
and that MQ) and Mg) are query machine types with the following relations: (i) every
a-learning system for C is simulated by some Mg)-ma.chine, and (ii) every Mg)-ma.chine
is simulated by some a-learning system for C. Then, we may intuitively regard MP
and Mg), respectively, as an upper bound and a lower bound of the power of a-learning
systems for C.

- We first state the meaning of “simulation” precisely, and then define the “upper/lower
bound” notions. In the following definitions, let a be any answer-query type, and C =
(R, ®) be any representation class.

Since we are interested in learning systems, and each learning system takes a pair
(n,m) for input, we consider query machines that take a pair (0",0™) for input and
simulate a learnirg system on (n,m). (Usually, Turing machine’s resource complexity is

measured based on input length. In order to adjust to this convention, we choose tally
representations, i.e., (07,0™).)

Definition 3.1. Let b be any polynomial length bound. For any query machine M and
any a-learner S for C, M simulates S with a b-bounded teacher if (a) implies (b) for every

11

r € R and every n,m > 0. Conversely, if (b) implies (a) for every » € R and every
n,m > 0, then S with a b-bounded teacher simulates M.
(a) VT: b-bounded a-teacher for C

[(5, T(r))(n,m) outputs some m-representation for r].

(b) M®")(0™,0™) outputs some m-representation for r.

Definition 3.2. Let M0 be any query machine type.

(1) MO is an upper bound of the power of a-learning systems for C if for every a-learner
S for C and every polynomial length bound b, there exists some M()-machine that
simulates S with a b-bounded teacher.

(2) MO is a lower bound of the power of a-learning systems for C if for every MO)-
machine M, there exists some a-learner S and some polynomial length bound b such

that S with a b-bounded teacher simulates M.
As for upper bounds, we have the following general results.

Theorem 3.3. Let C' = (R, ®) be any representation class.

(1) PNPY s an upper bound of the power of (Mem; Sup[min])-learning systems for C.

(2) PP s an upper bound of the power of (Mem;Sub[min)], Sup[min])-learning systems
for C.

Remark. (1) and (2) respectively holds for any query-answer type weaker than

(Mem;Sup[min)]) and (Mem;Sub[min],Sup[min]). For example, PN?’ is an upper bound

of the power of (Mem;Equ)-learning systems for C.

Proof. Since both (1) and (2) are proved similarly, we prove only (1), and omit the proof
of (2).

"Let S be any polynomial time (Mem;Sup[min])-learner for C, and let b be any
polynomial length bound. We show that some &-bounded PNPY_machine simulates S
with a b-bounded teather. More precisely, the machine simulates § with the b-bounded

(Mem;Sup[min])-teacher T¢ for C' that answers as follows in the execution (S, Tc(r))(n,m):

for a membership query z (i.e., ‘z € ®(r)?"),
o |z| < b.(n +m) Az € B(r) — ‘yes’,
o [z|<b(n+m)Azgd(r) > ‘no’, and
o |z| > b(n+m) — ‘no’;

for a superset query ' (i.e., ‘®(+') D &(r)?),
o B(r/)Stntm) o P(7)Sblntm) _, ‘yes’, and

12

o P(r/)Stntm) 2 H(p)Sb(n+m) _, the lexicographically smallest element in
Q(T)Sb(n+m) - @(TI)Sb(n+m).

Then, by definition, it suffices to show some PNPX.machine M with the following property:
Vre€R, Vn,m >0 | M2 (07,0™) outputs (S, Te(r))(n,m) |

We first show that T¢’s answer to a superset uery is computed by some PNPs")-machine
q

M;; more precisely, Ml(I> r) (0",0™,r') gives the same answer as Tc(r) does to the superset

query r'. For any r € R, define L(r) by

L(r) = {(0,7',u) : u is a prefix of some element in u(r,r,1) },
where U(r,r/,1) is the set of strings u such that lul <1 and u € &(r) — &(+').

For any given 7/ and I, one can get the lexicographically smallest element in ®(r) —
®(r') of length I by using standard binary search w.r.t. L(r). Furthermore, by changing
! from 0 to b(n + m), one can obtain the lexicographically smallest counterexample to
the superset query ‘®(r’') D &(r)?’ if any counterexample exists within the length bound
b(n + m). Hence, using L(r) as an oracle, some PO-machine computes Tc(r)'s answer to
every superset query. On the other hand, some NP)-machine accepts L(r) using ®(r)
as an oracle. Thus, combining them, we obtain a PNPH.-machine M, such that Mlq'(')
computes Tc(r)’s answer to each superset query.

Now, with an oracle &(r), we simulate (S, Tc(r))(n,m) in the following way: (i) every
time S asks a membership query, just ask the query to the oracle ®(r), and (ii) every
time S asks a superset query r’, execute pr(')(O",O"‘,r’) and obtain the answer. It is

easy to show some PNPX.machine M achieves this simulation. That is, M is the desired

machine. 0O

Now we have some upper bounds on the power of learning systems, our next task
is to use them for inVestigating the learnability of a given representation class C. First

we show some general relationship between the learnability of C' and the complexity of

representation finding problems for sets in P/poly|[C)].

Theorem 3.4. Let C = (R, ®) be any one of the following four representation classes:-

DFA, NFA, CFG, and CIR. For any query-answer type a, let M0 be a query machine
type that is an upper bound of the power of a-learning systems for C. Then if some
A € P/poly[C] exists such that no MO-machine solves FIND-REP(A|C), then C is not

a-learnable.

13

Remark. C = (R, ®) can be any representation class that satisfies the following for

every A € P/poly[C].
g : polynomial, Vm > 0, 3r € RS™) [AS™ = §(r)].
It is not hard to show that DFA, NFA, CFG, and CIR have this property.

Proof. We show that if C is a-learnable, then for every A € P/poly[C], FIND-REP(A)
is solved by some MO-machine. (Throughout this proof, FIND-REP(A) means FIND-
REP(A4|C).)

Now assume that C is a-learnable; that is, there exist some a-learner S and polynomial

length bound b such that

VT : b-bounded a-teacher for C, Vr € R, Vn > [r], Vm >0

[(5,T(r))(n,m) outputs some m-representation for r I.

Since M0 is an upper bound of the power of a-learning systems for C, some M()-

machine M; simulates S with a b-bounded teacher. Thus,

VreR, Vo2 |r|, Ym >0

[pr(')(ﬂ", 0™) outputs some m-representation for r |.

Consider any set A € P/poly[C]. Let q be a polynomial and {rm}m>o0 be a set of
representations such that Vm > 0 [[r,] < g(m) A AS™ = ®(rm)] (see the above
Remark). We modify M; to define M, such that M3F(0™) = M{¥(09(™) 0™). Then for any
m 2 0, M§<"(0™) = M{<" (090, 0m) = MEC™)(0a0m) gm). Recall that MPUm)(gatm) gm)
is some m-representation for r,,; that is, it is an m-representation of A since &(r,,)<™
= AS™. Hence, for every m > 0, Mps" outputs an m-representation of A. Then, by

modifying M,, we obtain M, such that Mé“(O”‘)‘ = M{*"(0™). Clearly, M solves FIND-
REP(4). O

L.

Thus, from our upper bound results, we have the following observations.

Corollary 3.5. Consider any representation class ¢ = (R,).
L}
(1) If some A € P/poly[C] exists for which no PNPY_machine solves FIND-REP(4]|C),

then C is not (Mem;Sup[min])-learnable.
(2) If some A € P/poly[C] exists for which no PNP{_machine solves FIND-REP(A|C),

then C is not (Mem;Sub[min],Sup[min])-learnable.

Remark. For example, letting C = CIR, we have the following relations.

14

(3) If some A € P/poly exists for which no PNPX_machine solves FIND-REP(A), then

CIR is not (Mem;Sup[min])-learnable.
(4) If some A € P/poly exists for which no PNP’_machine solves FIND-REP(A), then

CIR is not (Mem;Sub[min],Sup[min])-learnable.

This corollary suggests one way to prove nonlearnability for a given representation
class C. For example, in order to prove CIR is not (Mem;Sup[min])-learnable, it suffices
to show some set A € P/poly whose representation finding problem is not solvable by

any PNPU. machine. Indeed, the following theorem states that we have such a set for

representation classes DFA, NFA, CFG, and CIR.

Theorem 3.6. There exists 4, € P/poly[DFA] such that

(1) no PNPY_machine solves FIND- -REP(A,|DFA),

(2) no PNPY_machine solves FIND- -REP(A,|NFA),

(3) no PNPR_machine solves FIND. -REP(A4,|CFG), and

(4) no PNPR.machine solves FIND- -REP(A4,|CIR).

Remark. Since P/poly[DFA] C P/poly[NFA] C P/poly[CFG] C P/poly[CIR], A, be-
longs to P/poly[NFA], P/poly[CFG], and P/poly[CIR].

Proof. Let T be any tally set (i.e., a subset of 0*) that is not in the class PNP, (Such a
set certainly exists in DTIME(22") because PNP C DTIME(2r°Y) & DTIME(22").)

Let {M;};>, be an enumeration of PNP)-ma.chmes where each M; consists of P()-
machine M;, that uses NP{)-machine M, as an oracle. For any i > 1 and m > 0, let
us consider the execution of MX" on input 0™. In the execution, M;; asks some queries
Yi1, ¥i,2y ... to M2, and for each y; j, M;, gives an answer by asking nondeterministically
to the oracle set £*. Notice that for each ¥i.; and for each nondeterministic computation
path on y; j, M;, asks one query, and it enters a.n accepting state if and only if the query
is in the oracle set. Thus, M%, > always accepts y; ;.

Now we define A, as follows. For any m > 0 and any ¢,7 > 1, let v, ,i,j be the query
string asked by M, , on the leftmost accepting path in the computation for the jth query
Yi; asked by M; ;. For any m > 0, let w,, to be any string such that

.

Wn € L™ —{ Umij: 1 <i<mALl<j<mlsm)}
(but w,, is undefined if no such string exists). And define A, by
A = ¥ —{wn:0"eT}

15

Clearly, every AS™ is accepted by some polynomial size dfa. That is, 4; € P /poly[DFA.

In the following, we show that no PNP_machine solves FIND-REP(A, | CIR). (The same
argument also proves the theorem for the other representation classes.)

We assume to the contrary that some PNPgﬂ)-machine M; solves FIND-REP(Al).

First observe that for all sufficiently large ™, Wm is defined, and M;(0™) halts within
m!°8™ steps. For any such large m, consider the execution M on 0™. We show that
it is the same as MF"(0™). Recall that Yi1)--, Yik (where & < m!°6™) are the queries
asked by M;, in the execution, and Urm,i,1y ++-y Um,i k are the queries asked by M; ; on some
nondeterministic path in the computation for Yi1y -y Yik- Consider any 5,1 < j < k.
Note that vp,i; # wm; hence, v, ; € A;, and M,-’:l; accepts y; ;. (Recall that M;, is an
NPQ-ma.chine.) On the other hand, because of the monotonicity of M;,, if MAz‘ accepts
Yij» so does M. Thus, M/} accepts y;, if and only if MY accepts y; ;. Hence, the
execution of M/ on 0™ is the same as that of MF" on 0™, and thus they both yield the
same output. Note that one can simulate MF’ without using any oracle. Therefore, there
exists some PNP-machine M that, on a given input 0™, computes M,-A‘(O"'), i.e., a circuit
representation of AS™,

Using this M, we can construct the following machine My for T.

The execution of My on input 0™:

begin
r = M(0™);
search nondeterministically some w € £™ s.t. w & ®.ir(r);
accept the input if and only if such w exists

end.

Then clearly M7 is PNP-machine that accepts T. That is, T' € PNP, A contradiction. [

Corollary 3.7. None of DFA, NFA, CFG, and CIR is (Mem;Sup|[min])-learnable.
Remark. For query-answer type (Mem;Sub[min]), the argument similar to the above

proves theorems corresponding to Theorem 3.3, 3.5, and 3.6. Thus, none of DFA, NFA,
CFG, and CIR is (Mem;Sub[min])-learnable.

We have demgnstrated one way to get non-learnability results by using observation
like Corollary 3.5. It should be mentioned here that the above non-learnability results are

also provable by some direct argument [Ang88|.

An interesting open problem is to get new non-learnability results following our strat-

egy. For example, from Corollary 3.5 (4), the following condition is sufficient to prove

CIR is not (Mem;Sub[min],Sup[min])-learnable:

16

(*) Some A € P/poly exists such that no PNP\’-machine solves FIND-REP(A).

Thus, the existence of such A is an interesting open question [GW91]. On the other hand,
one may suspect that condition (*) is too strong and may not be necessary for obtaining
the non-learnability result. In the next section, however, we prove that the converse of
Corollary 3.5 (4) holds for some representation subclass RZ7 of R.;,. That is, in order to

prove non-learnability of R(;¥, condition () is indeed necessary.

4. Lower Bounds and Their Applications

In this section, we show some lower bound results and their applications. For exam-
ple, it is proved that some (Mem;Sub[min],Sup[min])-learning systems can achieve PNP{’-
computation when they are used to learn some subclass RZ? of R.; that is, in this
context, learning systems are at least as powerful as PNP g)-ma.chines, or PP s a lower
bound of the power of learning systems. As a consequence of this lower bound result,
we show that the converse of Corollary 3.5 (4) holds for R¥; that is, if R™P is not
(Mem;Sub[min],Sup[min])-learnable, then there is some B in P/poly such that no PNP{'.
machine solves FIND-REP(B|CIR).

Here we consider the problem of learning sets with certain structure, namely, repetitive

sets.

Definition 4.1. A subset of £* is repetitive if it is of the form L UL#LUL#L#LU...
for some L C {0,1}~.

For each L C {0,1}*, define Rep(L) to be L U L#L U L#L#L U Hence, a set D
is repetitive if and only if D = Rep(L) for some L C {0,1}*. Let RI? be the set
of representations in R,;, that denote repetitive sets. In the following discussion, we
inw;estigate the power of learning systems when learners can assume that a target set has
this repetitive structure. Although this assumption is important for obtaining our lower
bound results, it can be fepla.ced by some similar assumption on the target set structure.

First we consider the situation where learners are given some two elements of a tar-
get set in advance, and show that even (Sub,Sup;)-learning systems have the pney.
computational power. (Recall that by (Sub,Sup;), we mean learning systems that use
only subset and superset yes/no-queries. Also notice that PNP!’ s an upper bound of the

power of many kinds of learning systems including (Sub,Sup;)-learning systems.)

Theorem 4.2. For any PNP{'_machine M, there exist a polynomial time Sub,Sup;)-
y p

learner S for CIR and a polynomial length bound b such that

17

VT : b-bounded (Sub,Sup;)-teacher for CIR,
Vre B2, Va2 |r|, Ym > 0 Yy, y, € {0,1}5™ N &, (r)
[M2 (0", 0m) = (S, T(r))(m, m, 31, 32) |-
Remark. For any input (n,m,y:,3.), b(n + m) is used for the length bound.

Intuitively, this theorem claims that, in the above situation, every PNP g)-ma.chjne can
be simulated by some polynomial time (Sub,Sup;)-learner. The key idea is the way to
simulate NP{)- (resp., N Pg-) computation by using superset (resp., subset) queries, which
is illustrated in the proofs of the following lemmas.

For the following discussion, we extend the notion of learning system so that learning
systems can be used as acceptors. For any learner S and teacher T, a learning system
(S,T) is regarded as an acceptor if S always outputs 0 or 1 on every input. Here both the
time bound of S and the length bound for T are determined depending on input length.

Lemma 4.3. For any NPU-acceptor M, there exist a polynomial time (Sup;)-learner S
for CIR and a polynomial length bound b such that

VT : b-bounded (Sup;)-teacher for CIR,
vr € Rl::f’ Vz € 2‘1 Vy17y2 € {07 1}* N Qcir("')
[M®eir(") accepts 2 > (S, T(r))(z,y1,y2) accepts z].
Proof. Recall our assumption on NP{)-acceptors (see §2.2). The computation of NP{).

machine M is specified by some polynomial Py and some polynomial time computable

function fj; in the following way:

VX,Vz [M¥ accepts z3w € {0,1}Pa (=) [fu(z,w) e X]].

We also assume some polynomial gy such that ‘M“’(z) halts within ga(|z|) steps. Thus,
for every w € {0, 1}”““"?, the length of fas(z,w) is at most gm(|z]).

We first develop ;.technique for simulating M by using superset queries. Let X c ¥
be any oracle set. Here we assume that X = Rep(Z) for some Z € {0,1}* (ie., X is
repetitive) and that z; and z; are two elements of Z.

For any z, define Q(z, 29, ;) as follows:

Qz,20,21) = { wm# - #utfu(z,w) : (where k = pp([z]))

(1) Vi,1 <i<k[u € {z,2}], and
(2) w is a string in {0, 1}* such that Vi,1< i < k [% = zug) |,
(where w(i) denotes the ith symbol of w) }.

18

For the sake of simplicity, an element u,# - - - #urdt fu(z, w) of Q(z, 20, 21) is abbreviated
as u#f. It should be noticed here that the above w is uniquely determined for every
u#f € Q(zrzO, 21).

Let Q(z, z0,21) denote the set £* — Q(z,z0,21). Then we have the following relation
(let k = par(2])):
M¥ accepts z Jw € {0,1}* [fu(e,w) € X I,
o Jwe (0,11 [fule,w) € Rep(2)],
> there exists u#f in Rep(Z) N Q(z, z, 21),
© some string exists in Rep(Z) — Q(z, 20, 1),
o X —Q(z,20,21) # 0,

> Q(.’B,Zo,zl) 2 X.

Thus, a yes/no answer to superset query ‘@m 2 X7 determines whether z is
accepted by MX. This is the idea of simulating M by using superset queries.

Now define a learner S and a bound b that satisfy the lemma. First, define b to
be a polynomial so that for every z € ¥* and every y1,y2 € {0,1}*, b(|(z,y1,32)|) is
larger than the length of strings u#f in Q(z,y1,¥2). Clearly, such a polynomial b exists
because [u#tg| < pur([z]) - (max{|y1], |y2|} + 1) + qu(|z|). Next we define S. Let T be
any b-bounded (Sup;)-teacher for CIR. Consider any r € R} and any input (2,91,2)-
Since r € R}, ®.ir(r) = Rep(Y) for some Y C {0,1}*; furthermore, since y;,y, €
{0,1}* N Rep(Y'), we can assume that y,,y, € Y. Now our S (with teacher T(r) and
on input (z,y:,¥2)) executes as follows: S generates the representation of m
(i.e., a string 79 € R, such that ®.ir(rg) = m), and asks superset query rg
(ie, ‘Q(z,y1,52) 2 ®cir(r)?’). Then S accepts the input if and only if it receives a
negative answer to the query. Notice that if a counterexample to the query exists, it
sh(;uld be found within the length bound. Hence, S receives a negative answer if and
only if m 2 ®cir(r). Thus, it follows from the relation established above that

(8,T(r)) accepts (z,g?{,yg) e M®eir() accepts z. Therefore, S satisfies the lemma. 0O

Following an argument similar to the above, we have the following lemma.
Lemma 4.4. For any NPg-acceptor M, there exist a polynomial time (Sub;)-learner S
for CIR and a polynomial length bound b such that

VT : b-bounded (Sub;)-teacher for CIR,
Vre R:?f, Vz € 2.7 Vy17y2 € {071}’ n (pcir("')
[M®eir(r) accepts z o (S, T (7)) (=, y1,y2) accepts z |.

19

Proof. For a given N P,(?)-ma.chine M and any repetitive oracle set X, let Z and Q(=, 20, 21)
be the same sets in the proof of Lemma 4.3. Then we have the following relation (let

k = pu(|=])):
M¥ accepts z « 3w € {0, 1} [fu(z,w) € X],
o Jwe {Oal}k [fM(sz) ¢ Rep(Z)]7
> there exists u#f in Q(z, zo,2;) — Rep(Z),
= Q(z,20,21) Z X.

Thus, a yes/no answer to subset query ‘Q(z,20,21) C X?’ determines whether z is

accepted by MX. The rest of the proof is similar. O

Proof of Theorem 4.2. Let M be any PNPS)-machine; that is, M consists of a P()-
machine M, that uses an NPg)-acceptor M, as an oracle. First we show that M is
simulated by some PO)-machine M, by using two oracle machines, N P,(n)-machine M, and
NPI(i)-machine M;.

;From our assumption on NPg)-machines (see §2.2), we have some polynomial p,

polynomial time computable function f, and polynomial time computable predicate E

such that
VX, Vz [M{¥ accepts 23w € {0,1}#(=) | E(z,w,xx(f(2,w)))]].

Then, by modifying M,, we can construct N P,(n)-ma,chine M, and NPg-machine M; that
have the following properties for the above P, f,and E:

for every oracle set X and every input z,
M accepts z3w € {0,1}#(= [E(z,w,1) A f(z,w)€ X], and
M3 accepts z3w € {0,1}»(=) [E(z,w,0) A flz,w)¢g X].

Hence, for every oracle set X and every input z,
M accepts M\ accepts T M3 accepts z.

Thus, clearly some PO-machine M, simulates M by using M, and Mj; as oracles.

{From Lemma 4.3 and 4.4, we have some S, and b, satisfying Lemma 4.3 for M,, and
S3 and b3 satisfying Lemma 4.4 for M. Using them, we define S and b that satisfy the
theorem for M.

First consider S. For a given input (nym,y1,¥2), S simulates M,(0",0™) as follows.

For each time, M, queries z to M,, S executes Sz on input (z,y;,y;) thereby obtaining

20

the answer to the query. Similarly, S gets answers to queries to M3 by using S3. Then
it is clear from the above discussion that S simulates M correctly (if the length bound
b is appropriately defined). Furthermore, since M, S;, and S5 are polynomial time, the
simulation halts within some polynomial time.

Next we define b. Consider again the simulation of M,(0%,0™) by S, where S is given
(n,m,y1,y2) as an input. We may assume that [¥1], ly2] < m, and that M, never asks a
query longer than p(n + m) for some polynomial p. In order to receive correct answers

from any b-bounded teacher during the simulation, it suffices that b satisfies the following

inequalities:

for every query « asked to M, during the simulation, b;(|(z,y1,y2)]) < b(n + m), and
for every query « asked to M; during the simulation, b3(|(z,y1,¥2)|) < b(n + m).

Now define b(n + m) to be max{bs(dpa;(p(n + m) + 2m)), bs(dpair(p(n + m) + 2m))},
where dy,;r is the constant for our pairing function (see §2). Then for every query z
asked to M, during the simulation, ba(l(2, 91, 92)]) < bodpair(p(n + m) + m + m)) <
b(n + m). Similarly, for every query z asked to M; during the simulation, ba(|(z,y1,92)])
< b3(dpair(p(n +m) + m + m)) < b(n + m). Hence, b satisfies the above inequalities. O

Next consider more general case, i.e., the case where learners are not given any element
of a target set in advance. Here we have the following simple strategy: use two superset
min-counterexample-queries to get two necessary elements of a target set, and then with
these two elements, achieve the simulation discussed above. We essentially follow this
strategy, but we use some technique to avoid min-counterexample queries.

The following proposition, which is of interest by itself, claims that any superset

(resp., subset) min-counterexample query is simulated by some superset (resp., subset)

yes/no-queries.

Proposition 4.5. For any r € R.;., consider the process of learning r. Let b be the

length bound in the process.

(1) For any superset query 7/ (i.e., ‘@eir(r) 2 ®.ir(r)?’), one can obtain the lexicograph-
ically sma.llesi.: counterexample (if it exists in £<%) by using some superset yes/no-
queries.

(2) For any subset query 7’ (i.e., ‘@ (r') C ®.i-(r)?’), one can obtain the lexicograph-
ically smallest counterexample (if it exists in ¥<b) by using some superset yes/no-
queries.

Remark.

21

(1) Part (1) (resp., (2)) holds for any representation class C = (R, ®) satisfying the
following (a) and (b) (resp., (a) and (c)). Clearly, DFA and CIR satisfy (a), (b), and
(c), and NFA and CFG satisfy (a) and (b).

(a) A representation r € R of Upper(z) is polynomial time computable from z € X*.
Where Upper(z) is the set of strings that are lexicographically larger than or equal

to z.
(b) A representation r € R of ®(r1) U ®(r;) is polynomial time computable from r;

and r,.
(c) A representationr € R of &(r,) — ®(r2) is polynomial time computable from r,

and r,.
(2) As an immediate corollary, we have the following relation: CIR is (Mem;Sub[min),

Sup(min])-learnable if and only if it is (Sub,Sup;)-learnable.

Proof. We prove part (1); the proof of part (2) is similar and thus omitted.

We consider the process of learning r, and let b be the length bound in the process.
Let 7’ be a superset query to which we want to compute the lexicographically smallest
counterexample. We may assume that some counterexample exists in X<°. (Otherwise,
we get ‘yes’ to the superset yes/no-query 7/ .} Let yo be the lexicographically smallest
counter example; that is, yo is the smallest element in Pir(r)Em — Qi (r)sm,

For any y € X*, let r, be a representation of Upper(y) U ®.ir(r’). Then, for every
Y1 < Yo and y > yo, we have ®.;(ry,) O &, (r) and P.ir(ry,) 2 Bcir(r); hence, the
answer to superset queries r, and 7, is respectively ‘yes’ and ‘no’. In particular, ‘yes’ to
7, and ‘no’ to rps41 (where A denotes null string). Thus, out task is to obtain y such that
superset queries 7y and 7y receive respectively ‘yes’ and ‘no’ (where 3’ is the next string

under the lexicographic order). Such y is computed by the following binary search:

begin
yui= A yp = 04
while (3,) < v do
Yy := the half point between y; and ys,;
ask superset query r,; (i.e., ‘®.i(r,) D ®.ir(r)?)
if ®2i.(ry) 2 ®.4(r) theny, := yelse y, ;= y
end-while

output(y)
end. O

Now we are ready to prove the following lower bound.

22

Theorem 4.6. PNP{’ is a lower bound of the power of (Sub,Sup;)-learning systems for
CIR on R;P.

Remark. That is, for every PNP g)-ma.chjne M, there exist a polynomial time (Sub,Sup;)-
learner S for CIR and a polynomial length bound ¥ such that S with a b'-bounded teacher

simulates M. Obviously, the same lower bound holds for any query-answer type stronger

than (Sub,Sup;), e.g., (Mem;Sub[min],Sup[min)).

Proof. As explained above, it suffices to show the way to get two elements y;,y, €

{0,1}5™ of a target set by using superset min-counterexample-queries. The following

learner S achieves this task.

(Let (n,m) and &_;.(r) be given input and target set.)

(1) S generates r; such that ®cir(r1) = 0 and asks a superset query r, (i.e., ‘9 D
®cir(r)?’). If any counterexample exists, then a teacher gives the lexicographically
smallest counterexample y;, which clearly satisfies » € {0,1}5"N&.i(r). Otherwise,
S can output r; as an m-representation for r.

(2) S generates r, such that ®cir(r2) = Rep({y:1}), asks a superset query r; (i.e.,
‘Rep({y1}) 2 ®.ir(r)?’). The rest is the same as (1). o)

Now we use the lower bound result to relate the learnability of R{¥ to the complexity

of representation finding problems for sets in P/poly. Here the following proposition,

which corresponds to Proposition 3.4, states one general relationship between them.

Theorem 4.7. Let C = (R, &) be any one of the following representation classes:- DFA,
NFA, CFG, and CIR. For any query-answer type a, let M) be a query machine type that
is a lower bound of the power of a-learning systems for C'. Then if C is not a-learnable,
then some B € P/poly[C] exists such that no M()-machine solves FIND-REP(B|C).
Remark. C = (R, ®) can be any representation class that satisfies the following con-
ditions with some constant d¢, some polynomials pc and g¢, and some polynomial time
deterministic transducer M.
(a) Vri,ma € R ®(r;) C B A B(rp) C B2
= I3 € R [|ra] < [m[2% 4 po([ra]) A B(rs) = $(r1) U &(ry)]].

(b) Vri€ R, VI, > 0, 3r, € R [[ra] < qo(jra| + 1y + 1) A B(r2) = 01 #®(ry)Sh).
(c) Foranygivenr; € R thatis an l4+m+1-representation of X U0'#Y for some X c z

and Y, M¢(r,) outputs some m-representation 7, of Y. (That is, P(ry)SHm+1 =

X UO'#Y and &(r,)S™ = Y.)
It is not hard to show that DFA, NFA, CFG, and CIR have this property.

23

Proof. We assume that FIND-REP(B) is M0-solvable for every B € P/poly[C], and
show that C is a-learnable. (Throughout this proof, by FIND-REP(B) we mean

FIND-REP(B|C).)
First we show the following fact.

Fact 1. Let p be any polynomial. There exist some finite set X and some MO-machine
M such that for every finite set Z € P/p(m)[C], M solves FIND-REP(X U 2).

Proof of Fact 1. Suppose otherwise. Then by a standard stage construction, we
can define an infinite sequence of finite sets Z;, Z,, ... in P/p(m)[C] such that no MO-
machine solves FIND-REP(Z), where Z = Ui>1Z;. Furthermore, we may assume that
Zy S xnssh 7, C p9sS<t and so on, for some for some s; < #;, < s < 2,-- -, and that
ti < loglog sy, for every 7 > 1. Hence, Z<™ C Uici<k Zi U Z,§+";, where t; < loglog m.
Thus, from condition (a) in Remark above, we have some € R such that Z<™ = &(r)<m,

and
7|

< (e ((m]2den + po(|re]))2dets + pc(|rs])) - - -)2dct 4 pe(|™])
< e (T pe(lrl)) + pe (), :

where 7; and 7’ are the shortest representations for Z; and Z,§+"; respectively. Note here
that each Z; € P/p(m)|[C]; hence, |r;| < p(t;) and [7'] < p(m). Thus, |r| < (2kdctek +
1)p(m), which is less than g(m) for some polynomial g- (Recall that k < ¢ < loglog m.)
Therefore, Z<™ has a representation of length < g(m). That is, Z € P/poly[C]. This
contradicts our assumption that FIND-REP(Z) is MO-solvable for every Z ¢ P/poly[C].

O (Factl)

Apply this fact for the polynomial gc(2m). Then we have some finite set X and
some MO-machine M, such that M solves FIND-REP(X U Z) for every finite set Z &
P/gc(2m)[C]. Let Iy be the length of the longest string in X. We use M; to define M,

that executes as follows:

The execution of M, on input (07, 0™) relative to Y

begin
l:=1y -l.- m+ n;
1 1= MXYZ(0!+m41) (where Z = 0'#Y<m);
ry = Mc(r);
output r,
end.

24

Clearly, M, is an M(-machine. In the following, we show that M, learns C correctly.
That is, for any r € R, n > |r|, and m > 0, consider the execution of M; on (0",0™)
relative to &(r), and show that M, yields some m-representation for r. In the execution,
M, is executed on input 0'+™+1 relative to XUZ, where Z = ¢! #®(r)S™. Now we estimate
the descriptive complexity of Z. ;From (b), we have some (exact) representation r; of
Z such that |rz| < go(lr] + 1+ m) < go(l+ m + n) < gc(2l). Hence, for any m’ > |,
Z<™' has an m !-representation, namely, rz, of length < go(2m’). (Notice that rz is an

m/-representation for any m’.) On the other hand, if m’ < I, then Z5™' is empty, and
we may assume that empty set has a representation of length < g¢(0). Thus, Z is a
finite set in P/qc(2m)[C]. Then it follows from our assumption on M; that M; solves
FIND-REP(X U Z). Hence, r; (= MXYZ(04m+1)) is an | + m + 1-representation for
X U Z; ie., ®(r)SHm™H+1 = (X U Z)SH™+1, Note that X U Z (= X UO0'#3(r)sm) C
TsHm+l. hence, ®(ry)SH™H = X U 0'#®(r)<™. Now from (c), ry (= Mc(r1)) satisfies
that ®(ry)S™ = &(r)<™; that is, r; is an m-representation for r.
Finally, since M0 is a lower bound of the power of a-learning systems for C, the

computation by M, can be simulated by some a- learning system. Therefore, C is a-

learnable. O

As a corollary to Theorem 4.6 and 4.7, we can prove the converse of Corollary 3.5 (2)

for some representation subclass of CIR.

Corollary 4.8. If R is not (Sub, Sup;)-learnable, then some B € P/poly exists such

that no PNP{’.machine solves FIND-REP(B).
Remark. The corollary holds for any query-answer type stronger than (Sub,Sup;).

. In this section, we have discussed the problem of learning (some subclass of) CIR.
Some of our results hold for the other representation classes such as NFA and CFG. As
a final remark of this_‘secﬁion, we explain them considering NFA. (The same results hold

for CFG.)

Let R be the set of representations in R4, denoting repetitive sets.

Theorem 4.9. PNPY is 5 lower bound of the power of (Sup;)-learning systems for NFA

on RP.

Note that this theorem corresponds to Theorem 4.6, and that it is provable in the

same way by using the following lemma and the one corresponding to Proposition 4.5.

25

Lemma 4.10. For any NPU-acceptor M , there exist a polynomial time (Sup;)-learner S
for NFA and a polynomial length bound b such that

VT : b-bounded (Sup;)-teacher for CIR,
Vr€ RiZ, Ve € X Vyny € {0, 1}*n @cir("')
[M2cir(r) accepts z (S, T(r))(z,y1,¥2) accepts]

Proof Outline. The proof is essentially the same as the one for Lemma 4.3. Here we
explain only the point that is particular in this proof.

Let M be any NP{)-machine that is to be simulated. Recall that the key idea is that
one can simulate M by using superset queries; let us see how the simulation works in this
context. We use the same symbols as the proof of Lemma 4.3: M is specified by far and
pm- X C X* is any oracle set, where X = Rep(Z) for some Z C {0,1}*. 2 and z are
any elements of Z. And z is any input string for M.

In the previous proof, the superset query ‘m 2 X7 is used to determine
whether MX accepts z. Note that in order to ask this superset query, a learner has to
present a representation of m- Thus, in our case, m must have a nfa
representation that is polynomial time computable from T, 2o, and z;. However, it is
impossible in general because the size of nfa for m is not polynomially bounded.
Here we introduce a new set R(z, zg, z1), which is similar to m, such that some
polynomial time algorithm computes an nfa representation for m from z, 2, and
z1.

Define R(z,20,21) to be { i FideH fu(z,w) tw € {0,1}Pm(=D) } " where id,,
..y td; is the sequence of M’s instantaneous descriptions on nondeterministic computa-
tion path w for input z. We assume that each instantaneous description is encoded in
Re.p(Z) by using, e.g., zo#21 and z;#z, as alphabet symbols. Thus, id#f (= id,#---
#idi# far(z,w)) is in Rep(Z) if and only if fu(z,w) € X (= Rep(Z)). Hence, by the
same argument as before, we can proves that M~ accepts z if and only if m 2X.

Now consider the nfa acceptor of R—(:z:;(rzl_) Note that a given v € £* is not in
R(z, 20, 2,) if and only if either of the following three conditions holds: (i) v is not of the
form id#f, (ii) ve = id#f but id does not denote any consistent computation, or (iii)
v = id# f and id denotes some computation but f is not queried on the computation. It
is not hard to construct an nfa of polynomial size that accepts v if one of (i) — (iii) holds.
Thus, some polynomial time learner ask superset query ‘m_zl_) C X7?'. The detail is

left to the reader. 0O

26

Notice that there is no polynomial bound on the size of nfa that accepts the above

R(z, zy,2,). Thus, the lemma corresponding to Lemma 4.4 is left open.

5. Concluding Remarks

We discuss some of the related open problems. In this paper, some close relationship has
been shown between polynomial time query learnability and the difficulty of representation
finding problems. Thus, one obvious question is the complexity of representation finding
problems. To be more precise, take CIR for example of representation classes. Then our

question is to prove/disprove the following:

(*) Some A € P/poly exists such that no PNP{’.machine solves FIND-REP(A).

Note that we have the following straightforward observation on the complexity of FIND-
REP(4).

Proposition 5.1. For every L € P/poly, FIND-REP(L) is solved by some PO-machine
by using PREF-REP(L) as an oracle, and PREF-REP(L) is in Z‘;‘IL.

Thus, () implies Aj ' g Eg‘{‘ (because PREF-REP(A) € 2;‘1’4 - A;’IA). One interesting

open problem is to prove (%) from Agp_'{{ S izEa

Related to the above questions, we have some interesting open problem on the struc-
ture of the polynomial time hierarchy. As a generalization of the P # NP conjecture, it

has been conjectured that
A]13(= P) # Ef(ZNP)i Ag # 257 A:l; # E:};’

Our learnability problems concern the separation at the second level. More specifically,
the above () concerns the separation by some P/poly oracle. Hastad [Has87] constructed
some oracle B that makes the polynomial time hierarchy infinite; that is, for all k > 1,
AE'B #)3,1:'3. However, his oracle B is not in P/poly. Indeed, for any higher level (i.e.,
the kth level for any k > 3), it is well-known (see, e.g., [Sch85]) that the separation by
some P/poly oracle implies the real separation. (That is, for any k > 3, 3L € P/poly
[Apt # sPL] ir;lplies AL # XF.) Thus, one interesting open problem here is whether
the same relation holds for the second level. If so, then showing (*) is at least as hard as

proving Af # EF. Notice that there is an oracle B € P/poly such that A}"® # £PP (je.,
P2 £ NP) [BGS75).

27

References

[Ang88]

[Ang89]
[AK91]

[BGS75]
[BDG8S]

[GW1]

[GGMS86]
[Has87]

[ILL89Y]
[KV89]
[PW8S]

[Sch85]
[Sto77]

[Val84]

D. Angluin, Queries and concept learning, Machine Learning 2 (1988), 319-
342.

D. Angluin, Equivalence queries and approximate fingerprints, in “Proc. 2nd
Annual Workshop on Computational Learning Theory”, Morgan Kaufmann
(1989), 134-145; the final version will appear in Machine Learning.

D. Angluin and M. Kharitonov, When won't membership queries help?, in
“Proc. 23rd Annual ACM Sympos. on Theory of Comput.” ACM, New York
(1991), 444-454.

T. Baker, J. Gill, and R. Solovay, Relativizations of the P =? NP question,
SIAM J. Comput. 4 (1975), 431-442.

J. Balcdzar, J. Diaz, and J. Gabarré, “Structural Complexity I”, EATCS
Monographs on Theoretical Computer Science, Springer-Verlag (1988).

R. Gavalda and O. Watanabe, On the computational complexity of small de-
scriptions, in “Proc. 6th Structure in Complexity Theory Conference”, IEEE
(1991), 89-101. ,

O. Goldreigh, S. Goldwasser, and S. Micali, How to construct random func-
tions, J. ACM 33 (1986), 792-807.

J. Hastad, Computational limitations for small-depth circuits, Ph.D. disser-
tation, MIT Press. (1987).

R. Impagliazzo, L. Levin, and M. Luby, Pseudo-random generation from one-
way functions, in “Proc. 21st Annual ACM Sympos. on Theory of Comput.”,
ACM, New York (1989), 12-24.

M. Kearns and L. Valiant, Cryptographic limitations on learning Boolean
formulae and finite automata, in “Proc. 21st Annual ACM Sympos. on Theory
of Comput.”, ACM, New York (1989), 433-444.

L. Pitt and M. Warmuth, Reductions among prediction problems: on the dif-
ficulty of prediction automata, in “Proc. 3rd Structure in Complexity Theory
Conference”, IEEE (1988); the final version will appear in J.C.S.S.

U. Schéning, “Complexity and Structure”, Lecture Notes in Computer Science
211, Springer-Verlag (1985).

L. Stockmeyer, The polynomial-time hierarchy, Theoret. Comput. Sci. 3 (1977),
1-22.

L. Valiant, A theory of the learnable, C. ACM 27 (1984), 1134-1142.

28

[Wat90]

[Wat91]
[War89]

O. Watanabe, A formal study of learning via queries, in “Proc. 17th Inter-
national Colloquium on Automata, Languages and Programming”, Lecture

Notes in Computer Science 443, Springer-Verlag (1990), 137-152.

O. Watanabe, A framework for polynomial time query learnability, manuscript.

M. Warmuth, Towards representation independence in PAC learning, Lecture
Notes in AI 397, Springer-Verlag (1989), 78-103.

29

