
Mathematical Programming 35 (1986) 225-235 
North-Holland 

ON THE EXPECTED NUMBER OF LINEAR 
COMPLEMENTARITY CONES INTERSECTED BY 
RANDOM AND SEMI-RANDOM RAYS 

Nimrod MEGIDDO 
The IBM Almaden Research Center, 650 Harry Road, San Josi, CA 95120, USA 
and Department of Statistics, Tel Aviv University, Tel Aviv, Israel 

Received 30 December 1984 
Revised manuscript received 21 August 1984 

Lemke's algorithm for the linear complementarity problem follows a ray which leads from a 
certain fixed point (traditionally, the point (1,. . . , I ) ~ )  to the point given in the problem. The 
problem also induces a set of 2" cones, and a question which is relevant to the probabilistic 
analysis of Lemke's algorithm is to estimate the expected number of times a (semi-random) ray 
intersects the boundary between two adjacent cones. When the problem is sampled from a 
spherically symmetric distribution this number turns out to be exponential. For an n-dimensional 
problem the natural logarithm of this number is equal to ln(r)n + o(n), where T is approximately 
1.151222. This number stands in sharp contrast with the expected number of cones intersected 
by a ray which is determined by two random points (call it random). The latter is only (n/2)+ 1. 
The discrepancy between linear behavior (under the 'random' assumption) and exponential 
behavior (under the 'semi-random' assumption) has implications with respect to recent analyses 
of the average complexity of the linear programming problem. Surprisingly, the semi-random 
case is very sensitive to the fixed point of the ray, even when that point is confined to the positive 
orthant. We show that for points of the form (E, E', . . . , E " ) ~  the expected number of facets of 
cones cut by a semi-random ray tends to in2+2n when E tends to zero. 
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1. Introduction 

The linear complementarity problem (LCP) is the following: Given M E Rnx" and 
q E R", find z, w E Rn such that 

w = M z + q ,  wTz=O,  Z Z O  and W Z O .  

The LCP has received during the past fifteen years much attention within the 
mathematical programming community. The reader who is not familiar with it may 
consult [5] for background and references. 

The linear programming problem can be formulated as an LCP and Lemke's 
algorithm, which we describe below, always solves it (whereas it may fail in general). 
Smale [ l o ] ,  [ l l ]  analyzed the average performance of Lemke's algorithm when 
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applied to the linear programming problem. In the context of linear programming 
this algorithm is also known as the 'Self-Dual Simplex Algorithm' [4]. Smale's 
analysis yields an upper-bound which is quite different from bounds recently 
obtained by others [I,  61 for other related expected values. Murty [8] proved that 
the LCP may require an exponential number of steps in the worst-case. Some results 
on the average LCP are given in [7], [9] and [12]. Even though Lemke's algorithm 
does not always solve the linear complementarity problem, the results of the present 
paper suggest that its average number of steps is exponential. We show that the 
expected number of basic solutions relative to points on the line connecting the 
starting point e and the given vector q is exponential. 

2. Background 

We now describe briefly what is called 'Lemke's algorithm'. First, we note that 
the LCP may be interpreted as a problem of inverting a piecewise linear mapping 
F: Rn + Rn as follows. Given x = (x,, . . . , x , ) ~ ,  let x t  = max(xi, O), x; = min(xi, 0) 
(i  = 1, .  . . , n) and x+ = (x:, . . . , x:)~ and x = (x;, . . . , Given M, define 

F(x)  = Mx++ xp. 

It is easy to verify that by identifying xf with z and -x- with x we obtain an 
equivalent description of our LCP: Given M  and q, find x such that F(x)  = -q. If 
q 3 0 then we may select x = -q as a solution since F coincides with the identity 
on the negative orthant. 

Let e = (1, . . . , I ) ~ E  Rn. The algorithm starts from -e and inverts F along the line 
segment connecting -e with -9. The algorithm succeeds only if Fp'[(l - t)(-e)+ 
t(-q)] # 0 for every t E [0, 11. When the algorithm succeeds the effort is bounded 
by the number of orthants R~ r R" ( R "  = {x E Rn: xi 0 if i E S and xi < 0 otherwise)) 
such that the line segment [-e, -91 intersects the image of R S  under F. If the 
algorithm fails then the effort prior to the failure, namely, the number of pivot-steps, 
is bounded by the number of orthants crossed by the inverse image up to that point. 
Smale [lo] argued that the number of these orthants is equal to the number of facets 
of orthants, whose images under F intersect [-e, -q], plus one. Now, the restriction 
of F to R~ is linear with an underlying matrix M S  defined as follows. The ith 
column of M S  is equal to the ith column of M  if i E S ;  otherwise, the ith column 
of M S  is equal to -ei (i.e., a unit n-vector with a negative unity in the ith position). 
As observed by Smale, F(RS)  n (-e, -q] # 0 if and only if -q belongs to the cone 
spanned by the columns of M S  together with e. 

An orthant-facet RS*' is defined by RS,' = R S  n {XE R": xi = 0). Obviously, 
F(RSi)  n (-e, -q] # 0 if and only if -q belongs to the cone spanned by the columns 
of M S  with e replacing the ith column of M S .  We denote by con(C) a cone spanned 
by a set C c_ Rn and by lin(C) the linear subspace spanned by C. Also, we identify 
any matrix with the set of its columns, so that our operators con and lin are 
well-defined for matrices. 
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Our goal will be to evaluate the average number of orthant-facets whose images 
meet the line segment (-e, - q ] ,  under the probabilistic model used by Smale. In 
this model the vector q  and the matrix M are sampled (independently) from 
spherically symmetric distributions on Rn and Rnxn, respectively. The radial parts 
of these distributions are immaterial for our purposes here. It is thus convenient to 
assume that the entries of both M and q  are sampled independently from the 
standard normal distribution. We denote the expected number of orthant-facets 
discussed above by p,,,(n). It turns out that p,,,(n) is very sensitive to the starting 
point of the ray. It is exponential if the starting poing is -e, whereas it is only 
quadratic if the starting point is of the form (-E, - E ~ ,  . . . , -sn)=, for E sufficiently 
small. A result equivalent to the latter was also obtained by Todd [12]. 

3. The exponential result 

Definition. Let C E Rn. (i) The volume, V(C), of C is defined to be the probability 
that a vector x, drawn from a spherically symmetric distribution on Rn, belongs to 
con C. (ii) The relative volume, re1 V(C), of C is defined to be the probability that 
a vector x, drawn from a spherically symmetry distribution on lin C, belongs to 
con C. 

The following lemma is also proved in [7] .  

Lemma 1. Let C E Rn be such that lin C has dimension less than n, and let u E IWn be 
a random vector (i.e., u is drawn rom a spherically symmetric distribution on Rn). 
Under these conditions, 

$(re1 V(C u {u})) = 4 re1 V(C) 

where 8 denotes expectation. 

Proof. Let C t  = C u {u} and C -  = C u {-u). Obviously, 

%'(re1 V(C+)) = &(re1 V(C-)). 

Now, the probability that a random x in lin(C u {u)) belongs to C is zero. It is 
therefore sufficient to prove that 

$(re1 V(C u {u, -u})) = re1 V(C). 

Let {bl , .  . . , bk} be an orthonormal basis for lin C and let bk+' be a unit vector 
in lin(C n {u)) which is orthogonal to lin C. Random vectors in lin(C u {u}) can 
be generated by selecting their coefficients relative to {bl, .  . . , bkf '} independently 
from the standard normal distribution. In particular, let ( u I , .  . . , uL+]) and - 
(xl , .  . . , xk+') represent u and another random vector x, respectively. Now, c E 
con(C u {u, -u}) if and only if there is a u E con C and a real A such that x = Au + v. 



228 N. Megiddo / Random and semi-random rays 

Necessarily, h = x ~ + ~ / u ~ + ~  (or else x @ lin C )  so that x E lin(C u {u}) belongs to 
con(C u {u}) if and only if x - ( x ~ + ~ / u ~ + ~ ) u  E con C. However, the vector x - 
(xk+,/uk+,)u is spherically symmetrically distributed in lin C and the probability 
of that event is hence equal to re1 V(C). 0 

We denote by Q(t)  the standard normal cumulative distribution function and by 
+( t )  the standard normal density function. 

Lemma 2 

Proof. A random vector x E Rn belongs to lin(-e, el, . . . , ek)  if and only if xk+, = 

. . = x,. Given that x satisfies these conditions, x belongs to con(-e, el, . . . , ek) if 
and only if xk+, s 0 and xi 2 xk+, for i = 1, . . . , k. Assuming that x,, . . . , x, are 
independent standard normal variates, we claim the following: (i) The conditional 
distribution of xk+,, given that xk+, = . . . = x,, is normal with mean zero and variance 
l / (n  - k); this follows from the fact that the norm of the vector ( x ~ + ~ ,  . . . , x,) (when 
xk+, = . . . = x,) is equal to Jn -kxk+ ,  and the (signed) distance between the origin 
and the point (xk+,, . . . , x,) has the standard normal distribution (given xk+, = . . . = 

x,). (ii) The conditional distributions of x,, . . . , xk (given the same condition) are 
standard normal and x,, . . . , xk, xk+, remain independent under the condition xk+, = 

. = x,. Thus, given that xk+, = t, the probability that xi 2 xk+, for i = 1,. . . , k is 
equal to (1 - ~ ( t ) ) ~  and integration over the negative domain of xk+, yields 

from which our lemma follows easily. 

Corollary. Let C be a cone spanned by {-e, el, . . . , ek} together with n - k - 1 more 
random vectors in Rn. Then 

where 8 denotes the expectation operator. 

We can now describe the expected number of cones as follows. 

Theorem 1 
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Proof. We evaluate the number of orthant-facets R',' whose images intersect the 
line segment (-e, -91. Without loss of generality assume i S. The probability that 
the image of R"' intersects ( - e ,  -q] is equal to the volume of a set like the one 
described in the Corollary (with k = ISI). Taking the sum of volumes of all possible 
sets like that establishes the proof. 0 

For estimating the asymptotic behavior of p,,,(n) we define the following 
function: 

Consider, first, the function 

Lemma 3. (i) g(0) = g ( a )  = 1. (ii) g ( t )  > 1 for every t > 0. (ii) g ( t )  has a unique local 
maximum at  t = J2/rr. 

Proof. The proof is immediate by observing the derivative 

g'(t) = +( t ) ( l  - ; J G t ) .  

Denote 

Lemma 4. (i) For every E (0 < E < T - 1) there is a consant c = C(E)  such that G(n)  > 
C(E)(T - E ) ~ ~ ' .  (ii) G(n )  < f .rap'. 

Proof. (i) Given E, let a ,  < a, be the positive numbers such that g(al)  = g(a,) = T - E 

whose existence follows from lemma 3. Let C(E) = @(a2) - @(a,). Thus 

(ii) Since the maximum of g ( t )  is attained at 4% it follows that 

Theorem 2. In( p,,,(n)) = ln(7) n + o(n).  
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Proof. We know that 

Thus, 

and, similarly, 

Plcp(n)> nG(n). 

The theorem now follows from Lemma 4. 

4. What is a good starting point? 

We can easily generalize the results of the previous section to any starting point, 
but it should be noticed that only points in the negative orthant can serve as starting 
points for the actual algorithm. We will later see which of these points are best. 

We first compute re1 V(-a, ell,. . . , e'k) where a is any n-vector (but only positive 
ones are meaningful for the algorithm). Let N = ( 1 , .  . . , n}. 

Lemma 5. Let S = {i,, . . . , is) be a proper subset of N (s < n). Under these conditions 

Proof. The proof is a straightforward generalization of that of Lemma 2. A random 
vector x E Rn belongs to lin(-a, e'l, . . . , e f )  if and only if (xi)',, is proportional to 
(a,),, s. Suppose x satisfies this condition and let A denote the coefficient of propor- 
tionality. Now, x belongs to con(-a, eil, . . . , eis) if and only if A 0 and xi 2 hai 
for i E S. The conditional density function of A, given that xi = hai ( i& S )  is 

""'a" ' 
- - - e-(1/2)124 

n +(hail dA 
i$S 

-m ir lS 

The conditional distributions of xi,, . . . , x, (given A )  are standard normal. Given 

A <0, probability that all the other coefficients are nonnegative is simply 
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n, ,s  @(-Aai). Integration of this quantity (multiplied by the conditional density 
of A) over the negative values of A proves our lemma. 

Corollary. Let C be a cone spanned by {-a, ell,. . . , e ' y )  (s < n) together with n - s - 1 
more random vectors in [Wn. Then 

av(c) = 2 ,/% j n @(ail) n t e-(1~2i 'za~ dt. 
0 i ts id S 

We can now write a formula for the expected number of orthant-facets, met by 
a ray starting at -a  and leading to a random point -9. In fact all we have to do is 
sum up the previously computed relative volumes, over all proper subsets S of N, 
each multiplied by n - ISI; the latter follows from the fact that given the choice of 
the unit vectors (that is, the set S), we still have n - IS1 different ways to choose the 
position of -a within the matrix. Thus, 

Theorem 3 

S f  N 

We note that plcp(n) is homogeneous as a function of the vector a. Moreover, it 
is symmetric in the components of a. Assume, without loss of generality that 
a ,  3 a, 3 . . a,. The following identity is easy to verify: 

We will apply this identity with Ai = @(sit) and Bj = $e-'1'2'tZ"Z J .  We get the following 
lower bound for p,,,(n): 

i-l 2 {A jom 4e-(l/2)t2a: n @(aj') ii (@(a,t) +fe-(l""za:) dt}. 
i=1 6 ]=I j = i + l  

Note that on the other hand we have a close upper bound: 

The upper and the lower bounds differ by a factor of n3/' so that from a point of 
view of polynomial versus exponential we have a sharp estimate. Consider the 
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following functions J i ( n )  for i  = 1,. . . , n :  

We have now come closer to understanding the effect of the starting point a .  The 
integral can be interpreted as a weighted average of a product of n - 1 factors. We 
know from Section 3 that each factor of the form @(air )  + fe-('/2)'2a: is a function - of 
t  which is always grater than 1 and attains its maximum at the point where ajt  = J 2 / n .  
Thus, the worst case is when all the aj's are equal, that is a  = e. In that case the 
maxima of the factors coincide, yielding an exponential integrand. On the other 
hand, each of the factors tends to 1 when t  tends either to or to 0. Attempting 
to achieve maximum separation among the peaks of the factors, it is now clear that 
we should choose the ai's so that the ratio of any two of them is very large. 

We are now led naturally to the choice of a, = cJ, j = 1,.  . . , n, subject to which 
we obtain 

Consider the latter integral over an interval letting E tend to zero. 
Suppose G t  G For j i  - 1 we have 3 while for j 3 i  + 1 we have 
$ i t s  &0.5 . It follows that J i ( n )  simply tends to f as s  tends to zero. Moreover, this 

behavior is independent of the distribution being normal. Note that in the limit 
all that counts is that @(0) =; and 4(0)  is finite. Returning to the expression in 
Theorem 3, we can now argue about the limit p 0 ( n )  of p, , , (n) ,  when E tends to 
zero, as follows. For each proper subset S c  N, let i ( S )  denote the smallest i  such 
that i  @ S. The contribution of S to p o ( n )  depends only on i ( S )  and the cardinality 
of S. Specifically, this contribution is asymptotically equal to 

Asymptotically, every js  i ( S )  contributes a factor of 4 whereas every j <  i ( S )  
contributes a factor of 1. Thus, the contribution of S in the limit is ( n  - I~1)2- '" -"~'+" .  
It follows that 

n n - l  

= C 2 - ( n - i + 1 )  
i = l  s = i - 1  ( S - i + l  n - i  ) 
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We have thus established the following 

Theorem 4. The expected number of times, which a semi-random ray starting at the 
point ( E ,  E ~ ,  . . . , E " ) ~  intersects facets of linear complementarity cones, tends to $n2+in  
when E tends to zero. 

We note that an equivalent result was also obtained by Todd [12].  It follows that 
the number of cones intersected by a semi-random ray in the latter case is not greater 
than an2+an since in the extreme case the inverse image of the ray may consist of 
paths crossing two adjacent orthants and the facet between them. 

5. Discussion 

Suppose that instead of a fixed vector a we take a random vector u E Rn. We may 
now ask what is the expected number of orthant-facets whose images under F 
intersect the line segment ( - u ,  - q ] .  Is the latter a good approximation to p,,,(n)? 
This question is interesting since such an approximation argument has been sug- 
gested recently by several people with reference to the average numer of steps for 
solving linear programming problems. It turns out that replacing the fixed vector 
a by random vector u simplifies the analysis considerably both in the LCP context 
and in the linear programming context. However, the question of evaluating p(m,  n )  
(the average number of steps for solving a linear programming problem of dimension 
m x n )  is still open and there is still a debate whether replacing e by a random u 
yields a good approximation. 

Now, for each orthant-facet R$' the probability of its image intersecting ( -u ,  - q ]  
is equal to the expected volume of a set of the form {-u, e l , .  . . , ek-I,  v l ,  . . . , 
where v l , .  . . , v n P k  are random vectors. Obviously, 

and by Lemma 1 we get 

Since there are precisely n2"-' orthant-facets, it follows that the expected number 
of orthant-facets whose images intersect a random line segment (i.e., one whose 
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endpoints are sampled independently from a spherically symmetric distribution) is 
equal to 

The latter is also proved in [9]. Thus, 'symmetrizing' yields considerably different 
results. We may remark here that the same 'symmetizing' trick yields for a linear 
programming problem of order m x n the quantity 

as the expected number of orthant-facets whose images intersect a random line 
segment. This follows easily by observing that under this assumption the probability 
associated with any orthant-facet is precisely 2-("+"). Similar results are in [I] and 
[6]. It is not inconceivable that the expected number of steps it takes the self-dual 
algorithm (starting at (1,.  . . , I)=) to solve the linear programming problem is also 
exponential. However, it is now known (recently observed by Adler, Megiddo and 
Todd [2, 3, 121) that starting points of the form (1, E, e2, .  . .) yield quadratic 
performance for the linear programming problem. 
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