SCHOOL OF OPERATIONS RESEARCH
AND INDUSTRIAL ENGINEERING
COOLLEGE OF ENGINEERING
CORNELL UNIVERSITY
ITHACA, NEW YORK 14853

TECHNICAL REPORT NO. 720

October 1986
(Revised October 1987)

EXPLOITING SPECIAL STRUCTURE
~IN KARMARKAR'’S LINEAR
PROGRAMMING ALGORITHM

By

Michael J. Todd

»Research supported in part by NSF Grant ECS-8602534 and the U.S. Army
Research Office through the Mathematical Sciences Institute of Cornell
University.

Exploiting Special Structure in Karmarkar's Linear

Programming Algorithm

Michael J. Todd

Abstract. We propose methods to take advantage of specially-
structured constraints in a variant of Karmarkar’s projective
algorithm for standard form linear programming problems. We can use
these constraints to generate improved bounds on the optimal value
of the problem and also to compute the necessary projections more
efficiently, while maintaining the theoretical bound on the
algorithm’s performance. It is shown how various upper-bounding
constraints can be handled implicitly in this way. Unfortunately,
the situation for network constraints appears less favorable.

Key words: Linear programming, Karmarkar’s algorithm, special
structure.

Abbreviated title: Special structure in Karmarkar’s algorithm.

*¥Research supported in part by National Science Foundation Grant
ECS-8602534, ONR Contract NOOO14-87-K-0212 and the U.S. Army
Research Office through the Mathematical Sciences Institute of
Cornell University.

1. Introduction.

In [15], Karmarkar introduced a new polynomial projective
algorithm for linear programming, which has considerable promise for
solving large sparse problems. In particular, very impressive
results have been reported for its application to extremely large
network planning problems [16], which have a time-staged formulation
that is known to lead to poor performance for Dantzig’s simplex
method [4]. On the other hand, other special structures arising
frequently in very large problems have been exploited very
successfully in various implementations of the simplex method. In
particular, we mention that simple [4], generalized [6], and
variable [20,21,23] upper bounds can be handled implicitly using
compact inverse techniques, and more generally structured problems
can also be dealt with using (representations of) the inverse of
matrices far smaller than the basis matrix (see [5,12,17,18]. This
paper is concerned with investigating the extent to which
specially-structured constraints can also be exploited in
Karmarkar’s algorithm.

We confine ourselves to variants of Karmarkar’s original
projective algorithm for which polynomial time bounds can be
established. We do not consider the affine variant, described by
several authors including Barnes [2], Vanderbei, Meketon and
Freedman [26], and Chandru and Kochar [3]. The last two papers give
a modification of the affine algorithm for problems with simple

upper bounds, which are also considered by Gill, Murray, Saunders,

Tomlin and Wright [10]. We address only polynomial versions of the
algorithm, and our interest is in implementations of these variants
which will preserve the polynomial bound while handling special
constraints efficiently. We discuss two general techniques for
exploiting such constraints. The first, by using more constrained
subproblems to generate improved bounds and hence better directions,
is likely to result in fewer iterations of the overall algorithm;
the subproblems resemble those that arise in Dantzig-Wolfe
decomposition [4,7]. The second shows that the projection step,
which is the major computational requirement at each iteration, can
be performed as the composition of two simpler projections. This
technique hence makes each iteration cheaper; it is reminiscent of
compact—inverse methods for the simplex method.

Other related papers include Kapoor and Vaidya [14], which
discusses a theoetical improvement of Karmarkar’s algorithm for
mul ti-commodity flow problems, and Rinaldi [19], which considers
problems with simple upper bounds.

In Section 2 we describe a variant of Karmarkar’s projective
- algorithm which can be applied more directly to standard form
problems. Section 3 discusses techniques to exploit special
constraints in this algorithm in a general framework, and section 4
provides further details on some of the necessary steps. Finally,
in section 5 we consider specific examples, showing that upper

bounds (simple, generalized or variable) can be handled efficiently,

while more general situations, for example, involving flow

conservation constraints, are less favorable.

2. A variant of Karmarkar’s algorithm.

Here we describe a variant of the projective algorithm due
essentially to Anstreicher [1], Gay [9], Gonzaga [11], Jensen and
Steger [13,22] and Ye and Kojima [27]; this variant easily handles
problems in standard form. (See also de Ghellinck and Vial [8] for
a related method.) Our development is slightly different from those
in the references above, but is chosen to facilitate the treatment
of special constraints. In particular, the notation is selected to
avoid as far as possible special symbols for the transformed
problem.

The original problem of interest is

. T
(PO) min CoX
AOX =0
T
goX = 1
x 20,

where AO is mxn of rank m, and < and gy are n-vectors,
with =98 nonnegative and nonzero. We assume that the feasible
region of (PO) is bounded and nonempty, and that we know a
strictly positive vector Xo contained in it. This implies that

(PO) has an optimal solution; we assume further that we know a

lower bound zp on its optimal value Zy- Without loss of
generality, we may assume that Xy = ©, the vector of ones; this
makes our notation below consistent. In later sections we are
interested in exploiting a subdivision of the rows of AO into
"general” constraint rows H, and "special” constraint rows MO'

0

Given a standard form linear programming problem

we can derive an "equivalent” problem of form (PO) as follows. We
augment the variables ; with a new variable § (2 1, to handle the
right~hand side) and, if necessary, an artificial variable A (to
make e feasible in the resulting problem). If we know a strictly
positive feasible solution ; to (;), we may scale so that ; = e
and then A is unnecessary; in this case the last column of the

following matrices can be deleted.

Let

x = (x, £, A) (2.1a)
co = (c. 0, v) (2.1b)
Ay = (A, b, b-Ae) (2.1c)

i

(0, 1, 0). (2.14d)

where v is a large constant. Note that, except for its last one
or two possibly dense columns, AO inherits the structure of X.
Special techniques are necessary to handle the artificial variable
N\, e.g. dropping it if necessary. For simplicity, we usually assume
below that an artificial variable is not needed.

The algorithm for (PO) proceeds as follows. At the kth
jteration we will have a strictly positive feasible solution X
and we wish to generate its successor. We also have a lower bound

z, on z. Let Xk = diag(xk) and consider the affine

transformation

T, (x) - X;{lx (2.2)
so that T (x) = e. Let
A=A =AX (2.3a)
c=c =Xcy and (2.3b)

g = gk = (2.30)

It
2?

then (PO) is equivalent to the rescaled problem

min cX
(P) Ax = O
ng =1
x 20

for which x = e is feasible. We stress that A, ¢ and g refer to
scaled matrices and thus vary from iteration to iteration. Other
papers use overbars (e.g. [1]) or hats [24,25] to indicate scaled
quantities, but this notation would become cumbersome with the
operations used below.

We denote by v{(+) the optimal value of problem (+}, with the
convention that the value is +® for an infeasible (minimization)
problem and -« for a feasible problem with objective function
unbounded below. Thus =z = V(PO) = v(P). Now replacing c¢ by

c-z, g in (P) (or c, by €280 in (PO)) gives an equivalent

0
problem with optimal value zero. In this problem, any normalization
instead of ng = 1 that yields a bounded feasible region will also
result in an optimal value of zero, since every feasible solution of
one problem is a positive scalar multiple of a feasible solution of
the other, and hence has an objective function value of the same
sign. (Choosing a different normalizing constraint amounts to
performing a projective transformation; the cone {x > O0: Ax = 0} is
cut by a different hyperplane than {x: ng = 1} and points are
radially projected from one to the other.)

- . . . T
In particular, we consider the normalization e x = n and the

parametric problem (where 2z 1is not necessarily equal to z*)

(P(z)) Ax = 0
ex =n
x 20

for which x = e 1is still feasible. Our next iterate corresponds
to taking a step of the standard Karmarkar algorithm applied to

(P(z)) for some =z ¢ Zy,-

We use the following notation: the constraint matrix in

(P(z)) is
B - [AT]; (2.4)

for any matrix F, PF denotes the orthogonal projection onto the

null space of F; and for any u € R",

up = PBu and uq = PAu. (2.5)

Note that, since Ae = AOXk = 0,

P =P P_.=P._P, (2.6)

so that

u, =g (eTuq/n)e. (2.7)

The iteration then involves the following three steps:

1) Obtaining a lower bound z = Z41 > z, on Zg

2} Setting
d = -(c_ - ggp) and (2.8)
x = e + ad/Ildll (2.9)

for suitable a > 0 so that x > 0; and

3) Letting
ka
X1 =T (2.10)
g X

Thus d is a search direction in the null space of B; x is a
feasible solution to P(z) obtained by moving in this direction

from the "current solution” e; and x

K+l 1S the result of scaling

by ng to get a feasible solution to (P) and then transforming

back to get a feasible solution to (PO).
We remark in passing that setting d’ = '(Cq‘qu) and x' = e
+ a’d’/ld’ll gives points that are positive scalar multiples of the

points x given by (2.8)-(2.9). at least if «a 1is small or d’ 2
0. In a sense, then, it is unnecessary to add the normalization
eTx =1 to (P(z)) at all, except that it simplifies the analysis.
To make the iteration precise, we need to specify how 2z is
obtained and how a is selected. The lower bound is based on the

simple problem

(SP(z)) min (cq - zgq)Tx

Note that cq = ¢c— ATyc for some Ve (in fact,

V. = (AAT)ﬁlAc) and similarly gq =g - ATyg for some yg; thus
(c, - 7&,) = (c - z8) - A'(y, - zy,).
q q c g

It follows that (SP(z)) 1is a partial Lagrangean relaxation or
Dantzig-Wolfe subproblem of (P(z)}); that is, some of the
constraints of (P(z)) are removed and placed with multipliers in
the objective function.

We can now describe how 2z 1is obtained. If v(SP(zk)) < 0, we
merely set z = z,, - Suppose now that v(SP(zk)) > 0. Now since
(SP(z)) 1is a relaxation of (P(z)),. v(SP(z,)) < v(P(z,)) = O; more
directly, a positive scalar multiple of the optimal solution of (P)
is feasible in (SP(z,)) with objective value zero. Hence we can

find z with

Z, <z <z, and v(SP(z)) = 0. (2.11)

Indeed, v(SP(z)) 1is trivial to compute; it is the concave

piecewise-linear function

~10~

v(SP(z)) = n m§n eg(cq - zgq) (2.12)

where ej is the jth unit vector. Hence z 1is unique and can be
obtained by a simple minimum-ratio test.

If z 1is updated in this way, let

Y=Y, zZV_: (2.13)

Hence we have proved

Lemma 2.1. (y.z) is feasible in the dual to (P):
(D) max z, ATy +gz {c,
and in the dual to (PO):
T
(DO) max z, Aoy + g4z < -

Thus the lower bounds obtained correspond to dual feasible
solutions.

We now use 2z to compute our next iterate x Progress

k+1°

towards the solution is measured by Karmarkar’s potential function

-11~-

f(x; h) == Bn(th/egx)
J

for a suitable objective function th. Any a in (0,1) suffices
to guarantee X1 > 0, but a suitable choice ensures a reasonable
decrease in f. Indeed, the arguments of Todd and Burrell [25]
(using those of Karmarkar [15] as well as linear programming

duality) yield

Lemma 2.2. Suppose z z, with v(SP(z)) < O. Then if X 41 is

obtained from (2.8)-(2.10) with a = 1/3,

f(xk+1; cy zgo) < f(xk; coy = ggo) - 1/5. (2.14)
Using (2.14) repeatedly, and the inequality
f(xy coze180) € (3 cp7E0)
since Zp41 2 z,., we deduce that

f(xe; co—zggo) < f(xn; co—zogo) - £/5. (2.15)

Now -2 &n (egx) 2 -n Bn(eTx/n) by the arithmetic-geometric mean

inequality, and so from {2.15)} we can deduce

—-12~

T
c X

oXe T Zp < (eTxg/n)exp(~8/5n)(cho—zo). (2.16)

The first factor on the right-hand side is bounded by assumption,
while the second goes to zero like a geometric progression. Thus
the duality gap converges to zero linearly.

In practice, it is preferable to choose o« by some line search
technique to encourage larger decreases in the potential function
than that in (2.14).

Given that v(SP(z)) 1is easy to compute by (2.12), and that
cp and gp are easily obtained from cq and gq respectively
using (2.7), the major computational burden in each iteration lies
in calculating cq and gq. Gay [9] bas pointed out that it may be
cheaper to compute first (c—zkg)q; then if 2z is not updated, a
second projection need not be computed.

In the next sections we discuss how to exploit special

structure in the constraints AOx = O within this framework.

3. Exploiting special structure in AO'

Suppose that the constraints of (PO) are divided into

"general” and "special"” constraints, corresponding to a partition
H
0
o= [x] 6

with Hox = O the "general” (or hard) and Mox = 0 the "special”

(or easy) constraints. At iteration k, setting

-13-

i

H = Hk = OXk’ M= Mk Moxk’

we have

A={ﬁ}.

Our {(transformed) problem can be written as

min ch
(P) Hx = O
Mx =0
ng =1
x > 0,

the dual problem is

max z

(D) HTs + MTt + gz £ c.

(3.2)

(3.3)

-14~-

We wish to exploit the structured matrix M in two ways:

(i) in improving the lower bounds z: and

(ii) in computing projections uq efficiently.
The methods used are reminiscent of Dantzig-Wolfe decomposition
[4,7] (i) and compact-basis techniques (e.g., [6,12,17,18,20,21,23])
(ii).-

An ideal solution to (ii) would be found if

PA = PHPM = PMPH (compare (2.6));

but this fails in general since HMT # 0. Let us therefore define

=i

-HP (3.4)

so that the rows of H are the projections of the rows of H
orthogonal to the rows of M. Then the nullspace of A coincides

with that of

g] (3.5)

~ T
moreover, since we have HM

]
o

o
i
v
1
u
>
v]
1l
-]
o
>

(3.6)

u = P. u; (3.7)

-15-

Thus u. uq and up are projections of u onto progressively
smaller (and nested) subspaces. We will use (3.6) later in
computing cq - z'g for some z' with Zy £z = 741 { z

q
We obtain our improved lower bound 2z’ by considering

>

. T
min (cr zgr) X

(SP’(z)) Mx =0
T

ex =n

x > O.

From (3.4), H=H - KM for some K, and therefore c. can be

written as

c.=¢ - H S (3.8a)
—c-H' s -M ¢ (3.8b)
c c
for some Seo ?c, and similarly
g =g-H s - M ::’g (3.9)
for some sg’ :é. Hence (SP’(z)) can be viewed as a partial

Lagrangian relaxation or Dantzig-Wolfe subproblem for (P{(z))., in
which only the hard constraints Hx = O are eliminated, but all the
constraints Ax = 0 are incorporated into the objective function

with multipliers.

-16-

We now show that (SP’(z)) 1is a restriction of (SP(z)).

Indeed, by (3.6) we have for any u € R

for some t and thus the objective functions of (SP’(z)) and
(SP(z)) are equal for any x in the null space of M. Hence
(SP’(z)) would be unchanged if its objective function were replaced
by (cq - zgq)Tx, and because of the additional constraints Mx = 0

we deduce that
v(SP’(z)) 2 v{(SP(z)). (3.10)

Now 2z’ 1is defined as follows. If V(SP’(zk)) <0, set z’ =

Z Otherwise, by parametrically solving SP’(z), find 2z’ with

=
z) <z’ and v(SP’'(z’)) = 0. (3.11)
Suppose z is calculated using (SP(z)) as in section 2.

Lemma 3.1. 2z <z <z <z, and v(SP(z’)) £ O.

3%’

Proof. If v(SP(z,)) <O, then z =2z and hence z’ > z.

k) k
Otherwise, V(SP’(Zk)) > V(SP(Zk)) >0 by (3.10) so that both z

-17-

and 2z’ are updated. Moreover, vVv(SP’(z)) 2> v(SP(z)) = 0, so that

z' 2

N

(as the optimal value of a parametric objective function
linear programming problem, v(SP’(z)) 1is piecewise linear and
concave). It remains to show that 2z’ exists and satisfies z’ ¢
z, when it is updated. Now the optimal solution of (P), after
multiplying by a positive scalar, yields an optimal solution to
(P(z,)) with objective value zero. Since (SP’'(z.)) 1is a
Lagrangean relaxation of (P(z,)). v(SP'(z,)) < 0. With
V(SP’(zk)) > 0 and concavity, this establishes the existence of a
unique 2z’ satisfying (3.11), and also that z° < Z,-
The lemma shows that (SP’(z)) provides a possibly improved

lower bound for use in the algorithm. Lemma 2.2 applies with z .

replaced by z’. We therefore replace d in (2.8) by

d = —(cp - g’gp) (3.12)

and obtain X141 from (2.9)-(2.10). Here d 1is calculated via

d = -P T P P. (c~-2z'g)
e M H

= -P T P (cr - g’gr). (3.13)
e M

In order that this approach be reasonably efficient, it is

assumed that the parametric problem (SP’(z)) can be easily

-18-

solved, and that projection onto the null space of M (briefly,
M-projection) be simple. In this case, it is straightforward to
compute the improved lower bound 2z’ (limited computational
experience (see [24]) suggests that the improved directions
resulting from better bounds can save from 1 to 3 iterations).
Moreover, we have replaced two A-projections (to get Cq and gq)
by several M-projections (to get ﬁ), two ﬁ~projections (vielding c.
and gr) and one final M-projection (giving PM(cr—g’gr) =
PA(c~g’g)). This trade~off is similar to that arising in compact
inverse methods in linear programming, in which a few operations
involving (a representation of the inverse of) a large basis matrix
(corresponding to A) are replaced by several operations involving a
simple part of the basis (corresponding to M) and a few involving
a small working basis (corresponding to ﬁ).

Before we consider specific examples in which the assumptions
of the previous paragraph are valid, we describe how the lower
bounds 2z’ can be validated by duality (compare Lemma 2.1), and
then discuss two general techniques useful in computing z’ and
M-projections.

First, recall from (3.8)-(3.9) that

¢c =c~-Hs ~-Nt
c c
and

TN
= - Hs -Mt;
g g P

-19-

moreover, s and sg are usually obtained in the computation of

T-1 4 P ‘ ~o
c. and g, (sC = (HH') = Hc and similarly for sg), and t, =

—KTSC and tg = —Kng are then available if K with H = H-KM

known. Now let (t,0) be the optimal solution to the dual of
(SP’(z’)) - the last component is zero since v(SP’(z’)) = 0. It

follows that

so that, with

Thus (s.t.z’) is feasible in (D) and (DO) as in Lemma 2.1.

If K 1is not known, then we can replace c. and g, in

, ~ T ~ T . . - .
(SP’(z)) by c.=¢ H S.r 8. =8 H Sg’ if (t,0) is the
Z 3

corresponding optimal dual solution for = z', then again (s.t,z

is feasible in (D) and (DO).

is

")

-90-

4. Two general observations.

In this section, we discuss an easier way to find z' and a

method to reduce M-projection to a usually simpler projection.

4.1. Computing z’.

Recall that z’ = z) if V(SP’(zk)) < 0, while

z, <z’ and v(SP’(z’)) =0

otherwise. Hence we are interested in parametrically calculating

the sign of v(SP’(z)). Consider instead the problem

. T
min (cr zgr) X

(SP"(z)) Mx =0
ng =1
x 2> 0

where the normalization ng = 1 has replaced eTx = n.
By scaling the variables, we see that (SP"(z)) has the same

optimal value as

. ~ ~\T
min (cr - zgr) X
(sP"’(z)) Mox =0
T
goX = 1

21
involving the original data, where c. = Xk cC.. 8. = Xk g .
Lemma 4.1. v(SP"(z)) < 0 iff v(SP’(z)) < O.

Proof. First suppose v(SP"(z)) < 0. Then either (SP"(z)) bhas an
optimal solution x ¥ O or it is unbounded below. In the first
case, nx/eTx is feasible in (SP’(z)) with a negative objective
value, while in the second there is some ray x # O with (Cr -
zgr)T§ <0, Mx = 0 and gPE = 0; then n§7eT§ is feasible in
(SP’(z)) with negative objective value. Hence v(SP’(z)) < O.
Conversely, assume vVv(SP’(z)) < O, and let x be optimal in
(SP’(z)). Note that both (SP’(z)) and (SP"(z)) have nonempty
feasible regions, since they contain (scalar multiples of) feasible
solutions of (P); moreover, the former is bounded. If ng > 0,
then x/ng is feasible in (SP"(z)}) with negative objective
value. On the other hand, ng = 0 implies that (SP"(z)) is

unbounded below, since it is feasible and (cr—zgr)Tx <0, Mx =0,

ng = 0, x 2 0. Hence in either case v(SP"(z)) < O.

The lemma shows that 2z’ can be found by setting 2z’ = Z if

V(SP"(Zk)) < 0 and otherwise satisfying

Z, <z’ and z’ = sup{z: v(SP"(z)) 2 0}. (4.1)

-99-

Note that, while v(SP’(z)) is piecewise-linear, concave and
continuous, v(SP"(z)) may not be continuous — in particular, there
may be no z' with v(SP"(z’)) = 0. Nevertheless, if (SP"(z)) or
(SP"’(z)) 1is easily solved parametrically in z, z’ can be

calculated using (4.1).

4.2. M-projection.

If (PO) arises from a standard form problem (P) as in

(2.1), then AO (and H,., MO, A, H and M) will have one or two
probably dense columns, with the rest inheriting their structure

from A. Thus we will partition M as
M = [S,T] = [S,SU] (4.2)

where T = SU contains the t dense columns of M. Note that
Me = O, so that if t = 1 the representation of T as SU is
trivial - U is a column vector of minus ones. If t = 2 then
using perhaps the previous iterate we can find another vector w in
the null space of M which uses the last two columns, and again U
can be obtained with T = SU.

We now show how M-projections can be carried out using simpler
S-projections together with inverses of small matrices. We

concentrate on projecting the rows of H, partitioned as

-93-

H = [J.K],

but the procedure is identical when projecting c¢ or

Vo (I-PJU, W= (I+vVivl

S

then
PS + VWVT - VW
PM = T
- WV W
Now, if
H = [J.K],

we find that
~ T
J:JPS'f'(JV“‘K)WV
differs from JPS by a matrix of rank t, while

K = ~(JV-K)W

(4.3)

g. Let

(4.4)

(4.5)

(4.6)

(4.7)

(4.8)

-24—

is small (only t columns). Indeed, H differs from [JPS,O] by
a matrix of rank t. Hence, H-projection can be performed easily if
[JPS,O]—projection can. In the next section, we will generally show

the structure of JPS only.

5. Examples.

Here we present three situations where M-projection is simple
and the parametric linear programming problem (SP"’(z)) is easily
solved. We also point out an example where the approach of section
3 does not appear fruitful. The favorable cases are of
upper-bounding type, while the unfavorable case involves an embedded

network.

5.1. Simple Upper Bounds.

Suppose that, in (P), the variables x are partitioned into

<L). (5.1)

- (. b, %
17 72° 73

~ ~

where X4 consists of structural variables with upper bounds u, Xg

the corresponding slack variables, and Xg the unbounded structural
variables. We assume that variables X, appear only in the

bounding constraints. After transforming to a problem of form (PO)

(we assume that an artificial variable is not needed) we find

-5

where HO corresponds to the general and MO to the upper-bounding

constraints. At a later iteration we have

H=[H,. 0, H,, -b], (5.2)

15

M= [X. X5, 0, -ul. (5.3)

where X1 and X2 are diagonal matrices whose diagonal entries are
the current components of ;1 and ;2 respectively. (We are
abusing notation somewhat in using subscripts for iteration numbers
as well as partitioning, but no confusion should result since we
drop the subscript for the iteration.) Let J and S consist of
all but the last column of H and M, as in section 4. Then,
setting

z =[x + %51, (5.4)

it is easy to calculate

—26—

X2ZX2 —X12X2 0
PS = ~-XZZ)(l X12X1 0 (5.5)
0 0 I

(note that all blocks are diagonal) and hence

JPS = [H1X22X2, —H1XIZX2, H3]. (5.6)
Hence JPS differs from J only in that the initial columns H1
are scaled, and a column scaling of H1 also appears in the zero
block of H. Using this structure, we see that finding (JPS)(JPS)T
or its Cholesky factor, or a QR factorization of (JPS)T, is
essentially no more costly than an equivalent operation on J. If

H1 = H10X1 and H, = H, X then

3 3073’
T 2 T 2 . T
(JPS)(JPS) = HlO D1 Hlo + HBO x3 H3O (5.7)

where
1/
D, = X,2/%%,. (5.8)
while
T 2 T 2 T
JI' = Hyy X Hyg + Hyy X35 Hyo (5.9)

-

The diagonal matrix D1 above corresponds to the scaling used in
Gill, Murray, Saunders, Tomlin and Wright [10], while other authors

have proposed a simpler choice of diagonal weighting,
D1 = min{Xl,X2} {(5.10a)
where the minimum is component-wise (see e.g. [26]) or

v —1
D1 = Xl(X1+X2) X2, (5.10b)
see [3].

The parametric problem (SP"’'(z)) is a linear programming

problem subject only to bounds, and hence is trivially solvable.

5.2. Generalized Upper Bounds.

Next we consider generalized upper bounds, a set of
constraints, typically with nonnegative coefficients, involving
disjoint sets of variables (Dantzig and Van Slyke [6]). Collecting
these as the special constraints, £ in number, we will have at a

typical iteration

H = [HI’H2 He,He+1,~b] (5.11)
T
fl,O . ,0 ,0, -uy
0 fT 0.0 -u
M= gt e 2 . (5.12)
0, 0, .,fT 0, -u

-G

If J and S consist of all but the last columns of these, we

easily find

T,.T
I-f /08, 0
P = B (5.13)
> CI-f £l /flf
ete’tete
0 I
and
T,T T,.T
JPg = [H-H £ £1/81 8 .. Hy-HyE), /8,8, H,], (5.14)

Thus there is a rank-one change to each part of H corresponding to
a GUB-set, a set of variables involved in one generalized upper
bound. It is easy to check that, if each GUB-set has just two
elements and each fi is (1,1)T scaled, then the GUB’s reduce to
simple upper bounds and the results above to those in section 5.1.

In (5.14), each column of J 1is replaced by a linear
combination of all columns of J corresponding to the same GUB-set.
This contrasts with the compact—inverse simplex method for such
problems, where the working basis consists of columns that are
linear combinations of just two columns of J corresponding to the
same GUB-set; see [6].

The parametric problem (SP"’(z)) separates into £

parametric knapsack problems and one trivial parametric problem with

PAS B

feasible region the nonnegative orthant (corresponding to the

variables in no GUB-set). It is therefore easily solved.

5.3. Variable Upper Bounds.

~ ~

Constraints of the form xj < X, are called variable upper
bounds, with the condition that a variable can occur at most once on
the left-hand side of such an inequality (as a "child") and then not
on the right-hand side of any other (as a "parent”). These
constraints occur frequently in linear programming relaxations of
integer programming formulations. They were first studied by
Schrage [20] in the context of an efficient implementation of the
simplex method; see also [21] and [23], where extensions are
considered.

Suppose there are £ parent variables occurring on the
right-hand sides of VUB’s. We order the variables as follows:
first those bounded by the first parent variable, then those by the
second, etc.; then slack Variableé; then the parents, in order; and
finally all remaining variables. Grouping general constraints in

HO and variable upper bounds in MO’ we have

HO = [H H,..0,...,0,h h,..H

100+ HpgeOue s Oy hy o Hy L 0-b] (5.15)

M, = . . . o 0] (5.16)

where the identity blocks in M

ones can have different dimensions.

M below are zero.

H=[H,....HO0

-30~

0

- Hy, ,...,O,hl,...,h H

2 el

as well as the vectors
All unmarked blocks in M

At a later iteration, we have

of

and

0

let Z, = (X? + W? + f.fT)_l; since X, and W, are diagonal, Z,
i i ii i i i

1

is easy to obtain explicitly.

I-X,7,X, X, Z W,
I-X,Z,X,
W,Z,X, I-W,Z, W,
“WoZpXp
T T
F12,X, F1Z,W,
T
£0Z5%,

M

Xlzlf1

-X ZgW

27278

Wiz,

I—WQZBWB

T
1~f121f1

We find P, =

XEZEfB

WoZytp

1-fTZ f

(5.19)

-31-

where all the blocks are single rows, single columns or rank-one

modifications of diagonal matrices. It follows that
H= [Hl""’H

where both ﬁi and ﬁi are rank-one modifications of column
scalings of Hi'

Finally, (SP"’(z)) separates into £ parametric problems
with only variable-upper-bound constraints and one with just non-

negativities, and all of these are trivial to solve.

5.4. Network Constraints.

Now suppose that (P) contains flow-conservation constraints

in a network. Assuming there are no bounds on the flows, we have

MO = [NO, -u]]

where No is a node-edge incidence matrix and u is the vector of
net supplies at the nodes. At a later iteration, M will be a
column scaling of M., but we see no especially efficient way to
exploit its structure in finding M-projections.

Once again, (SP"’(z)) can be used to provide improved lower
bounds; this is a parametric network flow problem, and hence

relatively easy to solve, although not as trivial as the subproblems

-39

arising in sections 5.1-5.3. Observe that, as in the discussion
above lemma 3.1, (SP"(z)) would be unchanged if its objective

function were replaced by (cq - zgq)Tx; similarly we can use
c
q

is unnecessary to compute c. or g, in order to obtain an

(Cq"qu)TX in (SP"’(z)). where = X;lcq, g, = ;lgq. Thus it

improved bound. On the other hand, it is unclear whether such
improved bounds, possibly saving 1 to 3 iterations, are worth the

extra work of solving say 15 parametric network flow problems.

5.5 Conclusions.

The analysis of this and previous sections indicates that
special structure in the constraints of a linear programming problem
can be exploited in Karmarkar’s algorithm. However, the examples
above show that unless the structure is very special, the methods
proposed are not likely to provide nearly as large an improvement as
can be obtained for the simplex method. Clearly, computational
testing will be required to evaluate the benefits arising from

exploiting special structure in this way.

-33-

References

[1]

[2]

[31]

(4]

[5]

[e]

(7]

(8]

[9]

[10]

K.M. Anstreicher, "A monotonic projective algorithm for
fractional linear programming,'" Algorithmica 1 (1986)
483-498.

E.R. Barnes, "A variation on Karmarkar’s algorithm for
solving linear programming problems,” Mathematical
Programming; 36 (1986) 174-182.

V. Chandru and B. Kochar, "A class of algorithms for
linear programming,” manuscript, Department of
Industrial Engineering, Purdue University, West
Lafayette, IN (1985).

G.B. Dantzig, Linear programming and extensions
(Princeton University Press, Princeton, NJ, 1983).

G.B. Dantzig, M.A.H. Dempster, and M.J. Kallio, eds.,

Large scale linear programming, (IIASA, Laxenburg,
Austria, 1981).

G.B. Dantzig and R.M. Van Slyke, "Generalized upper

bounding techniques,"” Journal of Computer System
Sciences 1 (1967) 213-226.

G.B. Dantzig and P. Wolfe, "The decomposition algorithm
for linear programming,” Econometrica 29 (1961) 767-778.

G. de Ghellinck and J.-Ph. Vial, "A polynomial Newton
method for linear programming,"” Algorithmica 1 (1986)
425-453 .

D. Gay, "A variant of Karmarkar’s linear programming
algorithm for problems in standard form", Mathematical
Programming 37 (1987) 81-90.

P.E. Gill, W. Murray, M.A. Saunders, J.A. Tomlin and
M.H. Wright, "On projected Newton barrier methods for
linear programming and an equivalence to Karmarkar's
projective method,” Mathematical Programming 36 (1986)
183-209.

~34~

[11] C. Gonzaga, "A conical projection algorithm for linear
programming,” manuscript, Department of Electrical
Engineering and Computer Science, University of
California, Berkeley, CA (1985).

[12] G.W. Graves and R.D. McBride, "The factorization
approach to large-scale linear programming,"”

Mathematical Programming 20 (1976) 91-110.

[13] D. Jensen and A. Steger, private communication,
Department of Applied Mathematics and Statistics, State
University of New York at Stonybrook, Stonybrook, New
York (1985}.

[14] S. Kapoor and P.M. Vaidya, "Fast algorithms for convex
quadratic programming and multicommodity flows,”
Proceedings of the 18th ACM Symposium on Theory of
Computing (1986) 147-159.

[15] N. Karmarkar, "A new polynomial time algorithm for
linear programming,' Combinatorica 4 (1984) 373-395.

[16] N. Karmarkar and L.P. Sinha, "Application of Karmarkar’s
algorithm to overseas telecommunications facilities
planning,” paper presented at XII International
Symposium on Mathematical Programming, Boston (1985).

[17] L.S. Lasdon, Optimization theory for large systems
(Macmillan, New York, 1970).

[18] B.A. Murtagh, Advanced linear programming: computation
and practice (McGraw-Hill, New York, 1981).

[19] G. Rinaldi, "A projective method for linear programming
with box-type constraints,” Algorithmica 1 (1986)
517-b27.

[20] L. Schrage, "Implicit representation of variable upper
bounds in linear programming,” Mathematical Programming
Study 14 (1975) 118-132.

[21] L. Schrage, "Implicit representation of generalized
variable upper bounds in linear programming,"
Mathematical Programming 14 (1978) 11-20.

[22] A. Steger, "An extension of Karmarkar’s algorithm for
bounded linear programming problems,” M.S. Thesis, SUNY
at Stonybrook, New York (1985).

[23]

[24]

[25]

[26]

[27]

-35—

M.J. Todd, "An implementation of the simplex method for
linear programming problems with variable upper bounds,"
Mathematical Programming 23 (1982) 34-49.

M.J. Todd, "Improved bounds and containing ellipsoids in
Karmarkar’s linear programming algorithm,” to appear in
Mathematics of Operations Research.

M.J. Todd and B.P. Burrell, "An extension of Karmarkar’s
algorithm for linear programming using dual variables,”
Algorithmica 1 (1986) 409-424.

R.J. Vanderbei, M.S. Meketon and B.A. Freedman, "A
modification of Karmarkar’s linear programming
algorithm,” Algorithmica 1 (1986) 395-407.

Y. Ye and M. Kojima, "Recovering optimal dual solutions
in Karmarkar's polynomial algorithm for linear
programming,’” to appear in Mathematical Programming.

