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Abstract: Following Chvital, cutting planes may be viewed as a proof system
for establishing that a given system of linear inequalitites has no integral

solution. We show that such proofs may be carried out in polynomial workspace.



The integer programming problem is to decide if a given system of linear
inequalities has an integral solution. Recent progress on this algorithmic
question has involved technigues from the geometry of numbers, in the celebrated
paper of Lenstral[2l] and in results of Babail[ll, Gr&tschel, Lovasz, and
Schrijver([14], and Kannan[l7]. One of the things that is apparent in these
results is the importance of the fact that if a polyhedron contains no integral
vectors then there must be some -direction in which it is not very "wide". This
idea has been developed more fully by Kannan and Lovasz [18], who obtained a
theorem which provides much more information on the appearance of such poly-
hedra. These "width" results have consequences for the construction and analysis
of proof systems for verifying that a polyhedron contains no integral vectors.
Whereas the integer programming problem is directly related to the question of
the equality of P and NP, the existence of a polynomial proof system for integer
programming is equivalent to NP = co-NP.

One of the fundamental concepts in the theory of integer programming is that
of cutting planes, going back to the work of Dantzig, Fulkerson, and Johnson[11]
and Gomory[12]. On the practical side, cutting-plane techniques are the basis
of very successful algorithms for the solution of large-scale combinatorial and
0-1 programming problems in Crowder, Johnson, and Padberg{9], Crowder and
Padberg[10], Grdtschel, Jlinger, and Reinelt[13], Padberg, van Roy, and Wolsey[23]
and elsewhere. While on the theorectical side, Chvatal(3,4,5,6] has shown that
the notion of cutting planes leads to many nice results and proofs in combinatorics.
We will adopt Chvatal's point of view and consider cutting planes as a proof
system, in our case for verifying that polyhedra contain no integral vectors.

Perhaps the best known of all proof systems is the resolutiocn method for
proving the unsatisfiability of formulas in the propositional calculus. Haken[15]
settled a long-standing open problem by showing that resolution is nonpolynomial.
It is easy to see that proving the unsatisfiability of a formula is a special
case of proving that a polyhedron contains no integral vectors, and, using
Haken's result, it can be shown that cutting planes are a strictly more powerful

proof system than the resolution system (see Cook, Coullard, and Turan(7] for a



(2)

treatment of this and the relationship of cutting planes and extended resolution) .
To define Chvéatal's[6] concept of a cutting-plane proof, consider a systen

of linear inequalities
(1) a.x<b, (i=1,...,k).

If we have nonnegative numbers yl"“"yk such that ylal+ '--+-ykak is integral,

then every integral solution of (1) satisfies the ineguality

(2) (ylal+ -"+ykak) <y

for any number Yy which is less than or equal to Lylbl+----+-ykbkj (the number

ylbl+----+‘ykbk rounded down to the nearest integer). We say that the

inequality (2) is derived from (1) using the numbers FANEEREN S A cutting-plane

proof of the fact that the linear system (1) has no integral sclution is a list
of inequalities ak+ix-§_bk+i (i=1,...,M), together with nonnegative numbers yij
(i=1,...,M, 3=1,...,k+i-1), such that for each i the inequality ak+in£bk+i is
derived from the inegualities anjgbj (3=1,...,k+i-1) using the numbers yij
(y=1,...,k+i=1) and where the last inequality in the sequence is 0x < -1. Results
of Chvdtal[3] and Schrijver([24] imply that a system of rational linear inequalities
has no integral solution if and only if this fact has a cutting-plane proof.

The length of a cutting-plane proof is the number, M, of derived inequalities.
Cook, Coullard, and Turdn([7] have shown that results on the "width" of polvhedra
imply that if a rational linear system has no integral solution then there exists
a cutting-plane proof of this with length bounded above by a function depending
only on the number of variables in the system. A consequence of this is that in
fixed dimension, the total number of binary digits needed to write down a cutting-
plane proof that a rational system Ax<b has no integral solution can be bounded
above by a polynomial function of the size, in binary notation, of Ax <b (see
Boyd and Pulleyblank(2] or Cook, Coullard, and Turidn[7]). Unfortunately, the bound
on the length cf the cutting-plane proofs is necessarily exponential in the number
of variables, so for varying dimension we have no guarantee that we can write
down our cutting-plane proof in polynomial space. (Again, this is possible 1f and
only if NP =co-NP.) Notice, however, that during the course of a preoof it may

happen that some of the derived inequalities are no longer needed and so could be
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removed from our workspace. Thus the amount of .space we need in order to carry
out a proof may be considerably less than the amount of space it would take to
write down the entire list of derived inequalities. So perhaps we can still bound
the amount of workspace we need by a polynomial function of the size of Ax<b.

A notion of the amount of space required by general proof systems was
developed by Kozen[l19,20]. To specialise his definition to cutting-planes we

will view our proofs as certain acyclic directed graphs, as suggested by Chvdtal(e] .

Suppose that ak+ixjibk+i (i=1,...,M), together with nonnegative yij (i=1,...,M,
j=1,...,k+i-1), is a cutting-plane proof of the fact that aixfibi (i=1,...,k) has
no integral sclution. An associated directed graph has nodes 1,2,...,k+M and a

directed edge from node i to node j if and only if the inequality aixgbi is used

in the derivation of anfEbj. (By "used" we mean that a positive multiple of the
inequality aix;gbi is taken in the derivation of an<ibj.) So to derive inequality
ajx;ibj, we only need to know the inequalities corresponding to the immediate
predecessors of node j in our directed graph. Thus, once we have reached node .
the only previously derived inequalities we need to remember are those for which
there is a directed edge going from it to a node greater than j. So the greatest
number of inequalities which must be stored during the proof is the maximum numbex ,
over all nodes k+i (i=1,...,M), of directed edges going from nodes {1,...,k+1i} to
nodes {k+i+l,...,k+M}. As our bound on the space requirement of the proof we take
this number multiplied by the maximum size of an inequality used in the proof. (We
have not considered the numbers yij in calculating our bound, since, using linear
programming results, these can always be chosen to be of size polynomial in the

size of the inequalities used in the derivation and the size of the inequality to
be derived - see, for example, Schrijver[25].) With this definition, we will show
that there exist cutting-plane proofs with length depending only on the dimension
and which can be carried out in polynomial workspace, that is, in an amount of
workspace bounded above by a polynomial function of the size of Ax <b. We refer
the reader to the book of Schrijver([25] for results in the theory of polyhedra

and integer programming which are used in the proof.

Theorem: Let A be a rational mxn matrix and b a rational mx 1 vector such
that Ax <b has no integral solution. Then there exists a cutting-plane proof
. 3 . L .
of Ox < -1 from Ax <b with length at most n n+—l which can be carried out in poly-—

nomial workspace.



(4)

Proof: As we may scale the inequalities if necessary, we may assume that A and b
are integral. We may also assume that n is at least 2, since the result is trivial
otherwise. The theorem will be proven by showing that the following result holds

for each kz{0,1,...,n7:

(3) Let C be a kxn integral matrix of rank k, let d be a kx 1 integral
vector and let o(A,b,C,d4) denote the greatest absolute value amongst
the entries of A,b,C,d. Then there exists an inequality ckx§ dk with
{x: ) X gdk}ﬂ {x: Ax <b, Cx=d}=¢ and a cutting-plane proof of ) X gdk

B(n-—k)_l (or 1 if k=n) needing only

from (Ax <b, Cx <d) of length at most n
n-k+1 inegualities, besides (Ax <Db, Cx <d), to be stored at any one
time and where each ineguality in the proof has all coefficients of

~k)+1
absolute value at most n3(n k) g(a,b,C,a).

The theorem follows from the case k=0, since {x: coxgdo} N{x: Ax<b} =¢ implies,
by Farkas' lemma, that Ox < -1 may be derived from (Ax <b, cOx _<_dO) .

To begin with, suppose C is of rank n. If {x: AXx <b, Cx=d} =¢, then there
is nothing to prove. So we may assume that {x: Ax <b, Cx=4d} consists of a single
vector, say v. Now since Ax <b has no integral solution, v must be nonintegral.
Thus there exists trivially an inequality wx <o which can be derived from (Ax<Db,
Cx <d, -Cx < -d) with {x: wx<a}n{x: Ax<b, Cx=d} =¢. To obtain an inequality
which can be derived from (Ax <b, Cx <d) we will "rotate" wx <o in the following
way, as in Schrijver([24]}. By the definition of a derivation, there exist vectors

1 .
vy and y2 with ylz_O and ylA+y2C=w, ylb+y2d < a+l. Let

i

2 1 2 2
w'=w- |y IC vy A+ (y -I[y nc

2 1 2 2
a'=a-1ly }d ly b+ (y - ly )4l

z
2 2 2 , 2 2 . .
where |y | denotes the vector (Lylj ge ey LykJ). Now since (y =~ |y |) 1s nonnegative
and w' is integral, w'x <a' may be derived from (Ax <b, Cx <d). Furthermore,
{x: w'x<a', Bx<b, Cx=4d} = {x: wx<a, Ax<b, CX =d}. So w'kx<a' is an appropriate

inequality. The only difficulty is that we have not yet given a bound on its size.

To do this, we will "reduce" the inequality as follows. By Caratheodory's theorem,
. . -1 -2 -1 - - -

there exist nonnegative vectors y and y with ¥y A+y2c=w' and ylb+ y2d <g'+ 1,

-1 -2 -
such that at most n components of y  and y are positive. For a vector u= (ul, - - sy
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let [ul = ([u,], ,lu, 1) where [ui] = Luij -1 if uy is a positive integer and

1700 t
fu.] = {u,] otherwise. (We use [ul in the following definition, rather than iul,

since latter in the proof we need to have uy - [ui] >0 if uy > 0.) Let

- - - -1 -2 -2
w' - [yl}A— {y2]C= (yl— v ha+(y -1y I

- - - - -2 -
a’-—[yl]b-[y2]dgzt(yl-[yl])b-+(y ‘-[YZ])dJ-

Q
il

o]
]

The inequality c ¥ gdn may be derived from (Ax <b, Cx <d) and {x: cnx < dn, Ax < b,

, . -1 - 5 -2
cx<dlc{x: w'x<a', Ax<b, Cx<d}. Also, since Ofyl— [yl] <1 and O_<_y2— [y™] < 1

2 - [5—/2} are positive, the absolute value

and at most n components of §l - [;l] and }7
of each coefficient in cnx gdn is at most no(a,b,C,d). So Cnxidn is the inequality
we seek and, thus, (3) is true when k=n.
Now suppose C is of rank r <n and that (3) is true for all k>r+l. Letting
2°x gbo be those inequalities in Ax <b which nhold as eguality for each vector in
{x: Ax <b, Cx =4} we have that M= {x: on=bo, Cx=d} is the affine hull of
{x: Ax <b, Cx=4d}. 1If (on=bo, Cx =d) has no integral solution, then there exist
vectors yO and y such that yOAO+yC is integral and yobo+yd is nonintegral (see,
for example, Schrijver({25]). Letting w=yOAO+yC and o= Lyobo+ydj we have
{x: wx<a, Bx<b, Cx=d} =¢. Also, by Farkas' lemma, wx <o may be derived from
(Ax <b, Cx<d, -Cx<=-d). So, rotating wx <o as above we obtain an inequality
w'x < o' which may be: derived from (Ax <b, Cx <d) such that {x: w'x<a', Ax§b,
Cx=4d} ={x: wx<ua, AX<D, Cx=d} =¢. Now reducing w'x<a' as above, we obtain
an inequality c X gdr which satisfies the conditions in (3). So we may assume
(on=bo, Cx =d) has an integral solution, that is, that M contains integral vectors.
Let s be the dimension of M. We will define an affine transformation T whicih
maps 7% onto 2" and M onto {x¢e Qn: Xs-i-l: O,...,xn= 0} so that we may work with

polyhedra of full dimension. To do this, let v be an integral vector in M and

let L= {x-v: x M} be the linear subspace parallel to M. Consider a basis hl, .o ,hn

of the lattice Zn such that hl,...,hs

is a basis of the lattice LN z7 and let T(x)
be S(x) -v where S is the linear transformation which maps h.l onto ei, the ith-— unit
vector, for i=1,...,n.

Denote by P the polyhedron which is the projection, onto the first s coordinates:
of the image of {x: Ax <b, Cx=d} under T, that is, let P={§5QS: (x,0) ¢ T({x:
Ax < b, Cx=d}) . Since T maps Zn onto Zn, we have Pn ZS= 4. Thus, as shown by

Hastad[16], a result of Lenstra and Schnorr([22] on the product of the covering radiu:

of a lattice and the length of the shortest vector in the dual lattice implies that
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, - s - -, 5/2
°* there exists an integral vector w gQ° such that jwx' -wx"| <s for all vectors

x', ¥x" in P (see also Gr&tschel, Lovéisz, and Schrijver{14] and Kannan and Lovasz[181) .

We may assume that the components of w are relatively prime and hence that the

equation wX = k has integral solutions for all integers k. Let 1= Lmax{wi: X cP} .
. = S e = ) . , -1 -
Since {x Q" : wx =3} contains integral vectors, so does the hyperplane H=T ~({{(x,0) =
n o -=_ - . n . . .
O : wx=12}). So there exists a vector weZ with relatively prime components such

. N , . i - g —-— -
that H= {x: wx= 0o} for some integer a. Notice that since P {xcQ : wx<a* 1} we

may assume that {x: Ax <b, Cx=d}c {x: wx <o+t 1}. Furthermore, for any integer X

-1 - _— . . )
the hyperplane T ~({(x,0) an: wx =k}) contains integral vectors and so is of the
. . - g =— - 5/2.
form {x: wx=k'} for some integer k'. Thus, the fact that P {(XxeQ : WX>a~S / )
. .. 5/2 . .
implies that {x: Ax <b, Cx=dj= {X: WX >a- 8 / }. After rotating and reducing, we

will use the hyperplanes {x: wx=k'} as cutting planes.

First, since {x: Ax <Db, Cx=dlc {x: wx <ag+ 1}, Farkas' lemma implies that wx < o
can be derived from (Ax <b, Cx <d, -Cx <-d). By rotating and reducing as above
we cbtain an inequality c]'rx id}; which can be derived from (Ax <b, Cx <d), such
that {x: Ax <b, Cx=4d, céx f_dl'_}g:_ {x: Ax <b, Cx=d, wx <a} and the greatest amongst
the absolute values of the components of c}é and d; is at most ng(ad,b,C,d). It
also follows from the rotation and reduction procedures that

55/2} 5/2

{x: Ax<b, Cx=4d, céxidé— < {x: Ax<b, Cx=d, wR<a-~-S }.

5/2}c: {x: c'x>d' - (n—r)5/21.

Pl

So {x: Ax<b, Cx=dle {x: c£x>d£-s

The dimension of P {;: gQS: wx =0} is less than the dimension of P, since P
is of full dimension. So {x: Ax <b, Cx=4d, c£x=d£} has dimension less than that
of {x: Ax Eb' Cx=d}. (To see this, note that if WX < o does not hold for each
solution of (Ax <b, Cx=d) then we have {x: Ax <b, Cx=d}g;{x: c£x=d£}; and if
wx <o is valid for all solutions of (Ax <b, Cx=4d) then {x: Ax <Db, Cx=d, cJ‘fx= d;f} =

{x: Ax<b, Cx=4d, wx = q },using the fact that in the reduction procedure we have

yli— [y"i] >0 if yii >0.) Thus cli is not a linear combination of the rows of C. This
. . . . . . . s f
implies that there exists an inequality cr+lX f-dr+l with {x: Ax ib' Cx=4d, CI'X dr'

= 3 — ' 31
Cr+lx Edr+l} ¢ and a cutting-plane proof of Cr+lx-<-dr+l from (Ax ib' Cx id' ch < dr)

3{(n-r-1)
n

of length at most max{l, -1} which reqguires only n-r inequalities, besides

(Ax <b, Cx <d, c}‘:x idé) , to be stored at any one time and with each inequality in
. . 3(n-r-1)+
the proof having all coefficients of absolute value at most n (n-r-1) l(ng (A,b,C,4)),

since we have assumed that (3) is true for all k>zr+l. Let c;xid; be obktained

by summing c x <d  and the inequalities Cx <d, that is, c’=c +1C, dl=d_+ id,
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where A is the vector of all 1l's. We have that
{x: Ax <b, Cx<d, c'x<d', c"x=d"}={x: Ax<b, Cx=4d, c'x=4d'’.
- - - r’-"r r r - r r

x<d 1=3 and hence c¢c"x <d” -1 may be
r r+l - r+l . r -"r

dGerived from (Ax <b, Cx<d, c'x<d', ¢_ .x<d_ ). Notice that {x: Rx <D, Cx=4dr<s
",_/2 - r - T r+l — T+l —
2

{x: c;x > d; - (n=xr) land that the numbers appearing in c;x f_d; -1 have absolute

So {x: Ax<b, Cx<d, c'x<d', c'x=4", ¢
- - r - r r

value at most 2nc(Ad,b,C,d).

So far we have a cutting-plane proof of c;x id; -1 from (Ax<b, Cx<d). If
{x: Ax <b, Cx=4d, c;xf_d}’:‘-—l}=<b we are finished. Otherwise, we can find, as above,
a cutting-plane proof of the inequality c)'T"x id;c” -2 from (Ax <b, Cx <d), where
c'"x gd;‘ is obtained by summing c;:'x f_d; and the inequalities Cx <d. Repeating this
ai most (n-r)5/2 times, we obtain a cutting-plane proof of an inequality crx fdr
from (Ax <b, Cx <d) with {x: Ax<b, Cx=d, ¢ xf_dr}'—‘qb. The absolute values of
the coefficients of crx idr are at most ((n—r)5/2+ 1Yo (A,b,C,d), which is less
than HBG(A,b,C,d) . So the greatest absolute value amongst the coefficients of the

. L . ) , 3(n-xr)+1 ;
inequalities in the cutting-plane proof is at most n (n-x) og(A,b,C,d). The length

5 1= ; 2
of the cutting-plane proof is at most (n—r)b/2(max{l, n3(p o l)—lj) + (n—r)s/ +1 <

3(n~-x . . . - .
n (n )—l. Finally, the proof requires at most n-r+l inequalities, besides
(Ax <b, Cx<d), to be stored at any one time. So (3) holds in the case k=1, which

completes the proof of the theorem. /7

Remarks: 1) For bounded polyhedra, this theorem without the restriction on the
lengths of the proofs may also be derived.from Chvatal's[3] technique, since, as
observed by Coullard[8], the cutting-plane proofs given in [3] require only poly—
nomial workspace. The restriction on the length does not follow in this way since
the number of derived inequalities in these proofs depends on the least integer N
such that {x: Ax <blc {x: Ixil <N, i=1,...,n} and so may be arbitrarily high, even

in the 2-dimensional case. //

2) Chvital(6] defines cutting-plane proofs in general as a method for showing that
every integral solution of Ax <b satisfies another specified inequality wx < B, by
requiring that the last inequality in the proof be wx < 8, rather than Ox <-1. Such
a cutting-plane proof always exists if either {x: Ax ib} is bounded, as shown by

Chvéatal[3], or if A and b are rational and Ax <b has at least one integral solution,
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as shown by Schrijver[24]}. The lengths of these proofs, even when the inequalities
have only two variables, may necessarily be arbitrarily long (see the example of

J.A. Bondy given in Chvatal[3]). But, as the proof of our theorem only requires

that (Ax <b, wx=1t) have no integral soclution in order to obtain a cutting-plane

proof of wx<t-1l, if A and b are rational then in either Chvdtal's case or Schrijver's

case there exist proofs which can be carried out in polynomial workspace. //
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