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ABSTRACT

A stochastic method for global optimization is described and evaluated. The

method involves a combination of sampling, clustering and local search, and

terminates with a range of confidence intervals on the value of the global

optimum. Computational results on standard test functions are included as

well.
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. INTRODUCTION

The global optimization problem is to find the global optimum of a real

valued objective function. Relatively few methods have been developed to

solve this problem, certainly in comparison to the multitude of nonlinear

programming methods that have been designed to find local optima. Yet in

many applications, a truly global optimum rather than an arbitrary local

one is asked for. There is no need, then, to elaborate on the obvious

practical applicability of global optimization, nor on the computational

challenge that it offers [3,5].

All methods for global optimization assume that a bounded set S

containing the global optimum in'its interior, is given in advance. Thus, with

x = (x
1' 

x
n
) and f : S -4 , the problem will be to find

= 
minES {f(x)}.x (1)

The known methods for this problem can be divided into two classes according

as to whether they are of a deterrinistic or of a stochastic nature.

Deterministic methods find the global optimum by an exhaustive search over•

S. Clearly, in order to insure optimality in a finite number of steps,

certain restrictions have to be put on f it is easy to construct objective

functions for which the global minimum can only be recognized on a subspace

of arbitrarily small volume. A popular assumption in certain deterministic

methods is that a Lipschitz constant is given, i.e. a constant L such that

for all x, x' E S

f( ') Lllx ' I I

The upper bound on the rate of change of f implied by (2) can be used in

various ways to bound the size of the subspaces occurring in the search.

2)

Unfortunately, assumption (2) is rarely verifiable in practice. In addition,

the computational effort required by these methods is quite formidable:

it increases exponentially with n, the dimension of the problem. Better

computational results have been obtained with a completely different deterministic

method, based on the construction - by numerical integration - of paths along

which the gradient of f points in a constant direction [91:



None the less, the typical combination of

restrictions on the objective function on

computational behaviour on the other:hand

Stochastic methods start from, a sample

severe, sometimes implicit

one hand and at best erratic

is not an attractive one.

points drawn randomly from S.

These methods offer an asymptotic guarantee: under mild conditions on f,

the probability that the global optimum will be found by a stochastic

method approaches 1 as the sample size increases 16] In addition to a

sampling or global phase, most stochastic methods contain a local phase,

in which the sample is manipulated to yield a candidate solution value

to (1). If possible, stochastic methods should terminate by providing the

user with some probabilistic information on the 'quality of the obtained result.

The algorithm, presented in this paper is a stochastic one. Its goal is to

find all the local minima that are potentially. global. These local minima

will be found by means of a local search procedure ,starting from, appropriately

chosen points in the sample.

We cannot afford to neglect any of these local minima, but neither can we

afford - for reasons of computational efficiency - to find the same one again

ELIA again. Thus,given a particular local search procedure, we define the

region of attraction of a, local mini,mum,x* to be the set of all points in S

starting from which the local search procedure will arrive at x* and 'strive

to initiate the local search procedure no more than once in each relevant

region of attraction.:

In an effort to identify these regions of attraction, the algorithm invokes

a clustering procedure (cf. [141). Before every application of this procedure,

hcwever, the current sample is transformed by temporarily removing a pre-

specified percentage of the sample points whose function values are relatively

high, and by performing a single steepest descent step from the remaining ones.

This is supposed to result in the formation of groups of relatively close points,

each of which surrounds a promising local minimum. The aim of the clustering

procedure is to identify the clusters of points corresponding to these groups,.

In each application Of the procedure, clusters are grown around appropriately

chosen seed points,, in a way yet to be described, .until all points of the

transformed sample have been allocated to a cluster. If in the course of doing
,

one or more local minima are found that had not been discovered before,



the sample is increased by an additional, fixed number of points. The extended

sample is transformed in the way described above, and the clustering procedure

is applied anew.

Thus, before each application of the clustering procedure, we have available

a set X* containing the local minima that were found so far. We also have

available a set X
(1) 

containing sample points to which the local search

procedure has been applied unsuccessfully, in the sense that this produced a

local minimum x* that was known already. Initially, both sets are empty. As

far as the choice of seed points for the current clustering phase is concerned,

we start by growing clusters from all the local minima in X*; if any points in

the transformed sample then remain unclustered, we start to use the points in

X
(1)

as seed points; and if any points still remain unclustered, we choose the

point x(1) with lowest function value among those, apply the local search

' (1)
procedure to x to find a local minimum x* (cf. [14]) and grow a cluster

with either x* or x
(1) 

as a seed point, depending on whether or not x* was

already known to be a member of X*. In the former case, x
(I) 

is of course

added to X
(I)

. We repeat this last mentioned clustering step until all points

have been assiTned to a cluster.

It remains to describe in more detail how to grow and terminate a cluster around

a given seed point. We have developed two different methods for this purpose,

both to be discussed in Section 2. In that section,we also present some com-

putational evidence that has motivated the rejection of one of them as being

marginally less accurate.

If during any clustering phase no new local minima are added to X*, the sampling

is terminated and the smallest local minimum y* = f(x*) that has been obtained

is declared to be the candidate solution to (1). As a final step, the user has to

be provided with some probabilistic information on the quality of this outcome. In

Section 3, we use a result from [10] to show how the two smallest function

values found in the complete sample can be used to construct a range of

confidence intervals on the true value of the global minimum. These confidence

intervals are valid under a mild restriction on f, which is, for example,

satisfied if the Hessian in the global minimum is nonsingular. As will be

demonstrated in Section 3, the smallest function value y* found during the local

phase can be incorporated subsequently to provide the user of the algorithm

with a final range of confidence intervals, whose right endpoint is now equal

to y*.



The algorithm has been tested on the standard test functions for global

optimization from [6], with good results that are reported in Section 4.

Concluding remarks and a brief discussion of ongoing and future research

are contained in Section 5.

2. CLUSTERING

In this section we describe and evaluate two procedures, based on density clustering

and single linkage clustering i-espectively,that have been developed to

grow and terminate a cluster around a given seed point. The general structure

of both procedures is identical: selected points of the transformed sample

are added to the cluster one by one until a termination criterion is satisfied.

If any points of the transformed sample then remain unclustered, we proceed

as described in Section 1.

The choice of proper termination criteria for the clustering procedures requires

§ome assumption about the distribution over S from which the sample has been

drawn. We shall be assuming here that the sample is generated from a uniform

distribution over S.

2.1. Density clustering

In the first method, based on density clustering, a cluster will correspond

to the points in a subset T of S of stepwise increasing volume. The cluster

will be terminated if the number of points added to the cluster in a single

step drops below a threshold level that is calculated in advance.

Let us assume first that the seed point of the cluster is a local minimum x*.

As motivated in Section 1, T should then ideally have the same shape as the

region of attraction around x*. It is difficult to characterize these regions

in general. However, if we define

L(y) {xlx E 5, f(x) <y},

it can be proved for every steepest descent local

search procedure that the region of attraction around x* contains every

connected subset of L(y) that contains x* as its only stationary point [4 ].

This suggests to let T correspond to such a subset for stepwise increasing

values of y. The actual level sets L(y) may again be hard to construct, but

we can approximate them by the level sets V(y) around x*, defined by the

second order approximation of f around x*:

x) = f (x*) + ( x - x*) T H(x*) ( x - x*

where H(x*) is the Hessian of f in x*. Thus., the connected subsets around x*

correspond to enipsoids(cf. the use of hyperspheres in [14]).
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As to obtaining H(x*), we note that if the local search procedure is a

quasi-Newton one, we obtain an increasingly accurate approximation Mx*
of H(x*)-1 in the course of the procedure. It is then a simple matter

-(e.g., by maintaining an LU decomposition of M 
1

x*) ),;to obtain Mx*)

good approximation of H(x*), and it is this approximation that was used

in our computational experiments.

as a

To give a complete description of the procedure, we derive a termination criterion

for the growth of a cluster. Let m(A) indicate the Lebesgue measure of

Ace and define the density 6 by

m(s)

where N is the number of points in the current sample. If we ignore the

effect of the steepest descent step, the assumption of a uniform distribution

implies that 6 is also the expected density within a cluster (cf. [14]).

During the growth of a cluster, we increase the volume of T in each step by an

amount such that as a result one new point is expected to enter the cluster.

Thus, in the i-th step, we increase the volume of the ellipsoid to i/6.

Since this volume is given by

[2“y" - f(x*flin/2 

r(1 + n/2)IH(x*)1 1/2

it follows that in the 1-th step we have to check if there is at least one

point x such that x is not yet clustered and

* 11 2 2/n
7(x - x*)T fl(*)( )

ir( + n/2) H(x )1  )

If no such x can be found, the termination criterion is satisfied.

If the seed point is a member of the set X
(1)
 rather than a local minimum, the same

procedure can be applied with H(x*) replaced by the unit matrix I.

2.2. Single linka,ge clustering

The second clustering method is based on the observation that the approximation

of the regions of attraction by ellipsoids need not always be satisfactory.

;1_,nol,E2 linkage clu3te::ing schemes [8 ] can be used to produce clusters of any
ujeoetrical shape.



The original single linkage method is an agglomerative hierarchical procedure:

we start from the partition into single element subsets, and in each

step we fuse two subsets E and E' whose distance (as measured by the minimal

distance between a point in E and a point in E') is minimal.

We adapt this procedure to our purposes by assuming again that the seed point

is a local minimum x* and by defining the distance d(x, x') between two points

x and x' in the neighbourhood of this local minimum to be

d(x, x') = [(x - H(x*)(x - ')]
/2

Ne have already remarked upon the availability of an estimate of H(x in the

context of the density clustering procedure.

We now initialize a cluster C to contain the single unclustered point that is

closest to x*. In every subsequent step, we find an unclustered point x such

that

D(x, = min
x'EC 

{d(x, x')1

is minimal, we add x to C and repeat,until D(x, C) exceeds a certain threshold

level in which case the termination criterion is satisfied.

To choose a proper threshold level for D(x, C), we consider the probability

distribution of distances between points within a cluster. In doing so, we

shall again ignore the effect of the steepest descent step and assume that the

points within a cluster still satisfy the original uniform distribution over S.

Under this assumption, we can estimate the probability that one point in a

cluster has none of the other N-1 sample points at distance d or less by

d'1 
n/2

To n/2)IH(x*)1 1/2 m(S)

)N-1
3)

Formula (3) reflects the fact that for each of the N-1 points separately the

required probability can be approximated for small d by dividing the volume

of an ellipsoid (x - x')TH(x*)(x x') < d2 by m(S) and subtracting the

result from 1. No results other than comparable asymptotic ones [7,12]

are available about the distribution of the nearest neighbour statistic.



The termination criterion for the current cluster is now said to be

sabisfied if the distance D(x, C) is so large as to make the probability

(3) smaller than a prespecified threshold level a. (Thus, the cluster is

terminated if the hypothesis that x belongs to the uniform distribution

is rejected, with a corresponding to the probability of a type I error.)

The threshold level on D(x, C) is therefore equal to

Lr n/2)111(x*)11/2 m(S) (1
n/2

TT

If the seed point is a member of X 1(

be used with I replacing H(x*

2.3. The gradient criterion 

(11XN-1)i 2/n

, then again the same technique can

To complete the description of the clustering procedures, we mention that in

both procedures, before a point x is added to a cluster that is related to a local

minimum x*, the negative gradient at x is verified to point in the direction

of x*. More precisely, if x* is the seed point, we approximate the derivative

of f in x in the direction of x* by

f(x + h(x )) f(x)
hlix* xil

for small h, and reject x for the cluster 'if this value is positive. If
(1) 1)
x E X( is the seed point, we verify in an analogous manner if the gradient

at x is pointing in the same direction as the gradient at x
(I)

. This modification

turned out to be very useful from a computational point of view, in that it

regularly allowed the identification of clusters that would have been overlooked
otherwise.

•

2.4. Computational ,gDmparicIl2al the li.2T.ocedures

Early implementations of the two clustering procedures described in this
section were the subject of limited computational experiments. Some represen-
tative results are gathered in Table 1. The procedures were coded in FORTRAN
and run on the IBM 370/158 of the Delft Computer Centre. Three test functions
were selected from the standard collection for global optimizationlisted in Table 2,_
for each of them, the number of relevant local minima is mentioned after their
abbreviation in Table 1. For each function, both density clustering and single
linkage clustering were applied to three independent samples of 500 points
drawn from S. In Table 1, they are compared with respect to the number of local
minima found, the number of clusters actually constructed, the number of function
evaluations required excluding the initial one for each point, and t'r.1 =ber
of units of standard



time required for clustering and local search,where one unit of standard

time corresponds to 1000 evaluations of the Shekel. 5 test function in the

point (4, 4, 4, 4)[ 61.

Table 1

run 1 run 2 run 3

D SL

_
D SL D SL

GP(3): 1.m.f. 3 3 3 3 3 3

c.f. 5 4 8 3 7 3

f.e. 541 507 751 449 702 484

u.s.t. 1.5 2.0 1.9 1.9 1.8 1.8
—

BR(3): 1.m.f. 3 3 3 3 3 3

c.f. 7 3 3 3 3 3

f . e . 550 418 430 433 424 427

u.s.t. 1.8 1.8 1,4 1.9 1.4 2.1
,

S7(7): 1.m.f. 7 7- 6 6 7

.1

7

c.f. 7 7 6 6 8 7

f.e. 755 773 716 731 822 772

. u.s.t. 2.4 2.1 2.3 2.0 2.9 2;2 I

: density clustering

single linkage clustering

1.m.f. number of local minima found

c.f. number of clusters found

f.e. number of required function evaluations

u.s.t. number of units of standard time

Table 2

Test functions cf. [ 6])

GP

BR

113

116

S5

S7

S10

Goldstein & Price

Branin (RCOS)

Hartman 3

Hartman 6

Shekel 5

Shekel 7

Shekel 10
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From Table 1, it is obvious that both methods performed almost equally well.

The single linkage method, however, was marginally more accurate and performed

on the average a little better with respect to both performance measures. A slightly

improved implementation of this method was subsequently incorporated in

the final algorithm.

3. A CONFIDENCE INTERVAL

In this section we describe how a range of confidence intervals for the global

minimum y* can be obtained from the sample.

We shall assume again that the total sample consists of N n-vectors x

drawn independently from a uniform distribution over S. It is intuitively clear

that some regularity condition on f is required to allow the derivation of any

statement about the distribution of the resulting sample of function values.

Such a condition can be conveniently formulated in terms of the distribution

function F of f, with

F(Y) = Pr [f

Note that the fact that x is drawn from a uniform distribution implies that

F(y) in(L(y))
m(s)

with m and L as defined in Section 2.

(4)

An interval I(p) is calledia level-p a3y1q3totic. confidence interval for y* if,
for sufficiently large sample size,

Pr[y* E I(P)] = P.

(1)
Let y_ be the smallest function value from the original sample and y

(2)

the smallest but one.

Theorem 1

If there exist positive constants p and K such that

lim  F(y) 

Y+Y*
Y - Y*

5
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Then a level-p asymptotic confidence interval 1(p)for y, is given by

1(p) = [Y(1) Z-(2)- 

(1)

-p
p -1

Proof

y
(1)

This theorem is a special case of a result in

in the Appendix.

[1d • An adapted proof is given

The following theorem can be invoked to show that the conditions of

Theorem 1 hold under a mild assumption on f.

Theorem 2

If f assumes a unique global minimum at a point x* lying in the interior of S,

if f is twice differentiable in x* and if the Hessian H(x ) is nonsingular,

then the limit

liM M(L(y)) 

Y+Y* (Y Y*

)n12

exists and is a positive number.

Proof

See [1].

In view of (4), the above result implies that under the conditions of
Theorem 2 a level-p asymptotic confidence interval I(p) for y* is given by

with

(1)'(ID) =

y.(p) =
1

(2)
-

p -1

Note that y.(p) is a monotone decreasing function of p, and that with

probability 1

lim y(13) = -
pt1

as was to be expected.



12

Let us now consider the situation after the local phases of the algorithm,

when clustering and local searches have yielded a number of promising local

minima. The best of those will be the candidate global minimum, and since

it has been obtained from the sample in an admittedly complicated but well

defined way, we must consider this candidate global minimum value to be a

random variable L*.

Obviously,

and

1
[Z.* < )]= 1

[y < = 1

With probability 1, there will be a range of values for p such thateis

sivaller than y(p) and a range for which the opposite is true. In fact,

the former situation occurs if p is smaller than the threshold value

L
(2)

- y
* 
-n/2

(1)

and the latter situation occurs if p is larger than po.

5)

In the first case, we simply have two probabilistic statements about y*,

one in the form of I(p) and one as in (5 ), with the latter dominating the

former. In the second case, we know that

(1)Pr [1(1D) < Y* <

,[y..(p) <y* < y.4] + Pr [x.* <y* < 
1) 

 Y ' p, (6)

and since the second probability in (6) is 0 because of (5), we have a new
level-p asymptotic confidence interval for y*, given by [Y(P),:e]-

Thus, as a final outcome of the algorithm we obtain a candidate global

minimum y* together with an infinite range of level-p asymptotic confidence

intervals(for p 
> 

) l whose right end point is y*. Note that for a meaningfu0
interpretation of these confidence intervals by the user of the algorithm,
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a specification of the units of measurement that f refers to is essential.

In the cue of the standard test functions for global optimization, such a

specification is not immediately available; none the less, we do present a

selection of the confidence intervals that were obtained for these test

functions in Section 4.

4. COMPUTATIONAL EXPERIMENTS

The final version of the algorithm described in Sections 1, 2 and 3 has

been the subject of extensive computational experiments. The test functions

involved in these experiments were all those listed in Table 2.

In the tested version of the algorithm we used the single linkage clustering

scheme with the threshold parameter a set equal to 0.01. Points were added

to the sample in groups of 50, and the best 10 percent of the points in a

current sample was retained for clustering and local search. We found that

by increasing the group size to 10O an even more reliable method was obtained

in the sense that every relevant minimum of the test functions was always

found. This occurred, however, at the expense of a 50 percent increase in

computing time.

The local search procedure used in our algorithm was the VA1OAD variable

metric routine from the Harwell Subroutine Library.

We also tested the SSVM variable metric routine developed by Van der Hoek [11],

with almost identical results.

The algorithm was coded in FORTRAN and run on the DEC 20/50 of the Computer

Institute Woudestein. Its performance was measured by the number of function

evaluations required,as well as by the number of units of standard time as

defined in Ebction 2 .4. Both measurements are sensitive to the particularities

of the sample at hand, and therefore the results reported actually represent

the average outcome of four independent runs.

In Tables 3 and 4, we summarize these computational results, and compare them

to those obtained for a few leading contenders as reported in [6 1.



Table 3

Number of function evaluations

Function

Method GP BR H3 H6 S5 S7 S10

Tarn [14]

De Biase [2]

Price [13]

Branin [9]

New algorithm

Table 4

2499 1558 2584 3447 3679 3606 3874

378 597 732 806 620 788 116o

2500 1800 2400 7600 3800 4900 4400

• _4, _* _* _* 5500 5020 486o

398 235 235 462 567 624 755

*No results available

Number of units standqrd time

GP BR 113 116 S5 S7 S10

TOrn [14]

De Biase, [2]

Price [13]

Branin [9]

New algorithm

4 4 8 16 lo 13 15

15 14 16 21 23 20 30

3 4 8 46 14 20 20

_* _* _* _* 9 8.5 9.5

1.5 1 1.7 4.3 3.5 4.5 7

*No results available

The results for our algorithm are obviously quite satisfactory; the algorithm

also never failed to find the true global minimum. Yet, it remains difficult

to arrange a fair and direct comparison of different stochastic global

optimization procedures. Each of those methods has the property that the

user's confidence in its final result can always be increased at the expense

of increasing the sample [15]. A fair comparison of stochastic methods should

therefore be based on a comparison of the costs involved in achieving a certain

level of confidence. However, many algorithms do not provide any confidence

information at all, and even our own attempts in that direction hardly



capture the effect on user's confidence of the elaborate local search
calculations carried out to find the candidate value y*.

As remarked before, the confidence intervals produced by our algorithms are
meaningless if nothing is known about the units of measurement in which the
cbjective function is expressed. Nevertheless, we present the confidence
intervals obtained for various values of p in Table 5. The values of p
have been selected to be approximately equally distributed over the interval
[maxfpo, 0.75/, 1.00]. It seems reasonable to conclude that the intervals
in Table 5 are on the. whole not so excessively large as to preclude the
applicability of this probabilistic information in a more practical context.

Table 5

Confidence intervals

'Minimum
value

ri L1 Pr2 L2 Pr
3 Pr

5

GP 3.000 0.79 42 0.83 58 0.88 85 0.92 135 0.96 296
BR 0.3978 0.79 0.75 0.83 1 0.88 1.5 ,0.92 2.5 0.96 5.5
H3 -3.862 0.79 2 0.83 3 0.88 4 !0.92 6.5 0.96 13
116 -3.322 0.79 2 0.83 3 0.88 4 0.92 7.5 0.96 15
55 -10.15 0.975 2 0.98 5 0.985 10 0.99 20 0.995 50
S7 -10.40 0.975 2 0.98 5 0.985 10 0.99 20 0.95 50
310 -10.53 0.94 2 0.95 5 0.96 10 0.98 20 0.99 50

Pr,: the probability corresponding to the j - th confidence interval (j=1

L. : the lenth of the j th confidence interval (j=1,...,5J

5. CONCLUDING REMARKS

The stochastic algorithm described in the previous sections has turned out to be
a reliable and computationally attractive method for global optimization.

The main imperfection of the current design of this and all other stochastic
methods is that there is no really satisfactory way to proceed if the final

confidence statement is not acceptable to the user. Of course, it is always
ppssible to enlarge the sample; asymptotically, the length of all confidence
intervals will approach 0 for every p < 1 with probability 1. However,

•,5)
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if the sample is again drawn from a uniform distribution over S, all

information that was obtained about the objective function so far is ignored.

Ideally, the sampling distribution should be updated to reflect this information

in a Bayesian learning procedure. Development of such a procedure, with due

consideration for possibilities created in this way for an interactive

approach, is very much a subject of future research.

A second part for future research will be the extension of this stochastic

approach to constrained global optimization, other than through the use of

penalty functions, and the extension to combinatorial (e.g., 0-1) optimization.

It remains to be seen if a sampling procedure can provide a satisfactory

st2.:eting point to solve these problems.
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APPENDIX

Proof of Theorem 1

The proof of Theorem 1 is based on the following lemma. Suppose that we

have N independent random variables Z 55 5Z that are all uniformly_1 _N
(1)

distributed over the interval [0,1]. Let Z be the smallest order

statistic (the minimum) and Z
(2) 

t
h
e smallest but one.

Lemma

The statistic

Proof

1
is uniformly distributed on the interval [0,1].

Pr Z 
1 

Z
(2) 

< = Pr[Z

zZ
(2)

1
••••••••

N(N - 1)(1 - )N-2 Z(1)

=z. 0

We may assume the inverse of F(r) to exist. The assumption of Theorem 1

lim 
F(y) 

y+y* (y y*)1/p

can be transformed, by means of the substitution u = y

into

lim  
v+0

(F

As K> 5

lim (F

v+0

- Y*

- y

1

1/p

=

1

v = F(m + u),

(1)

To prove Theorem 1, we define the random variable to be a transformation

of the variable Zi, such that zi has distribution function F(T) (i = 1, 2,...,

A transformation that satisfies this requirement is y. = F
-a

Pr[. < y] = P [F-1(Zi) < y]

= Pr[Zi < F(y)]

= F(Y) (1=
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As F(t) is nondecreasing, = F (Z ) is the smallest order statistic
(2) -1

and y_ = F (Z
(2) 

) is the smallest but one.

The random vector

/ 1) , / (2 1/p\(NKky. y* P, y

is equal to

(1 y*)1

1) •••••••

1
(2) N l/py*)

Asymptotically, it has the same distribution as

(1)(Nz 2

because of (1).

The lemma implies that the distribution function of Z

depend on N. Hence, for N co

Pr[

, (2) )1/P 
NK(Y(1)- Y*)1/P

Na 
> x] =

NKY 

Y*y.6)- 

_ 

Y 

)vp 

Pr
)_z(1)
z(1)

Pr[z
(2)

/

1

From the

1) (2)
does not

1lemma, the last probability is, equal to

Put = p. Then x =(i - p)/p, and hence asymptoticallyx+1

(2) 1/p (1) 0/p /NIqy - y*) NKCE - yAd - P)

NICk
/ 
Y Y*) 
(1) \l/p

Algebraic manipulation yields

(2) (1)
(1)  ,

p

Pr[4,> y
_p
-1

p
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Since obviously

Pr[y*
(1) = 0,

the desired level-p asymptotic confidence interval follows immediately.
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