Systolic Architectures for
Finite-State Vector Quantization

by R. Kolagotla, S-S. Yu and |. Jd]d

TECHNICAL
RESEARCH
REPORT

SYSTEMS
RESEARCH
C E N T E R

Supported by the
National Science Foundation
Engineering Research Center

Program (NSFD CD 8803012),
Industry and the University

TR 91-102

Systolic Architectures for
Finite-State Vector Quantization

Ravi Kolagotla, Shu-Sun Yu and Joseph JaJa

Department of Electrical Enginecering,
Systems Research Center, and
Institute for Advanced Computer Studies,
University of Maryland, College Patk, MD 20742.

Abstract

We present a new systolic architecture for implementing Iinite
State Vector Quantization in real-time for both speech and image
data. This architecture is modular and has a very simple control flow.
Oanly one processor is needed for speech compression. A linear array
of processors is used for image compression; the number of processors
needed is independent of the size of the image. We also present a
simple architecture for converting line-scanned image data into the
format required by this systolic architecture. Image data is processed
at a rate of 1 pixel per clock cycle. An implementation at 31.5 MHz
can quantize 1024 x 1024 pixcl images at 30 {rames/sec in real-time.
We describe a VLSI implementation of these I'STSVQ processors.

1 Introduction

Vector Quantization (VQ) is an important compression technique used in
speech and image coding applications. VQ provides the best performance
among all block structured image coding schemes for a given blocksize and
bit-rate. VQ codebooks are typically structured as trees to reduce the code-
book search complexity and simplify hardware implementation [1, 2, 3, 4].
Tree Search VQ (TSVQ) has an O(log N) codebook search complexity com-
pared to the O(N) complexity of VQ for a codebook of size N. Increasing
the vector dimension for a given bit-rate improves the performance of VQ.
However, the resulting increase in complexity makes large vector dimension
VQ or TSVQ impractical.

Finite State VQ (FSVQ) is a class of VQ with memory which makes
use of correlation between neighboring vectors to improve performance for

a given vector dimension and bit-rate [5, 6]. An FSVQ consists of a super-
codebook which contains a large number of codevectors and an internal state
which accurately represents a small region that contains the current input
vector. The quantizer codebook used for the current input vector depends on
past outputs. Thus, FSVQ achieves the efficiency of a large rate codebook
at a relatively small rate [7, 8]. Finite State TSVQ (FSTSVQ), which is a
TSVQ with memory, exhibits a better signal to noise ratio performance than
a simple TSVQ, while maintaining its O(log N) codebook search complexity.
FSTSVQ can provide a better compression ratio than a TSV(Q using about
the same computation and memory resources [8].

In this paper, we describe systolic architectures for implementing FSTSV(Q
in real-time. These architectures can be used in any speech or image compres-
sion application based on VQ. In section 2, we provide the general definition
of an FSVQ. In section 3, we describe the architecture of a TSV(Q and show
how an FSTSVQ can be implemented with minimal additional hardware.
In section 4, we describe the FSTSVQ architectures for speech and image
coding applications. We show how the data dependencies lead to simple
systolic array architectures. In section 5, we describe an architecture to con-
vert line-scanned image data into the format required by the FSTSVQ image
coding architecture. We describe the VLSI implementation of this scheme in
section 6.

2 Definitions

Given an input vector x, a VQ encoder chooses a reproduction vector X from
a predetermined set of reproduction vectors (or codevectors) that is closest
to the input vector relative to a certain distortion measure. The Euclidean
distance is the most commonly used distortion measure. The input vector
is then represented by the index u of codevector X. This index, also known
as the channel symbol, is transmitted to the decoder. A VQ decoder maps
this channel symbol onto its corresponding reproduction vector from the
codebook.

In a binary TSVQ, the codebook is organized in a tree structure. The
input vector is compared with two codevectors at each node. Based on this
comparison, one of the two branches is chosen and the codebook search space
is reduced by half. This process is repeated until a leaf node is reached. The

Do

input vector is represented by the index of the leaf codevector at the end of
this traversal.

In a finite state VQ (FSVQ), performance is improved by exploiting the
correlation between neighboring vectors. An L-dimensional K-state FSVQ
[6] is specified by a state space & = {1,2,..., K}, an initial state so, and
three mappings:

(1) a: RE x & — N : finite-state encoder,

(2) B: N x 8 — A finite-state decoder,

(3) f: N xS — & : next state function.

Here, N & {1,2,..., N} is the finite channel alphabet of size N and A is the
reproduction space. Given a sequence of L-dimensional input vectors {x,},
the 'SVQ encoder determines the sequence of reproduction vectors {%X,}, the
sequence of channel symbols {u,}, and the sequence of states {s,} according
to:

Uy, = a(Xn,8,), n=0,1,...,

% = Bl sn), n=0,1,...,
Snr1 = f(Un,8,), n=0,1,....

Given the initial state and the channel symbol sequence, the FSVQ de-
coder can track the state sequence, because the next state depends only on
the present state and the output channel symbol. The set of reproduction

vectors C; 2 {B(u,l),u € N}, is the codebook associated with state I; obvi-
ously, A = UL, C.

An FSVQ can be interpreted as a set of K V(Qs, one V() associated with
each state, and a finite state machine which selects one of these VQs to
encode the given input vector. Similarly, an FSTSVQ can be interpreted as

a set of K TSVQs.

3 Basic Architectures

In this section, we first describe the design of a Single Node Processor (SNP)
which performs the computations required at each node of a binary TSVQ.
A TSVQ is implemented as a lincar array of SNPs. We will show how to
combine TSVQ and a simple next state function generator to implement

FSTSVQ.

3.1 Single Node Processor

In a binary TSVQ, the L-dimensional input vector x = (z1,...,2z)T must
be compared with two codevectors at each node. Let ¢3 = (ey,...,¢1.1)7,
and c2 = (ez1,...,¢,0)7 represent the two vectors in the codebook of a
given node. The processing performed at each node is reduced to testing the
condition:

d(x,c1) 2 d(x,c2), (1)

where d(x,¢;j),1 = 1,2 are the distortion measures. For the general case of
the weighted mean-squared error distortion,

d(X,Ci) = (X - Ci)TW(X - Ci)7 1= 1327
where W is the weighting matrix. Equation (1) can be expressed as:
(x—c1)"W(x—ci1) = (x—c2)TW(x—cz) >0 (2)

If equation (2) is satisfied, the input vector x is closer to codeword ca. Oth-
erwise X is closer to ¢1. We expand equation (2) to obtain:

L
> Aejzi}+4 20 (3)

j=1

where o = (ay,...,a1) = 2(c2 — ¢1)TW, and 8 = c;TWey — c2TWe,. For
the special case of the mean-squared error distortion measure, W = I, and
hence aj = 2(cz,; — €15), and B =1 (¢}, — 3 ;).

Instead of using the raw codebook online, we can determine these o and
B coefficients off-line and store them in memory chips!. This algorithm is
based on Binary Hyperplane Testing [9]. Directly implementing equation (1)
requires 2(L? 4+ L) multiplications, 2(L? — 1) additions and L? + L words of
memory storage, while implementing equation (3) requires only L multipli-
cations, L additions, and L 4 1 words of memory storage.

The Single Node Processor performs the computations stated in equa-
tion (3). Its output is a ‘0’ if equation (3) is satisfied and a ‘1’ otherwise.

1Some applications use a weighting matrix W(x) that depends on the input vector x.
Equation (3) is still valid in this case, but a preprocessor is needed to compute the o and
B coefficients in real-time.

n
b
MSB
b 2b n
. v = L/R
z; ‘f{>< Latch Ready
. i
,8’ Reset

Figure 1: Block diagram of the Single Node Processor (SNP). Coeflicients a; and §’ are
stored in ofl-chip memories. The multiplier computes p; = a;; + 4.

Our implementation of a SNP uses the pipelined parallel multiplier devel-
oped by McCanny and McWrither [10, 11]. We do not need a comparator
unit in the SNP. The most significant bit (MSB) of the accumulated products
directly represents the processor’s output.

Figure 1 shows a block diagram of the SNP processor. Input data is
skewed and all internal operations are performed in a bit-skewed word-
parallel mode. The multiplier takes two 0-bit numbers «; and z;, and a
2b-bit number 2 B, and returns a 20-bit number p; = ojz; + B'. The bits of
P; = Pj2bs Dj2b—1,---,Pj1 are available in a skewed fashion, least significant
bit (LSB) first. The latency of the multiplier depends on the bit position; it
is b for the LSB bit p;1, and 3b for the MSB bit p; 2. The accumulator must
have a precision of

n = 2b+ [log L]

bits, to prevent overflow when [2b-bit numbers are added together. The
output of the multiplieris sign extended by [log L] bits and is directly applied
to the accumulator.

The accumulator consists of a linear array of cells, and operates on skewed
input data as shown in Figure 2. Lach cell consists of a full adder and three
latches. Carry is propagated to the neighboring cell and sum is stored within

?We define 8 = B/L and add it during each of the L multiplication steps. This can
be done without any additional hardware and eliminates the need for a comparator unit
to compare the accumulated sums with £.

Pin

Sample p_L\n\ -
, ~

Interval S~
- -
° =~ - plyj
P3n PL,j\\\\\ .
P2n . \‘~—\‘ Pi,2 .
(MSB)p1,n Vs,j PL2~~~__ P11
. \\\\\ ° . . p?,] . pL,l T
. Te~o_ D1y P32 °
\: S~ ., Pao P31 Vector
Te~al v - ’ Interval
. . Te~L_ P2 P21
. . o TN~ Pm(LSB)L
L/R Cos c.. GND
An Aj As A ™
Ready cee s le=—— Reset

(b)

Figure 2: Detailed diagram of the accumulator (a) Linear array of cells. Input data is
applied in a skewed fashion and carry is propagated between cells. Reset is applied to the
first cell and is propagated down the array. Cells in this array are reset in a staggered
fashion. (b) Detail of each cell. Solid circles are unit delay elements.

6

the cell. The accumulator computes

L
A=) pj,
j=1

and returns the sign of A. The sign of A is available at the carry output pin
of the last cell in the accumulator array. It is denoted by L/R in Figure 2.
A Reset signal is generated once every L clock cycles. Reset is propagated
along the array and each cell is reset in turn. This allows the next set of L
numbers to be accumulated immediately after the last number of the current
set is applied to the accumulator. The latency of the accumulator is n 4 L
clock cycles. This is the number of clock cycles between the time py; is
applied to cell A; and the time L/R is ready at cell A,,. Hence, the latency
of the SNP 1s

LSNp=b+n+L=3b+|_10gL_|+L. (4)

For example, if the word size b = 8, and the vector dimension L = 16, we
have Lsnp = 44 clock cycles.

3.2 TSVQ architecture

The computations performed by a TSVQ can be viewed as finding a path
from the root to a leaf in a binary tree. While traversing a binary tree, only
one node is encountered at each level. Hence, the computations at each level
can be performed by a single processor. A tree of depth d can be mapped
onto a linear array of d processors as shown in Figure 3.

Figure 4 shows the architecture of a TSVQ using d SNP processors. The
coefficients necessary for each processor’s computations are stored in mem-
ories and will in general depend on the distortion measure used. Processor
SNP(i) adds the results of its computations to a partial index datapath and
generates a Go signal to initiate processing by processor SNP(i+1). This Go
signal is used to reset the accumulator. The final processor SNP(d-1), re-
turns the complete index u. The memory bandwidth is 3b for each processor.
(Memory bandwidth can be reduced from 3b to b by preloading ' into on-
chip registers.) The size of the memory is different for different processors.
The first processor necds a memory of L + 1 words to store ' and the L
components of ;. Processor SNP(i+1) needs twice as much memory as pro-
cessor SNP(i). The last processor needs a memory of 24-1(L,4+1) words. The

7

Figure 3: Traversal of a binary tree of depth d = 4, and its mapping onto a linear array
of processors.

throughput of this scheme is one L-dimensional vector per L clock cycles.
This architecture has been implemented [1] using 2um N-well technology.

A TSVQ can also be built by using one SNP and recirculating the input
data d times as shown in Figure 5. In this case, the RAM must have an
additional [log d] address bits to identify the level of the tree that is currently
being processed. Adjacent input vectors must be separated by the latency of
the TSVQ,

LTSVQ =dLsyp = d(b +n+ L). (5)

The throughput in this case is one L-dimensional vector per Lrsvg clock
cycles. For a tree of depth d = 8, and a vector dimension of L = 16 (which
corresponds to a bit rate of 0.5 bpp), we have Lrsvg = 352 clock cycles.

3.3 Basic FSTSVQ Architecture

Given a sequence of L-dimensional input vectors {x,}, we are required to
generate a sequence of channel symbols {u,}, and a sequence of states {s,}.
Since the next state of the FSTSVQ depends on the present state and the
current output channel symbol, the encoding of vector X4y cannot start until
the encoding of vector x, is complete. One TSVQ processor, together with

RAM RAM N RAM

[log L]y r3b 14 [logL]} t30b d—1+[logL] fy r3b
b b b b b
X —f> 7 7 ° o 0 7 o X
Go —= SNP(1) SNP(2) LA SNP(d-1) = Ready
7 7 LR A v > U
2 d-1 d

Figure 4: Systolic architecture for computing TSVQ. Each processor adds its partial index
to the index data-path, and generates a control signal to initiate processing by its neighbor
down the tree. No global control signals are needed.

RAM
d—1+ [log L] + [log d] 3b
L
% MUX + X
Go ———s SNP ——2= Ready
0 == Mux f—r u

Figure 5: TSVQ) architecture using one SNP and recirculating registers. Input vector x
must be recirculated d times, once for each level of the binary tree.

[log K
RAM \b 7
Sn

R
d—1+ ﬂog L] + ﬂog C[l 3b Spn—-11 Next State
Generator

L b
Xn41 Xp —> MUX 7 *n
Go ——2» SNP L= Ready
[U
0—> MUX }— s R Up_1

Figure 6: Block diagram of the FSTSVQ processor. R is a unit delay element. The [log K
bits of s, are used as address bits for the RAM.

additional hardware for generating the next state information, is sufficient
to build an FSTSVQ.

Figure 6 shows a block diagram of the 'STSVQ) processor. The next state
function module determines s, given u,—y and s,_y, and can be implemented
by a simple table lookup using a PLA. This state information is stored in
register R and is also used to choose the right codebook for quantizing vector
X,. A memory of total size 2%(L + 1)K words is needed. Channel symbols
u, are d bits wide.

4 FSTSVQ for Speech and Image Coding

In this section we describe how our FSTSVQ architecture can be used for
speech and image coding applications. The general architecture presented
above can directly be used for speech coding. For image coding applica-
tions, we define a 2-D extension of FSTSV(Q and describe a systolic array
architecture for efficient hardware implementation.

10

4.1 FSTSVQ for Speech Coding

In speech coding applications, an L-dimensional vector is formed from a
group of L adjacent speech samples. The resulting sequence of vectors {x,}
is quantized to obtain the output sequence of channel symbols {u,}. The
architecture of the general FSTSVQ described above can directly be used for
speech coding applications. Adjacent speech samples are separated by the
latency of the FSTSVQ quantizer,

Lrsrsvg = Lrsvg + Lnsa, (6)

where Lysg is the latency of the next state generator. The next state gener-
ator is implemented as a simple table lookup and Lsyp = 1 clock cycle. For
a tree depth of d = 4 and a vector dimension of L = 8, Lpsrsvg = 141. If
speech waveforms are sampled at 8 KHz, this architecture running at a clock
speed of 0.14 MHz can quantize them in real-time. If FSTSVQ is used to
quantize speech LSP parameters with an update rate of 22.5 msec, a clock
speed of less than 5 Kz is required.

4.2 FSTSVQ for Image Coding

In image coding applications, an input image of size N x M pixels is par-
titioned into blocks each of size k x k pixels as shown in Figure 7. Each
block is interpreted as a vector of dimension L = k%. A block-scan of the
input image frame generates a sequence of L-dimensional vectors {xn}NM/ K
Unlike the 1-D case, each input vector has more than one adjacent preced-
ing neighbor. For efficient encoding of an input vector x,,, it is essential to
exploit its correlation with the adjacent vectors in the north (x,_ _Jl\c_r), west
(xn-1), and northwest (x,_ ,1’:1_1) directions. In turn, vector x, affects the
state of the I'STSVQ while quantizing vectors X,41, X, n, and x,,, LAPE
The current state s, associated with vector x,, is deﬁned as a three com-
ponent vector s, = (s7, sV V) where s/, sMW and sV are the substates
associated with vectors x,,_1, X, Ny, and X, X respectlvely The next state
generator determines these substates according to:
SLV = fi(tn-1,80-1), (7)

S = folty o30S0), (8)

11

Xn-1 Xn

N

Figure 7: Block-scan of an input image of size N x M. The internal state of the FSVQ
while quantizing vector x,, depends on the quantized outputs of vectors x,_1, x,, _ N, and

X N .
n—3-—1

12

Sizv = f3(un~if—7 n————-)7 (9)

where fi, fa, and fs3 are the three next state functions.

Equations (7), (8), and (9) suggest the data dependency graph shown in
Figure 8(a). Each node in this figure represents the quantization of a vec-
tor that corresponds to a block of the image. The arcs indicate precedence
constraints between various quantizations. Computations that can be per-
formed concurrently are shown between dashed lines. Projecting this graph
in the vertical direction leads to a simple linear array structure as shown in
Figure §(b).

Consider a linear array of processors as shown in Figure 9. The ¥ -
blocks of a given row are apphed to these ¥ i~ processors in a skewed fashion.
Each processor quantlzes the blocks in its column one at a time. Processor
P, quantizes x,,, X, , & X, X 4 2 and so on.

Figure 10 shows the detailed block diagram of each processor. The TSVQ
unit consists of a SNP and recirculating registers as shown in Figure 5. The
next state generator uses the previous state s, _x~ and channel symbol u, _x~

to generate the partial substates 3” N1 sfy_ﬂ/, and s¥. Substates sW N1
k
NW

and an are propagated to processor P,y;. Substate sV is used, together
with s and s from processor P,_;, to generate state s,. The total
number of states is K2 and the memory size is 2¢(L + 1) K3 words.

For certain applications, the correlation in the northwest direction is ig-
nored to simplify the codebook design process. The current state is then

defined as a two component vector s, = (sW sN), and the total number of

n Y n
states is K2, The architecture presented above can be used for these appli-
cations by modifying the next state generator and ignoring the s'" signal
path in Figure 10. The memory size requirement reduces to 2d(L + 1)K?

words.

4.3 Improvements to the FSTSVQ Architecture

The systolic architecture presented above uses % processors. The latency
of the FSTSVQ unit for quantizing one input vector is Lrsrsve as defined
in equation (6). Since input data is usually available in line-scan mode,
vector x,, ~ is separated from vector x, by Nk clock cycles. Hence, each

processor is idle for Nk — Lpgrsvg clock cycles in this scheme. This idle

13

(b)

Figure 8: (a) Dependency graph of the FSTSVQ for image coding for an image of size
N = M = 4k. Each circle represents the quantization of one input vector. (b) Projection
in the vertical direction. Solid circles are unit delay elements.

14

uﬂ+1 Uz
: U2 .
L] . *

<

<

-
o
- r‘«z: =z

Py Py Py
e . . . — k
X1 ° °
x%f—-&—l X2 .
. X R .
42 :
XN
° . k
Xy
FEGE-DH)

Figure 9: Systolic architecture using —]Ig— processors arranged as a linear array. Input data
blocks are applied to this array in a skewed fashion.

time can be reduced if cach plocessm is used to process Lmj adjacent

blocks. Hence, only ¥ /| —2E—] = fLFSTSVQ] processors are needed in the
FST.S‘VQ

linear array. For a blocksize of 4 x 4 pixels and a tree depth of d = 8, 22

processors are needed in the linear array. Note that the number of processors

is independent of the size of the image. It depends only on the blocksize and

the latency of the FSTSV(Q processors.

The d bits of the channel symbol u, are computed sequentially. The next
state generator determines the partial next states for the neighboring vectors
based on this symbol and the current state. If the next state functions are
restricted to depend only on the first few bits of the channel symbol, their
computations can be partially overlapped with those of the SNP processor.
This pipelining increases the throughput of this architecture.

5 Data rearrangement hardware

Input data is usually available in line-scan mode. Images are scanned pixel
by pixel from left to right and top to bottom. However, the FSTSVQ systolic
architecture for images presented above expects data in block-scan mode. In
this section we present a simple architecture for converting line-scan mode
data into the format required by the FSTSVQ systolic architectures.

Figure 11 shows the design of this module. In this scheme, k lines of
a line-scanned input image are stored in shift registers and transposed into
block-scan mode. An 2-D array of % x k shift registers, each of size k, are
used to hold these & lines. This is the minimum necessary for converting
line-scanned data into block-scanned mode. Multiplexers are used to switch
the output of register R;; between R;_;; and R;;_;. Initially, the outputs
of register R;; are connected to the inputs of register R;_4;, 2 < 1 < ']—V‘.
The outputs of register [?; ; are connected to the inputs of register szj 1-
This configuration is shown with solid arrows in Figure 11(a) and is called
the horizontal mode of operation. Once the registers are filled with % lines
of input, global control signals are used to switch the multiplexers in every
register. Now, the outputs of register R; ; are connected to the inputs of reg-
ister R; ;—1. This configuration is shown with dashed arrows in Figure 11(a)
and is called the vertical mode of operation. During the next k2 clock cycles,
data is flushed out of these registers in block-scan mode. The last row of cells

16

5n Sp— Ti1
—
™ sN
(from Py_1) NW Nw (to Pnyi)
Sn Sn+1
R i et
h {log K7 [log K
3 |_10g I(-I Sn— "]I\Er‘ Next State
Sn ’ R Generator
RAM

3b d~ 1+ [log L] + [log d]

u d

"N

TSVQ R . Up_ N
xn

xn+ —’ki

Figure 10: Detailed block diagram of processor P,,. The current state s, = (s¥,sVW sV

is composed of partial substates from the west and northwest (from the previous processor),
and the north (from previous computations in this processor).

17

is treated differently. It is switched back from vertical to horizontal mode
after k clock cycles and stays in the horizontal mode of operation for Nk — k
clock cycles. The remaining rows stay in the vertical mode of operation for
k% clock cycles and in the horizontal mode of operation for Nk — k? clock
cycles. Using this procedure, the next set of k lines can be applied to this
module while the current set of £ lines are being flushed out.

6 VLSI Implementation

We have implemented a Single Node Processor using MOSIS’ 2um N-well
process on a 7.9mm X 9.2mm die [1]. Each processor contains 25,000 tran-
sistors and has 84 pins. The processors have been tested at 20 MHz. These
processors can operate on either 4 X 4 or 8 x 8 blocksizes. The next state
generator is a simple table look up and will be implemented using ROMs.
We are in the process of assembling these SNPs into an FSTSVQ board.

7 Conclusions

We have presented systolic architectures for computing FSTSVQ in real-time
on speech and image data. The speech coding architecture uses one processor,
and has an average throughput of L/Lpgrsvg samples per clock cycle. An
implementation at 0.14 MHz can quantize speech data sampled at 8 KHz in
real-time. The image coding architecture uses a linear array of fﬂb:’;—ﬁl]
processors and has a throughput of 1 pixel per clock cycle. At 30 frames/sec,
the pixel rate for 1024 x 1024 images is 31.5 Mpixels/sec. An implementation
at 31.5 MHz can quantize 1024 x 1024 size images in real-time. HDTV
images have a typical pixel rate of 70 Mpixels/sec. Using present day VLSI
technology, this speed can be achieved by using two quantizers in parallel.
Since there is no interframe dependency, these two quantizers will operate
on alternate frames.

Acknowledgments

We had many beneficial discussions with Xiaonong Ran, Yunus Hussain,
Nariman Farvardin, and KuoJuey Ray Liu. We are grateful for their contri-

18

°

™
=2
+
-
I
=2
+
o
»
o
g

b — =
L =
- — =

Ry Ro fes— . . . - Ry,

Ry Rop-1 e . . . -~ RQI’L_]_
P 7 7
line-
(’;1,]3 Rg,k es— . . . -] Ry k pe— mnersean
ko | input
B i Mo
i i L —2
(2)
to Riyj_1
A
1
M M
to R,‘_lyj -~ U k - U |—fe=— from Ri+1,j
X Xk
5
|
c; (b) from Riyj+1

Figure 11: Architecture to convert line-scan image data into block-scan mode. (a) 2-D
array of cells. (b) Detail of cell R;; with & latches and two multiplexers. Control signal
¢; switches the cell between horizontal and vertical modes of operation.

19

bution to this work.

References

(1]

[2]

[3]

[9]

[10]

[11]

R. Kolagolta, S.-S. Yu, and J. ¥. J4J4, “VLSI implementation of a tree
searched vector quantizer,” Tech. Rep. SRC TR 90-74, University of Mary-
land, Oct. 1990.

T. Lookabaugh, “Architectures for tree structured vector quantization.” Un-
published work, May 1987.

W. C. Fang, C. Y. Chang, and B. J. Sheu, “Systolic tree-structured vec-
tor quantizer for real-time image compression.” Private communication, Oct.
1990.

T. Markas, J. Reif, W. Elliot, and E. Elliot, “Memory-shared parallel archi-
tectures for vector quantization algorithms.” Private communication, Nov.
1991.

R. M. Gray, “Vector quantization,” IEFFE ASSP Mayg., vol. 1, pp. 4-29, 1984.

J. Foster, R. M. Gray, and M. Q. Dunham, “I"inite-state vector quantization
for wavelorm coding,” ILEE Trans. Infor. Theory, vol. IT-31, pp. 348-359,
May 1985.

Y. Hussain and N. Farvardin, “Variable-rate finite-state vector quantization
and applications to speech and image coding,” IEEE Trans. Signal Processing,
submitted for publication.

A. Gersho and R. M. Gray, Vector Quantization and Signal Compression.
Kluwer Academic Press, 1992.

D. Y. Cheng and A. Gersho, “A fast codebook search algorithm for nearest-
neighbor pattern matching,” in Proc. IFEE Int’l. Conf. on Acoustics, Speech
and Signal Processing, pp. 265-268, 1986.

J. V. McCanny and J. G. McWhirter, “Completely iterative, pipelined mul-
tiplier array suitable for VLSL,” IEE Proc., vol. 129, pp. 40-46, Apr. 1982.

G. Davidson, P. Cappello, and A. Gersho, “Systolic architectures for vector
quantization,” IEFE Trans. Acoust., Speech, Signal Processing, vol. ASSP-36,
pp- 1651-1664, Oct. 1988.

