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solution of the 

We propose techniques for the solution of the LP relaxation and the Lagrangean dual in combinatorial optimization 
and nonlinear programming problems. Our techniques find the optimal solution value and the optimal dual 
multipliers of the LP relaxation and the Lagrangean dual in polynomial time using as a subroutine either the 
Ellipsoid algorithm or the recent algorithm of Vaidya. Moreover, in problems of a certain structure out techniques 
find not only the optimal solution value, but the solution as well. Out techniques lead to significant improvements 
in the theoretical running time compared with previously known methods (interior point methods, Ellipsoid 
algorithm, Vaidya's algorithm). We use our method to the solution of the LP relaxation and the Langrangean dual 
of several classical combinatorial problems, like the traveling salesman problem, the vehicle routing problem, the 
Steiner tree problem, the k-connected problem, multicommodity flows, network design problems, network flow 
problems with side constraints, facility location problems, K-polymatroid intersection, multiple item capacitated 
lot sizing problem, and stochastic programming. In all these problems our techniques significantly improve the 
theoretical running time and yield the fastest way to solve them. 

Key words: Lagrangean relaxation, linear programming relaxation, polynomial algorithm. 

1. Introduction 

During the last two decades combinator ia l  opt imizat ion  has been  orte o f  the fastest  g rowing  

areas in mathemat ica l  programming.  One  major  success has been  computat ional :  researchers  

have been able to solve large-scale  instances of  some NP-hard  combinator ia l  opt imizat ion  

problems.  The successful  solution approaches typical ly rely on solving,  ei ther approximate ly  

or exactly,  the l inear p rogramming  (LP)  relaxat ion or  the Lagrangean  dual of  an integer  

p rogramming  formula t ion  of  the problem. 

The successes in using l inear p rogramming  me thodo logy  (LP  relaxations,  polyhedral  

combinator ics)  have  been  very impressive.  Starting with the seminal  computa t ional  research 

conducted  by Crowder  and Padberg [ 9 ] and Padberg and H o n g  [ 28 ], researchers have  now 

been able to solve to opt imali ty  a number  of  applicat ions including t ravel ing sa lesman 

problems with up to 2000 nodes (Padberg and Rinaldi  [29]  ), a var ie ty  of  large scale (up  

to about 2000 integer  var iables) ,  real wor ld  z e r o - o n e  business  planning problems (Crowder ,  
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Johnson and Padberg [8 ] ), input-output matrices that arise in economic planning (Gröt- 
schel, Jünger and Reinelt [ 15] ), multiple item capacitated lot size problems that arise in 
production planning (Barany, Van Roy and Wolsey [5], Eppen and Martin [ 11 ], Leung, 
Magnanti and Vachani [23] ), strategic planning problems (Johnson, Kostreva and Suhl 
[ 20] ), production planning problems with changeover costs (Magnanti and Vachani [ 25 ] ), 
and certain spin glass problems that arise in physics (Barahona et al. [4] ). 

These successes show that linear programming and Lagrangean relaxations can play an 
important role in solving many problems met in practice. The landmark in the development 
of Lagrangean relaxation (see for example, Geofl¥ion [ 13] or Fisher [ 12] ) for combina- 
torial optimization problems were the two papers for the traveling salesman problem (TSP) 
by Held and Karp [ 17 ], [ 18 ]. In the first paper, Held and Karp [ 17 ] proposed a Lagrangean 
relaxation based on the notion of l-tree for the TSP. Using a complete characterization of 
the 1-tree polytope, they showed that this Lagrangean relaxation gives the same bound as 
the LP relaxation of a classical formulation of the TSP. In the second paper, Held and Karp 
[ 18 ] introduced a method, which is now known under the name of subgradient optimization 
(see also Held, Wolfe and Crowder [ 19] ), to solve the Lagrangean dual. Despite its success 
in computational experiments, subgradient optimization is not known to be a polynomial 
method. 

In this paper we propose techniques for the solution of the LP relaxation and the Lagran- 
gean dual in combinatorial optimization problems. We also extend out methods to solve 
the Lagrangean dual of general nonlinear programming problems. Our techniques find the 
optimal solution value and the optimal dual multipliers of the LP relaxation and the Lagran- 
gean dual in polynomial time using as a subroutine either the Ellipsoid algorithm [22] or 
the recent algorithm of Vaidya [33]. Moreover, in problems of a certain structure our 
techniques find not only the optimal solution valne, but the solution as well. The approach 
of using the ellipsoid algorithm to solve the Lagrangean dual was independently developed 
by Chandru and Trick [6]. Their paper has two primary foci. First, they used the ellipsoid 
algorithm for solving the Lagrangean dual in order to prove that certain related problems 
were solvable in polynomial time. Second, they implemented their approach for solving the 
Held and Karp bound for the traveling salesman problem. In this paper we focus on problems 
already known to be solvable in polynomial time, but where ellipsoid like methods lead to 
significant computational speedups. Surprisingly, our method is significantly faster than 
interior point methods and ellipsoid like methods directly applied to the problem, and the 
current methods do lead to significant speedups in the worst case complexity to solve the 
Lagrangean dual. 

We apply our techniques to the solution of the LP relaxation and the Lagrangean dual of 
several classical combinatorial problems, like the traveling salesman problem, the vehicle 
routing problem, the Steiner tree problem, the k-connected problem, network design prob- 
lems, network flow problems with side constraints, facility location problems, K-polyma- 
troid intersection, multiple item capacitated lot sizing problem, etc. We also include an 
application to stochastic programming. In all these applications our techniques significantly 
improve the running time and yield the fastest way to solve them. Our technique can also 
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be used to speed up the solution of the dual of multicommodity flow problems in certain 

cases. 

The paper is structured as follows: In Section 2 we introduce our method and its variations. 
In Section 3 we apply it to a wide variety of classical combinatorial optimization problems 

and stochastic programming. The final section contains some concluding remarks. 

2. The theoretical development of new techniques 

In this section we develop the algorithm to solve linear programming problems. The method 

is particularly useful for problems of special structure as those appearing in the solution of 

LP relaxations of combinatorial optimization problems. 

2.1. An algorithm for linear programs of special structure 

Consider the following LP: 

(P1) zj =Min cx 

subject to Ax=b, (1) 

x~S,  

where S is a polyhedron containing no lines. We will assume throughout the paper that all 
the polyhedra we consider have no lines and tbus have at least one extreme point. Let x k, 

k ~ J, be the extreme points of S, and similarly let w k, k ~ R, be the extreme rays of S. Then 

applying the resolution theorem for the polyhedron S we obtain that any point x ~ S can be 

written as 

x= E A~ ~~ + E °~ wk, A» o~ >~o, E A~= 1. 
kŒJ k E R  kŒJ 

Substituting in (1) we obtain that problem (P~) is equivalent with 

(P]) Min zl = ~ Ak(cx k) + ~ Ok(cw k) 
k E J  k E R  

subject to ~ Ak(Ax k) + ~ Ok(Aw k) =b, 
kŒJ k E R  

Ak =1, 
k ~ J  

h» Ok >~O. 

The dual of the above problem is 

(D~) zj =Max yb + o- 

subjectto y(Ax~) + o-<~ cx ~, k~J,  

y(Aw k)<~cw k, kER. 
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Because of strong duality, problem (D~) has exactly the same value as the original problem 
( P 1 ). Problem (D l ), however, has a potentially exponential number of constraints. In order 
to find zl we will solve problem (Dl) using either the ellipsoid method or the recent 
algorithm of Vaidya [ 33 ]. 

Given a solution Yo, O-o for the dual problem, we need to solve the separation problem: 

(SEP) u = M i n  ( c - y o A ) x  

subject to x ~ S. 

If the solution of this problem is bounded and u >~ o- o then the solution (Yo, o-o) is feasible 
in (Dl) and thus we can start Vaidya's sliding objective algorithm ( see [ 33 ] ) or the Sliding 
objective Ellipsoid algorithm (see for example Nemhauser and Wolsey [ 27, p. 155 ] ) with 

the same separation problem. If u < Cro, a new extreme point is generated, which is added 
to (Dl).  If, on the other hand, the subproblem is unbounded, then a new extreme ray of S 
is generated, which is also added to (D~). In the last two cases the ellipsoid method or 
Vaidya' s algorithm will continue with one extra constraint. The algorithm will compute the 
optimal value z * of (D~) (which is also equal to the optimal value of (Pl) ), as well as the 
optimal dual solution y* and o~*. 

In general, Vaidya's [33] algorithm for an LP with k variables takes O(kL) iterations 
with a running time 

O(TkL +M(k)  kL), (2) 

where T is the number of arithmetic operations to solve the separation problem (SEP), L 

is the input size of problem (P1) and M(k) is the number of arithmetic operations for 
multiplying two k×  k matrices. (It is known that M(k) = O(k 2"38) [7] .) For comparison, 

the number of iterations of the ellipsoid algorithm is O(k2L) and its running time is 
O(Tk2L-}-k4L). Note that the Ellipsoid algorithm does not benefit from fast matrix multi- 

plication. So, overall Vaidya's algorithm has a better worst-case time complexity than the 
ellipsoid method. For this reason we will use Vaidya' s algorithm in the rest of the paper. 

For problem (Pj) let n be the number of variables, let m be the number of constraints 
Ax = b and let T(n) be the number of arithmetic operations to solve the separation problem 
(SEP). Then, the number of variables in (Dl) is k = m + 1 and thus from (2) the overall 
time complexity to find z* and the optimal dual solution y*, «*  of (Da) is 

0 (T(n)mL + M(m)taL). We summarize the previous developments in the following the- 
orem. 

Theorem 1. The optimal solution value z* of problem (P1) and the optimal dual variables 

y *, ~r* can be found in O( T( n ) mL + M ( m ) mL ) arithmetic operations. [] 

A natural question is whether we can also find the optimal primal solution x* of (P~). 
For example, since our algorithm takes O(mL) calls to the separation problem (SEP), at 
most O(mL) constraints from (D~) will have been generated and correspondingly O(mL) 

variables A» 0» in (P]) .  Applying an interior point algorithm in (P]) we can find the 
optimal A*, 0* and x* in O((mL)3L),  to be contrasted with applying an interior point 
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algorithm directly to (P~), which leads to an O(n3L) running time. Unfortunately, this 
running time is not attractive except for problems where L = O ( 1 ). Moreover, if the optimal 

solutions of problems (Dl),  (P'~) are unique we can apply the complementary slackness 
property and thus we can find the optimal x* in O(mL), which does not change the overall 
complexity of the method. In applications, however, we often want to find the optimal 
solution value rather than the solution of the LP or the Lagrangean relaxation, since the 

solution value can be later used in a branch and bound algorithm. 

2.2. LPs with more than one subproblem 

We now generalize the technique of the previous subsection to handle problems of the form: 

N 

(P2) z2 =Min ~ CrXr 
r = l  

N 

subject to ~ A¢cr =b ,  (3) 
r = l  

x r~Sr ,  r = l  . . . . .  N, 

where each Sr is a polyhedron with the property that optimizing over Sr is easy. 
Let Xkr, k ~ Jr be the extreme points of S,  and similarly let w~, k ~ Rr be the extreme rays 

of St. Using the same technique as before we find that problem (P2) is equivalent to problem 

N 

(D2) z2=Max yb+ ~ Œr 
r = l  

subjectto y(A~x~)+os<~ClX], k~J l ,  

1 

.< l: k ~JN ' y( ANXkN) q- 0" N ~. CNX N, 

y(A,w]) <~clw~, kERl,  

y(ANW~N) <~CNWkN, k~RN. 

In order to apply Vaidya's algorithm to (D2) we should be able to solve efficiently the 
separation problem, which in this case decomposes to the N subproblems: 

(SEPr) Min (cr-yA~)xr 

subject to xr ~Sr.  

As a result, Vaidya's algorithm applied to (D2) with separation problems (SEPr),  r = 

1 . . . . .  N, computes the optimal value z* of (D2) (which is also equal to the optimal solution 
value of (P2)) and the optimal dual solution * * y , o - ~ , r = l , . . . , N .  

Let nr be the number of variables in St, let m be the number of constraints Y',rU= 1 ArX~ = b 
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and let T,-(nr) be the number of arithmetic operations to solve the separation problem 
(SEPr). Therefore, the total number of arithmetic operations to solve the entire separation 
problem is E N_ 1 T~(nr). Since the number of variables in (D2) is k = m + N, we obtain from 
(2) that the overall time complexity to solve (D2) is 

o ( [ ~  1 ~r~~r~J ~m+~~~+ù~m+~,,~+~~~) 
Therefore: 

Theorem 2. The optimal solution value z* of problem (P2) and the optimal dual variables 
y*, er*, r= 1 . . . . .  N, can be found in O( [F~N_ ITr(nr) ] (m+ N)L + M ( m +  N ) ( m +  N)L)  

arithmetic operations. [] 

2.3. Cost splitting 

We now consider LPs, in which the feasible region is the intersection of K polyhedra. 
Examples in this category are the K-matroid and K-polymatroid intersection problems, LP 
relaxation problems of combinatorial problems with this property, etc. In order to speed up 
algorithms for the solution of such problems we combine our technique with cost splitting 
or Lagrangean decomposition (Jornsten and Nasberg [ 21 ], see also Nemhauser and Wolsey 
[27, p. 333] ), a method which has been applied to strengthen the bounds given by Lagran- 
gean relaxation. Consider the LP 

(P3) z3 =Min cx (4) 

subject to x ~ $1 C~ $2 (~ "'" C3 Sx, 

where S~ . . . . .  Sx are polyhedra, over which we can optimize easily. We rewrite the problem 
as follows: 

(P~) z3 =Min cxl 

subject to X 1 - -  X 2 ~ 0 ~  

x2 -x3  =0,  (5) 

xk-i - &  =0,  

xl ~SI ,  x2 ~$2 . . . . .  x x ~ S x .  

Let x~, k ~ J r  and W~r, k ~ R r  be the extreme points and extreme rays of Sr ( r =  1, 2 . . . . .  
K). Applying the resolution theorem to the polyhedra Sm ( r =  1, 2 . . . . .  K) we rewrite (P~) 
in terms ofx~ and w~. Taking the dual of (P~) we obtain 
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(D3) z3 = M a x  Œl -~- 0-2 -~- ' ' "  -~- O-K 

subjectto ylx~ +0"1 <~CX~l, kEJ l ,  

(Yr--Yr l)xkr+0-r~ 0, k~-J,., r = 2  . . . . .  K - l ,  

-yxx~+0-x<-..O, k~JK, 

ylw~ ~cw~, k~R1,  

(yr--yr_l)Wkr<~O, kc=Rr, r = 2  . . . . .  K - l ,  

yKw~ <~ O, k~RK. 

In order to apply Vaidya's algorithm to (D3) we should be able to solve efficiently the 
separation problem, which in this case decomposes to the K subproblems: 

(SEPr) Min VrXr 

subject to xr ~ S~, 

with v ~ --- c - Y l, v,~ = Yx and vr = y~- 1 - Yr for r = 2 . . . . .  K - 1. As a result, Vaidya'  s algorithm 
applied to (D3) with separation problems (SEPr), r =  1 . . . . .  K, computes the optimal value 

z* of  (D3) (which is also equal to the optimal solution value of (P3)) and the optimal 

dual solution y* ,  0"*, r = 1 . . . . .  K. In order to analyze the running time of the algorithm let 

n be the number of variables, and let Tr(n) be the number of arithmetic operations to solve 

the separation problem (SEP~) respectively. From (2) with k =  Kn we obtain: 

Theorem 3. The optimal solution value z~ of problem (P3) and the optimal dual variables 
y*,  01", o'2* . . . . .  o'x*, can be found in O([~Kr_IT~(n)]KnL+M(Kn)KnL) arithmetic 
operations. [] 

The cost splitting approach will be superior to applying Vaidya' s method directly to (P3) 

whenever the separation problem over Sr is more difficult than the optimization problem 

over St. Examples in this category include polymatroid polytopes. As a result, we will see 

thät the cost splitting approach leads to significant improvements in the K-polymatroid 

intersection problem. 

2.4. Applications to Lagrangean relaxation 

Lagrangean relaxation is a primary method used in practice to find good bounds for com- 

binatorial optimization problems. Consider the integer programming problem: 

zw = Min cx 

subject to Ax<~b, (6) 

x ~ S =  {x~ 77'+: Alx  <~bl }. 



30 D. Bertsimas, J.B. Orlin / Speeding up the solution of the Lagrangean dual 

Suppose we want to solve the Lagrangean dual 

(P4) zi~D =Max  Min [ c x + A ( A x - b ) ] .  
A~>O x~S 

It is weil known that ZLD = Min{cx: Ax <~ b, x ~ conv(S) } and also zLp ~< ZLD ~< Z~p, i.e., the 
Lagrangean dual gives bounds at least as good as the LP relaxation (Held and Karp [ 17], 
Geoffrion [ 13 ] ). 
In order to find ZLD we rewrite (P4) as follows: 

(P~) zLi~ = Max w 

subject to w ~ c x + A ( b - A x )  for a l lxES,  

A~>0. 

In order to apply Vaidya's algorithm to (P~) we need to solve the following separation 
problem: Given (w, A), with A >~ 0, 

(SEP) Min ( c - A A ) x  (7) 

subject to x ~ S. 

If T(n) is the number of arithmetic operations to solve the separation problem (7) and there 
m constraints Ax <~ b, then the application of Vaidya's algorithm to the reformulation (P~) 
leads to: 

Theorem 4. The optimal solution value of the Lagrangean dual ZLD of problem (P4) and 
the optimal Lagrange multipliers h *, can be found in O( T(n)mL + M(m) mL) arithmetic 
operations. [] 

Remark.  After O(mL) iterations our algorithm has generated O(mL) constraints of (P~) 
of the form w <~ cxi + A(b-Axi ) ,  where xi ~ S is the solution of some separation problem 
(SEP) that was generated during the algoiithm. At least one of these constraints is satisfied 
with equality at the optimal solution (w*, h*) ,  otherwise we could further decrease ZLD. 
The corresponding xi for this constraint is an optimal primal solution. Clearly there might 
be alternate optimal solutions (all xi's that satisfy their corresponding constraint with 
equality at the optimal solution (w *, h *) ). Therefore, the algorithm constructs an optimal 

solution x* of (P4) without increasing the running time. 

2.5. Variable relaxation 

We will now consider LPs where instead of complicating constraints we have complicating 
variables. Our goal is again to speed up the computation. Consider the LP 

(P») z» = Min cx + dy 

subject to Ax+By»-b,  (8) 

x ~ 0 ,  y ~ 0 .  



D. Bertsimas, J.B. Orlin / Speeding up the solution o f  the Lagrangean dual 31 

Our development here is similar in spirit to Benders decomposition. Suppose that the 
problem is easy to solve whenever y is fixe& Examples in this category are LP relaxations 
of fixed charge network design problems. We write problem (Ps) as follows: 

zs=Min [dy+ Min cx]. 
y>~O x: Ax>~b--By, x~O 

Taking the dual in the inner minimization we obtain 

zs=Min [dy+ Max 7r(b-By) ] 
y>~O ~A <~c, 7r>~O 

which can be written as follows: 

z5 =Min dy+ o- (9) 

subjectto 7r(b-By)<~o- forall  ~ '~{~' :  7rA<~c, ~'>~0}. 

We will solve problem ( 9 ) using Vaidya' s algorithm. Given a (y, o-), the separation problem 
is 

(SEP) Max 7r(b-By) 

subject to 7rA ~< c, 

7r>~0, 

which by taking the dual is equivalent to 

(SEP')  Min cx 

subject to Ax >~ b - By, 

x >~O. 

If in the original problem (Ps) x ~ ~+ and y ~ ~'+ and T(n) is the number of arithmetic 
operations to solve both separation problems (SEP) and (SEP')  we obtain from (2) that 
Vaidya' s algorithm takes 0 (T(n) mL+ M(m) mL). Note that in this case the algorithm not 
only produces the optimal solution value, but in addition it finds the optimal y*. Given the 
optimal y *, we can solve problem (SEP')  in T(n) arithmetic operations to find the optimal 
solution x* as well. Therefore, in this case we can derive the optimal solution value as well 
as the optimal solution. Therefore: 

Theorem 5. The optimal solution value z* of problem (Ps) and the optimal solution x*, 

y* can befound in O(T(n)mL+M(m)mL) arithmetic operations. [] 

2.6. Extensions to nonlinear programming 

In this section we extend the approach of Section 2.4 to solve the Lagrangean dual of an 
arbitrary nonlinear programming problem. For convex optimization problems 
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Minf(x)  

subject to gi( x) <~ O, i = 1 . . . . .  m, 

with k variables. Vaidya' s method takes O (k log ( 1 / e) ) iterations to find an approximation 

with e > 0 of the optimal solution value. The running time is 0 ( [ T+ M(k) ]  k log ( 1/«) ), 
where T is the tirne to solve the separation problem, i.e., the time to find whether a given Xo 
satisfies gi(xo) <~ O, i = 1 . . . . .  m, and if not to find a violated constraint. 

Consider the nonlinear programming problem 

ZNLP = M i n  f (x)  

subject to g i ( x )~O,  i = 1  . . . . .  m, (10) 

x ~ X c ~  n. 

Let g(x )  = Ig1 (x) . . . . .  gin(x) ]. Note that the functionsf(x), gi(x) are arbitrary (not nec- 
essarily convex). Suppose we want to solve the Lagrangean dual 

(P6) ZLD = Max Min L(x,  A), 
A>~O x ~ X  

with L(x,  A) =f (x )  + Ag(x). 

It is well known (Shapiro [ 31, p. 145 ] ) that ZLD ~< ZNLP (weak duality), and ZLD = ZNLp 
(strong duality) if the functions f i x ) ,  gi(x) are convex and X is a convex set. Moreover, 
problem (P6) is a concave maximization problem, since L(A) = Min«~xL(x,  A) is a concave 
function, i.e., the Lagrangean dual of an arbitrary mathematical programming problem is a 
concave maximization problem. 

In order to find ZLD we rewrite (P6) as follows: 

(P~) ZLD = M a x  w 

subject to w<~f(x) +Ag(x) for a l l x~X,  

A>~0. 

In order to apply Vaidya's algorithm to (P~) we need to solve the following separation 

problem: Given (w, A), with A >~ 0, 

(SEP) Minf(x)  +Ag(x) (11) 

subject to x ~ X .  

If T(n)  is the number of arithmetic operations to solve the separation problem (11) and 
there m constraints gi(x),  i = 1 . . . . .  m, then the application of Vaidya's algorithm to the 
reformulation (P~) leads to: 

Theorem 6. Given an e >  0, an approximation within « o f  the optimal solution value o f  the 

Lagrangean dual ZLO of  problem (P6) and the optimal Lagrange multipliers A* can be 

found in O( [ T( n ) + M ( m ) ]m log(1/  e) ) arithmetic operations. [] 
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Remarks.  1. In the case of  nonlinear programming problems the optimal solution might 
have irrational components and therefore we can only speak about approximate solutions 
in the Turing machine model. In the case of linear programming it is enough to find a 
solution within e =  2 c, since given that we have an approximate solution we can use 
rounding as the optimal solution has rational components. 

2. As we remarked in the end of Section 2.4 we can find (using exactly the same method) 
an optimal solution x* of (Pó) without increasing the running time. 

2.7. Summary of algorithms 

In this section we summarize our findings in order to facilitate the reading and for future 
reference. In Table 1 we summarize the problem type we considered and the separation 
algorithm we need to solve. Table 2 includes the running times. T(n) always refers to the 
time to solve the separation problem in Table 1 and M(n) is the number of arithmetic 
operations to multiply two n × n matrices. 

Note that out methods always produce the optimal solution value and the optimal dual 
variables. In problems (P4), ( P5 ) and (P6) the algorithm produces primal optimal solutions 
as well without increasing further the running time. In problems (P~), (P2) and (P3) the 
method can produce primal optimal solutions without increasing the running time if the 
optimal solution is unique; otherwise it can produce primal optimal solutions at the expense 
of increasing the running time. 

Table 1 
Problem type and its separation problem 

Problem Separation problem 

(Pl) Mincx, s.t. A x = b , x ~ S  
(P2) Miny~N~ c~xr, S.t.y~N~ lA,X,'=b, xrESr 

(P3) Mincx,  s . t . x ~ S ~ f h S 2 ~ ' " f 3 S «  
(P4) MaxA>~oMin~~s [ c x + A ( b - A x ) ]  
(Ps) Mincx+dy ,  s.t. Ax+By>~b,x, y>~O 
(P6) Maxa>~oMin~~xÜ(x)+Ag(x)] 

Min cx, s.t. x ~ S  
Min C,Xr, s.t. )Cr ~ S r 

Min cx, s.t. x ~ S,. 
Min cx, s.t. x ~ S  
Min cx, s.t. Ax >~ b - By, x >~ O 
Minf(x) + Ag(x) s.t. x ~ X  

Table 2 
Running times 

Problem Running time 

(Pl) Mincx, s.t. A x = b , x ~ S  
(P2) Min ~ N  C,X,., S.t. EN=t A,x,.=b,x,.~Sr 

(P3) Mincx,  s.t. xeS~AS2~3 . . . f 3S~  

(P4) MaxA~oMinx~s[CX+A(b-Ax)] 
(Ps) Mincx+dy ,  s.t. Ax+By>~b,x,y>~O 
(P6) MaxA>~oMin~~x Ü(x) +Ag(x)] 

O([T(n) + M(m) ]mL) 
O([Y~~=l L(nr)  + M ( m + N ) ] ( m + N ) L )  

O([)Z~~ L ( n )  +M(Kn)]KnL)  

O([T(n) +M(m)  ]mL) 
O([T(n) + M(m)  ]mL) 
O([T(n) + M ( m ) ] m l o g  ( l / e ) )  
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3. Applications 

In this section we apply the algorithms of the previous sections to solve LP and Lagrangean 
relaxations of several classical combinatorial optimization problems. Our intention is not 
to exhaust all the possible applications of out methods. It is rather to illustrate the significant 
computational savings that can result from our approach to some of the classical problems 
in combinatorial optimization. We start our investigation with the traveling salesman prob- 
lem (TSP). 

3.1. The Held and Karp lower bound for the TSP 

Held and Karp [ 17] proposed a Lagrangean relaxation based on the notion of l-tree for the 
TSP. Using a complete characterization of the 1-tree polytope, they showed that this Lagran- 
gean relaxation gives the same bound as the LP relaxation of the following classical 
formulation of the TSP (x,j =xji) : 

Min ~ ~ cijx o (12) 
i ~  V , j ~  V, . j>  i 

subject to y' xij+ ~ xji=2 Vi~V, (13) 
j~V, j>i  j~V, j<i  

E F_, x~/«.lSl-i vo#scv, (14) 
i ~ S j ~ S , j > i  

O<~xij~l Vi, j ~ V , j > i ,  (15) 

Xgj~{0, 1} Vi, j ~ V , j > i .  (16) 

In the above formulation xii indicates whether cities i andj  are adjacent in the optimal tour; 
cij represents the cost of traveling from city i to ci tyj  or, by symmetry, from cityj  to city i. 
One can compute the Held-Karp lower bound znK in polynomial time using the Ellipsoid 
or Vaidya's algorithm directly, since the separation problem corresponding to the polytope 
( 13)-(15)  reduces to a max-flow problem. Using this approach Vaidya's algorithm, which 
is the fastest of the two, will take O(n3n2L+M(n2)n2L) arithmetic operations, since from 
(2) there are k=n 2 variables and T(n) : O ( n  3) is the time to solve a max-flow problem 
on a possibly complete graph. Thus this approach takes O (n 6"76L) where we used the bound 

that M(k) = O(k2BS). Note that the ellipsoid algorithm will be even worse taking O(n8L). 
The HK polytope (13) - (15)  is exactly in the form of problem (P~), where S is the 

spanning tree polytope described by the constraints (14), (15). Applying Theorem 1 we 
obtain that using our approach we can compute ZHK in O(n2nL+M(n)nL) = O(n338L) 

arithmetic operations, since the separation problem is a minimum spanning tree computa- 
tion, i.e., T(n) = O ( n  2) and the number of extra constraints is m=n, As a result, out 

approach leads to the fastest known algorithm for HK. Moreover, if orte does not use fast 
matrix multiplication (i.e., M(k) = k 3), then our approach leads to O (n 4L) time complexity 
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while Vaidya' s or the Ellipsoid method, applied to the LP relaxation of (12),  take O (n 8L), 
a savings of O(n4).  

Recently, Plotkin, Shmoys and Tardos [30] developed an algorithm that finds an 

"approximately feasible" element of  a set S =  {Ax<~b, x~P}  for some convex set P, 

assuming that optimization of a linear function over P is efficiently solvable. If  A, b >~ 0 

then for any specified «, their algorithm either produces a solution x ~ P  such that 

Ax ~< ( 1 + «) b or else it proves that the set S is empty. Their algorithm is not a polynomial 

time algorithm, since it grows linearly with the width p (which could be exponential) and 

with « ~. In certain interesting applications, however, they transformed the problem to an 

equivalent problem with smaller p. As a result, their running time could become exponential 

in L. For this reason we do not contrast their running times with those of  our algorithm. 

3.2. The Steiner tree and the 2-connected problem 

Goemans and Bertsimas [ 14] prove that under the triangle inequality, the cost of a standard 

LP relaxation of the Steiner tree problem Zstei,,e~ and the 2-connected problem zk ...... are 

related in the following way: 

m l 

~,Steiner - -  ~ZHK, Z2-conn ~ ZHK 

where z~~ is the cost of the Held-Karp lower bound tor the TSP. Therefore, if the cost 

satisfy the triangle inequality, we can äpply the algorithm of the previous subsection to 

compute the value of the LP relaxation of the Steiner tree problem and the k-connected 

problem. 

3.3. The vehicle routing problem 

Consider the following classical vehicle routing problem: There is a set A of K vehicles, 

located at a single depot 0, such that the kth vehicle has capacity Qk and is allowed to travel 

a distance of  at most d» These vehicles serve a set V of  n customers. Customer i has demand 

Pi, while c~ is the cost of vehicle k traveling from i t o j  and dij is the distance from i toj .  

The goal is to route the vehicles at minimum cost such that all constraints are satisfied. We 
formulate the problem as follows: Let x~ be 1 if vehicle k travels from i to j  and 0 otherwise. 

Let Sk be the following polytope: 

Sk=(x~ ~ ~_~ x~ <~ lSl - l VO-~ ScV, ~ß_ x~i + ~ X~o=2). 
i ~ S  j ~ S ,  j >  i i ~  V j ~  V 

The polytope Sk is the intersection of the spanning tree polytope on V (note that V does not 

include the depot 0) and an additional constraint that 2 additional arcs are incident to the 

depot. For fixed k we denote all the x~ 's  as the vector x k. We are interested to compute the 
LP relaxation of  the following formulation of  VRP: 



36 D. Bertsimas, J.B. Orlin / Speeding up the solution of  the Lagrangean dual 

(VRP) Min 
i , j , k  

subject to E E~~ :1 
iG V k~A 

E E~~ :1 
j ~ V  k~A 

E k k CijX ü 

x «dij <~ dk E 
i , j ~ V  

x~ pi «. Q~ 
i , j ~ V  

vj~o, 

Viv~0, 

Vk~A,  

Vk~A,  

(17) 

(18) 

(19) 

(20) 

(21) 

(22) 

(23) 

(24) 

x k ~ S k ,  

0~<x/~ ~< 1, 

x~ E~0, il. 

In order to solve the LP relaxation of the above problem we will apply our approach of 
Section 2.2. The above formulation is of the type of problems (P2), where there are N =  K 
subproblems S» and the number of  additional constraints ( 18 ) - (  21 ) is m = 2 (n + K). S ince 
we can optimize over S~ using the greedy algorithm, the time to solve the separation problem 
is O(rt2). Thus, applying Theorem 2, we can solve the LP relaxation of (VRP) in 

O(Kn2(n + K)L + M(n + K) (n + K)L) = O( (n3K + n 33S)L), 

since we can assume K ~< n. 
For comparison if we applied Vaidya 's  algorithm directly to (17) it would lead to an 

O( Kn3 ( Kn2)L + M( Kn2) ( Kn2) L ) -~ O(K3-38n676L) 

algorithm, since there are Kn 2 variables and the separation problem reduces to K max-flow 

problems. 

3.4. Multicommodity flows 

Consider the classical multicommodity flow problem: Given a network G = (V, E) 
( I V] = n, I E [ = m),  a set C of K commodities and a supply (or demand) b ~ of commodity 
k at node i ~ V. Arc (i, j )  has capacity uij and the cost of sending one unit of flow of 
commodity k across arc (i, j )  is c~. The goal is to decide the amount of  flow x} from 
commodity k to send across arc ( i , j ) ,  so as to satisfy supply-demand and capacity constraints 
at minimum cost. The classical formulation of the problem is: 
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Min ~ cijxijk k (25) 
i , j~V,  k~C 

subjectto ~_, x~ <~uij, ( i , j ) ~ E ,  (26) 
k~C  

y" x ~ -  ~_, x~=b~, i~V,  k~C,  (27) 
j ~ V  j ~ V  

x}>~0. (28) 

The above formulation is of the type (P2) in Section 2.2, with 

S~=~x~ x~>~O, ~_, x § -  y'~ x ~ = b ' , i ~ V )  
ùi~V j ~ V  

and with m global constraints (26). In this case the separation problem is a min-cost flow 
problem. Under the similarity assumption, the time to solve the separation problem is 
T= O(nm log 2 n). For a more refined definition of T see, for example, Ahuja et al. [ 1 ]. 

As a result, applying Theorem 2 we can solve the multicommodity flow problem in 

O( [ Kmn log 2 n + M ( m + K) ] ( m + K) L ) = O( [ Knm 2 log 2 n + m338]L). 

The comparison for multicommodity flows is more complex because of another algorithm 
of Vaidya [32]. He considered the problem in which each commodity consists of a single 
source and a single sink. The resulting running time is O(K2»n2V~m L). This running time 

dominates ours in some cases and is dominated by ours in others. For example, for k = rt 2 

Vaidya's running time is O(r/7~mm L) .  However, our algorithm runs in O( [n2m 2 log 2 n 
+ m338]L) time in this case, since the problem can be converted into a n-commodity flow 

problem. In this case, out algorithm dominates Vaidya' s for all values of m, and is increas- 
ingly better as the graph becomes sparser. 

3.5. Network flows with side constraints 

Typical problems met in practice involve network flow problems with some additional side 
constraints. Consider for example a min-cost flow problem with K additional constraints. 
Using these K constraints as the global constraints in the formulation of problem (P~) in 
Section 2.1 and the network flow polytope 

j ~ V  j ~ V  

as the polytope S we can apply Theorem 1 to solve the problem in O([mn log2n 
+M(K)]KL),  where T=mn log 2 n is an upper bound on the complexity to solve the 

network flow problem under the similarity assumption (see [ 1 ] ). For K constant we see 
that the complexity of solving the problem with K side constraints is exactly the same as 
the complexity of solving the problem with only one side constraint, i.e., O( (mn log 2 n)L). 
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If one applied an interior point algorithm for this problem, it would lead to an O(m3L) 
running time. 

3.6. The network design problem 

The fixed charge network design problem, which is a fundamental discrete choice design 
problem, is useful for a variety of  applications in transportation, distribution, communica- 
tion, and several other problem settings that make basic cost tradeoffs between operating 
costs and fixed costs for providing network facilities (see Magnanti and Wong [26] ). The 
problem is described as follows. We are given a set of nodes N, a set of uncapacitated arcs 
A and a set K of commodities. For each k ~ K, one unit of  flow of commodity k must be 
seht from its origin O(k) to its destination D(k) .  Each arc has two types of cost: a per unit 
flow cost depending on the commodity and a fixed charge for using the arc. The problem 
is to select a subset of  arcs that minimizes the sum of the routing costs and fixed charge 

costs. 
The importance of the network design problem stems from its wide applicability and 

fiexibility. As noted in Magnanti and Wong [26],  it contains a number of well-known 
network optimization problems as special cases including the shortest path, minimum 
spanning tree, uncapacitated plant location, traveling salesman and Steiner tree problems. 

There a rea  number of IP formulations for the problem. For a review, see Magnanti and 
Wong [26]. Balakrishnan et al. [3] propose the following multicommodity flow formu- 
lation, which contains two types of  variables, one modeling discrete design choices and the 
other continuous flow decisions. Let y,~ be a binary variable that indicates whether (Yij = 1 ) 

or not (Yij = 0) arc { i, j} is chosen as part of  the network' s design. Let x } denote the flow 
of commodity k on the directed arc (i, j ) .  Note that (i, j )  and (j, i) denote directed arcs 
with opposite orientations corresponding to the undirected arc {i, j}. Even though arcs in 
the formulation are undirected, we refer to the directed arcs (i, j )  and (j, i) because the 

flows are directed. The formulation is the following. 

Min ~ ~ k k k k (cüxij+c/ixji)+ ~ Fi:y~: (29) 
k~K {i,j}~A {i,j}EA 

subject to • x~ / -  E 
,j~V: (j, i)~A j~V: ( i , j )~A 

(DPI) x~<~yij, xjki<~Yij, { i , j } ~ A ,  k ~ K ,  

x~>~O, {i,j}~A, k~K, 

ylje{0,1}, (i,j)~A. 

{ - 1  i=O(k), 
x } =  l i=D(k ) ,  

0 otherwise, 
(30) 

(31) 

In this formulation each arc { i, j} has a nonnegative fixed design cost Fij and c~ is the 
nonnegative cost for routing commodity k on the directed arc (i, j ) .  Constraints (30) 
imposed upon each commodity k are the usual network flow conservation equations. The 
" forc ing"  constraints (31 ) state that if Yij = 0, i.e., arc { i, j } is not included in the design, 
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then the flow of every commodity k on this arc must be zero in both directions, and if arc 
{ i,j} is included in the design, i.e., yij = 1, the arc flow is unlimited. Directed network design 
problems are formulated in a very similar manner. 

Although the network design problem is a hard discrete optimization problem, in the last 
decade researchers have proposed several computationally successful approaches for solv- 
ing it. Magnanti et al. [24] propose a Benders decomposition approach, and Balakrishnan 
et al. [ 3 ] propose a dual ascent heuristic which has solved large instances of network design 
problems to within 2%-5% of optimality. In both these cases the authors judge the algo- 
rithm's effectiveness by comparing solutions generated to the LP relaxation of their for- 
mulations. It is therefore important to solve the LP relaxation efficiently. 

We treat the forcing variables yij in the network design formulation (29) as the compli- 
cating variables in the sense of Section 2.5. Ifthe Y~i are known therl the problem decomposes 
to K shortest paths problems. Therefore, applying Theorem 5, the LP relaxation of (29) 
can be solved in 

O( [K(m + n log n) + M(m)  ] mL), 

where m is the number of complicating variables y~j, and O (m + n log n) is the time to solve 
a single shortest path problem. Note that for the problems considered in [3] K = n  2 and 
m = O ( n )  and thus our algorithm takes O( [n2(m +n log n)]mL).  

For purposes of comparison if one solves the LP relaxation of (29) using an interior 
point algorithm, it will lead to an O(K3m3L) running time. 

3. 7. Facility location problems 

We consider the well known p-median problem in facility location (see for example [ 27 ] ). 
We are interested in solving the LP relaxation of the following formulation of the problem: 

Min ~ cijxii + ~ Y.i 
i~V j ~ V  

subject to 

(32) 

yj =p, (33) 
j ~ v  

xij = 1, i~V ,  (34) 
j ~ v  

xij<~yj, i , j ~ V ,  (35) 

xij ~>0,  0~<yj~< 1, (36) 

yj ~ {0, 1}. (37) 

The interpretation is that yj is 1 if nodej  is assigned to a facility and 0 otherwise and x o is 1 
if node i is assigned to a facility j and 0 otherwise. The LP relaxation of (32) has been 
found to be very close to the IP solution. For this reason almost all algorithmic approaches 
to the problem compute first the LP relaxation. 

In order to solve the LP relaxation we observe that the p-median problem is of the type 
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of problem (PI) with constraints (33) and (34) being the global constraints and (35) and 
(36) being the polytope S. We can solve the separation problem over S in T(n) = O(n 2) 
( ]V D = n), since we can solve it in closed form in one pass. Therefore, applying Theorem 
1 we can solve the LP relaxation of the p-median problem in O(n2nL+M(n)nL) 
= O(n33*L). For comparison purposes, if one applied an interior point algorithm directly 
to solve the LP relaxation of (32), it would take O(n6L) iterations since there are O(n 2) 

variables. 
For uncapacitated location problems (see for example [ 27 ] ) exactly the same approach 

as in the case of the p-median problem leads to an O(n3'3SL) algoritbm for the solution of 

the LP relaxation. 

3.8. The K-polymatroid intersection problem 

Consider K polymatroids Mg = (N,f~) where f. is a submodular set function. For example, 
i f f  is the tank function of a matroid, the problem reduces to the K-matroid intersection 
problem. Given costs c) for all j ~N,  the weighted K-polymatroid intersection problem is 
described by the mathematical programming problem: 

Max ~ cjx« (38) 
j ~ N  

subjectto ~ß_ xj<~fl(S) VScN,  
j~s (39) 

~_ù x« <~fx(S) VScN,  (40) 
j ~ S  

x«>~O. 

Classical problems in combinatorial optimization can be modelled in that way. For example 
the maximum spanning tree ( K =  1 and fl ( S ) =  IS I - 1 ) ,  maximum bipartite matching 
( K =  2 andf~(S) are the tank functions of two partitioned matroids). Out goal is to solve 
(38) using the techniques of Section 2,3. 

Let Si = {x> O[F~j~sX~<<.f~(S) VScN} .  Using the cost splitting method of Section 2.3 
and applying Theorem 3 we can solve problem (38) in O([KT(n)  +M(Kn) ]KnL), where 
T(n) is the number of arithmetic operations to solve the optimization problem over one 
polymatroid, which, as it is well known (see for example Nemhauser and Wolsey [27, 
p. 689] ), can be solved by the greedy algorithm as follows: 

Step 1. Sott Cl >~ c2>~ ..-~Ck>O~Ck+ 1 ~ "'" ~ C  n. 

Step 2. Let S j = { 1 . . . . .  j} with S o = 0. 

Step 3. x; =f (S  j ) - f ( S ;  - ~ ) for j ~< k and xj = 0 for j > k. 
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For purposes of comparison, an alternative approach is to apply Vaidya's algorithm to 
(38) directly. The separation problem is to decide whether a given Xo ~ Si. Such an approach 
leads to a O ( [ K A ( n ) + M ( n ) ] n L )  arithmetic operations where A(n)  is the number of 
arithmetic operations to solve the separation problem xo~Si. Indeed, A ( n ) =  
O(nL[T(n)  + M ( n ) ] )  if we use Vaidya's algoritbm. Overall this approach leads to 
0 (K(nL) 2 [ T(n) + M(n) ] ) arithmetic operations. Alternatively in order to solve the sep- 
aration problem, orte could use the strongly polynomial algorithm of Cunningham [ 10], 
but unfortunately the running time would not be as good. 

Overall, we expect that our approach will work better, in problems in which the separation 
problem is much harder than the optimization problem. 

3.9. Network flow problems on graphs with almost special structure 

Consider a network flow problem on the network G = (N, A t3 B) such that GA = (N, A) is 
a graph of special structure (for example planar, tree, unbalanced bipartite, etc.) for which 
the related network flow problem can be solved faster than in a general graph. For example, 
for network flow problems on unbalanced bipartite graphs see [2]. Assume that Iß[ = K. 
The network flow problem can be formulated as follows: 

z=Min  CAX A ~-CBX B (41) 

subject to NAXA +Nsx8 =b, (42) 

O<~XA <~UA, (43) 

O<~XB <~UB, (44) 

where NA, NB is the arc incidence matrix corresponding to the arcs in A and in B respectively. 
We first observe that problem (41 ) is of the type of problem (P») in Section 2.5. Applying 

the variable splitting algorithm of Section 2.5, we obtain that problem (41) can be solved 
in O ( [TA ( n, m) + M(K)  ] KL ) where TA ( n, m) is the time to solve the network flow problem 
on GA = (N, A), which is a graph of special structure. Because of the special structure of 
GA, Ta(n, m) will be smaller than the time to solve the problem on general graphs. For K 
constant the running time becomes O ( TA (n, m)L).  For comparison purposes we will denote 
the running time on general graphs as O(Tc(n,  m)) .  

3.10. The multiple item capacitated lot sizing problem 

Consider the multiple item capacitated lot sizing problem, where xjt, Y~t and sjt represent the 
production, setup and storage variables for i temj in period t, djt, cj,,fjt, hit are the demand, 
production cost, setup cost and storage cost for item j in period t and Qt represents the 
amount of the resource available in period t: 

K 7" 

Min ~ ~ [c«tx«t+fj, yj,+hj,s~,] (45) 
j - - I  t - - I  
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s u b j e c t t o  xj t -~-s j ,  t _  1 = d j t - ~ s j t  , j = l  . . . . .  K, t = l  . . . . .  7", (46) 

sjo =S j r=0 ,  j =  1 . . . . .  K, (47) 

xj,~< dir yj» j = l  . . . . .  K, t = l  . . . . .  T, (48) 
--r-- t 

K 

~, xjt<~Q,, t = l  . . . . .  T, (49) 
j - - I  

xjt, s«,>~O, yj, ~ {0, 1}, (50) 

The multiple item capacitated lot sizing problem is N P-hard. If we relax constraints (49) 
the problem decomposes into K single item capacitated lot sizing problems, each of which 
can be solved by a dynamic programming algorithm, that has O(T) running time. Applying 
the algorithm of Section 2.4 we can find the value of the Lagrangean dual in 

O( [KT+ M(T) ] TL) = O( [KT 2 + T 3.38] L). 

Note that the value of the Lagrangean dual can be strictly better that the value of the LP 
relaxation, since the subproblem does not have the integrality property. To the best of our 
knowledge we do not know any other polynomial time approach for the problem. For 
comparison, the solution of the LP relaxation of (45), which gives a weaker bound than 
the Lagrangean dual, takes O(K3T3L) using an interior point approach. 

3.11. Stochastic programming 

In two-stage stochastic programming there are two kinds of decision variables. Decisions 
represented by variables xl, which need to be taken now and decisions represented by 
variables x2, which are taken after the occurrence of a random event. The two-stage stochastic 
programming problem is often defined as follows: 

Zsp =Min C l X  1 + E [ f ( x l ,  ~) ] 

subject to Xl eX={AlX~ =b~,x~ ~ ~ ~  }, 

where 

f (x l ,  ~:) = Min C2Y 2 

subject to B l x  I q- B 2 x  2 = ~, 

x2 ~ ~ ' ~ .  

Here, we further assume that the rhs ~: is a random vector which has a discrete probability 

distribution, i.e. Pf{ ~= ser} =Pr, r = 1 . . . . .  K, so E[f(xl, ~) ] = ~,~-1 prf(Xl, Er)" The problem 
can then be reformulated as follows. 
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K 
( S P )  Zsp =Min clxl + ~.~ prC2X~ 

r = l  

subjectto A~xl =bl, xj ~~'~ , 

Blxl+B2x~=~r, r = l  . . . . .  K, 

x ~ ~ R ' ~ ,  r = l  . . . . .  K. 

The dual of the problem is 

K 
Zsp = Max ybl + ~ Yr~r 

r = l  

K 
ZSp =subject to yA1 + ~ y3B1 <~cl, 

r = l  

yrB2 <~p~c2, 

which is of the form of Section 2.2. Apply Theorem 2 we can find the first-stage primal 

variables x* and Zsp in O( [~rX=l Tr(n2) +M(nx + K)] (tl I A - K ) L ) ,  where T,.(n2) is the 

number of arithmetic operations to solve LPs over the polytope yrB2 <~p~ca. Notice that the 
leading term in the complexity bound is linear in K, so the current approach might be 

effective in practice. For comparison purposes, if we applied an interior point algorithm to 

(SP), the running time would be O( (nl + Kn2)3L). 

3.12. Comparisons with the previously known fastest method 

In order to facilitate the comparison of our methods with the previously fastest known 

methods we  include Table 3. We assumed that we could use fast matrix multiplication. The 

problems refer to the LP relaxation or the Lagrangean dual. 

Table 3 
Comparisons 

Problem Our running time Best previously known 

Held-Karp 
Steiner tree, 2-connected 
K-vehicle routing 
K-multicommodity flow 
Network flows with constraints 
Network design 
Facility location problems 
K-polymatroid intersection 
Network flows on G (V, A UB) 
capacitated lot sizing 
stochastic programming 

O(n3.38L) O(n6-V6L) 
O(n3.38L) O(n6.76L) 
O( [n 3"38 + n3K]L) O(K338n6'76L) 
O( [ Knm 2 log 2 n + m3'38] L ) O( KZSn 2~mL ) 
O( [Knm log 2 n + K338]L) O(m3L) 
O( [ K(m + n log n) + m238]mL) O( K:~m3L) 
O(n338L) O(nöL) 
O([KT(n) + M( Kn) ]KnL) O( K(nL)2[ T(n) + M(n) ] ) 
O(TA(n, m)L) O(T~(n, m) ) 
O( [ KT 2 + T3'38]L) ? 
O([~,~ i Tr(n2)+(nl+K)238](nl+K)L) O((nl+Kn2)3L) 
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4. Concluding remarks 

The previous section was simply an indication of the variety of different applications our 

method has in combinatorial  optimization. One can certainly find other applications in other 

areas of  combinatorial optimization (for example scheduling and sequencing).  Out tech- 

nique can also be used to solve stronger Lagrangean duals using Lagrangean decomposition. 

Although our techniques lead to the fastest known algorithms for several problems from 

a worst-case perspective by a significant mm'gin, we are not certain whether our techniques 

can be competitive from a practical standpoint with the classical methods to solve the 

Lagrangean dual, like subgradient optimization. The practicality of  our algorithm critically 

depends on whether Vaidya ' s  algorithm is a practical algorithm, and to our knowledge 

Vaidya ' s  algorithm has not been tested in practice. We believe, however, that perhaps a 

combination of  our techniques with the classical methods to solve the Lagrangean dual can 

potentially lead to practical algorithms as well. 
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