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Résumé

Un des points cruciaux dans l'optimisation de la localité des données dans les
boucles est le choix et ’évaluation d’un critere d’optimisation approprié. Dans ce pa-
pier, nous montrons comment calculer des approximations des “fenétres”: cette notion
a étéintroduite par Gannon, Jalby et Gallivan. La fenétre associée a une itération  dé-
crit la portion “active” d’un tableau, c’est-a-dire les éléments référencés avant l’itération
t, qui seront référencés apres l'itération 7. Cette notion est extrémement utile pour la
localisation des données, puisqu’elle identifie les parties des tableaux a conserver en
mémoire locale. Les approximations de ces fenétres peuvent étre calculées symbol-
iquement au moment de la compilation, sous une forme géométrique simple, ce qui
facilite la gestion des transferts de données. Ceci nous permet de définir une stratégie
globale de gestion des données pour les mémoires locales, que 1’on peut combiner ef-
ficacement avec les techniques classiques de parallélisation et/ou de vectorisation. En
effet, la restructuration des boucles rentre de maniere tout a fait naturelle dans le cadre
géométrique que nous utilisons dans les calculs.

La détermination des approximations des fenétres est étudiée des points de vue a
la fois théorique et pratique. On donne quelques exemples d’applications.

Abstract

One major point in loop restructuring for data locality optimization is the choice
and the evaluation of data locality criteria. In this paper we show how to compute
approximations of window sets defined by Gannon, Jalby, and Gallivan. The window
associated with an iteration ¢ describes the “active” portion of an array: elements that
have already been referenced before iteration ¢ and that will be referenced after iteration
t. Such a notion is extremely useful for data localization because it identifies the
portions of arrays that are worth keeping in local memory because they are going to be
referenced later. The computation of these window approximations can be performed
symbolically at compile time and generates a simple geometrical shape that simplifies
the management of the data transfers. This strategy allows derivation of a global
strategy of data management for local memories which may be combined efficiently
with various parallelization and/or vectorization optimizations. Indeed, the effects
of loop transformations fit naturally into the geometrical framework we use for the
calculations.

The determination of window approximations is studied both from a theoretical
and a computational point of view, and examples of applications are given.



1 INTRODUCTION

The impressive progress in raw arithmetic performance achieved by the recent generation
of RISC and superscalar monoprocessors has stressed the problem of designing a memory
system able to keep up with the memory request rate of the processor. This issue, already
critical in the monoprocessor case, is exacerbated for shared-memory multiprocessors where
memory contention (due to conflicts either at the level of the communication medium between
the memory and the processors or at the level of the memory itself) can severely degrade
main memory performance (cf. hot spot contention [11]). To overcome this problem, one of
the most frequently used techniques consists of designing hierarchically-organized memory
systems with several levels: typically, a low level of very limited size but that provides very
fast access time (scalar/vector registers), an intermediate level of larger size but slightly
slower (cache or local memory) and a high level (the main memory itself). These levels differ
not only in their physical characteristics, but also in the policy used for moving data between
these levels: some are entirely managed by the compiler (registers, local memory), some are
entirely managed by the hardware (standard caches) and some are combining hardware and
software management (caches that can be flushed by special instructions).

The underlying assumption for using such a hierarchical organization is that most of the
data accesses can be made from the low or intermediate levels with a fast access time. In fact,
the performance of such memory organizations is far from being uniform over the programs
and is highly dependent upon the characteristics of the address stream of a program. More
precisely, the characteristics that are going to determine the efficiency of a program on a given
hierarchy are its temporal locality (a same memory address referenced several times) and its
spatial locality (references to consecutive memory addresses). Consequently, the analysis and
improvement of data locality for a given program is of major importance. Three subproblems
must be distinguished:

1. Detection and estimation of data locality. This problem concerns the quantification of
the locality properties of a code.

2. Exploitation of data locality. This issue is specific to levels where transfers have to be
explicitly managed by the software (registers, local memory). In such cases, specific
problems of coherence (due to the existence of multiple copies of the same data item)
have to be solved [1].

3. Improvement of data locality. This point covers possible program transformations to
be applied to increase data locality.

In general, the problem as stated above is extremely difficult to solve. Furthermore, for
vector or multiprocessors, data locality is not the only issue to be addressed; vectorization
and parallelization have to be taken into account too. For such architectures, the real
problem is optimizing simultaneously data locality and parallelization (and/or vectorization):
the difficulty of such combining these two kinds of optimization is that they may seriously
conflict; for example increasing vector length (for improving the usage of vector units) may



turn out to decrease the amount of data locality. Tradeoffs between the two objectives have
to be adjusted, which requires a precise quantification of the two problems.

However, for simple loop structures containing only linear references to arrays (which
constitute a large fraction of the CPU time spent in numerical applications), several in-
teresting solutions have been proposed. Before reviewing them briefly, let us mention that
most of the previous studies have focused on points 1 and 3 (in fact, the target systems were
cache-based) and that parallelization and vectorization were not taken into account. In [2],
Gannon et al. have proposed a methodology for detecting and evaluating data locality and
deriving guidelines for driving simple program transformations. In particular, they intro-
duced the concept of the window to characterize “active” portions of arrays which should
be kept in the cache. In [12], Porterfield used a different approach based on simulation of
simple cache organizations, trying to evaluate miss ratios. He was also able to estimate the
impact of loop blocking on the miss ratio and to apply automatically such transformations
when necessary. In [3], Gannon et al. specialized on a specific subproblem of point 2),
namely analyzing and quantifying the portions of arrays touched by linear references inside
multiple-nested loops. They also developed code generation techniques for transferring such
portions of arrays efficiently between different memory levels. In [15], Lam et al. focused
more specifically on the problem of developing a strategy for applying loop transformations
to simultaneously optimize data locality and parallelism. The scope of transformations was
extensive (including loop reversal, non rectangular tiling) and both temporal and spatial
locality were taken into account.

However all the previous studies except [3] were targeted at cache-based systems, greatly
simplifying the problem in the sense that the transfers between levels are entirely managed
by hardware. At the opposite for registers or local memory, exploiting the locality associated
with a memory location referenced several times requires explicitly transferring the content
of that memory location either into a register or into a local memory location. Furthermore,
coherence has to be maintained; even in the uniprocessor case, great care has to be taken
to avoid having simultaneously in the local memory, arrays portions overlapping. In the
multiprocessor case, the situation is even more complex due to the presence of local memories
associated with each processor. In this paper we will focus our attention on local memory-
based systems and will try to define a coherent strategy for exploiting data locality for
such systems. This includes selection of subarrays to be kept in local memory, maintaining
coherence and code generation issues for moving data into the local memory. The key
advantage of our approach is that our strategy of local memory optimization is systematically
quantified (especially its benefits in terms of main memory access saved), which allows us to
combine it with the optimization of parallelization and vectorization.

In section 2, the general framework and the concept of windows (originally introduced in
[2]) is described. A simple management algorithm for the local memory is presented using
windows combined with some simple metrics (size and degree of locality). This algorithm
relies on a formulation of the management problem as a knapsack problem for which good
approximate solutions exist (cf. [13]). The main difficulty for applying such a management
strategy consists in determining the windows and their associated characteristics (size and
degree of locality). Therefore the rest of the paper is devoted to solving this problem. Section
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3 gives some general results for determining window approximations. Section 4 applies these
general results to some frequently occurring special cases of linear array addressing. In
particular, window approximations are given in an analytical form which is of major interest
for analyzing the impact of loop transformations. Section 5 indicates how these results can be
used for driving loop restructuring, taking into account vectorization and/or parallelization
criteria. Finally, section 6 gives a simple example of how to generate explicitly the code for
moving data.

2 MOTIVATIONS AND FRAMEWORK

2.1 Some notations

In this paper we use the standard definitions for data dependencies. For details on the various
definitions and restructuring transformations see [6], [7], [8], [9], and [10]). The reason for
using the framework of data dependence analysis, originally introduced for vectorization,
is that both vectorization problems and locality optimization have some strong common
relations. In the first problem, the issue is to detect whether a specific memory location is
referenced twice in order to enforce an execution order to preserve program semantics. For
optimizing data locality, the first step is locality detection, which amounts to detecting if
a same memory location is referenced several times. The major difference between the two
problems is that, for data locality optimization, a quantitative measure is required (how many
times the same memory location is referenced). Another difference is that in addition to the
three classical dependencies (flow dependence, anti-dependence, and output dependence), we
need to consider systematically input dependence, which arises whenever two successive reads
are performed from the same memory location. Although this fourth type of dependency has
not much interest in the case of vectorization or parallelization (because it does not impose
any execution order), for data locality optimization, such dependencies have to be taken into
account because they reflect the fact that the same memory location is used twice.

For sake of clarity, we will restrict our analysis to data accessed by atomic references in
structured variables within a set of perfectly nested (normalized) loops:

DO1li;=1,N
DO 1iy =1, N,

DO 14 =1, Ny
<8 > o AlR(iy, iy, )]

< Sy > e Alglin, iz, k)]
1 CONTINUE

where the identifier A denotes an array of dimension d, and & and g are affine mappings
from Z* to Z?. Furthermore we will assume that the loop body does not contain any
procedure call or conditional statements.



The iteration space C C Z* is defined by
k
¢ = H[L N]]
7=1

The size of the iteration space is equal to N = H§:1 N;.

Each occurrence of an instruction is identified by an iteration vector ¢ = (41,42, --,2;) € C
which specifies the current values of the loop indexes.

There is a special of type of dependence which is very common and will be used in the
sequel:

Definition 2.1 (Uniformly Generated Dependencies) A Uniformly generated depen-
dence is a dependence existing between two statements Sy and Sy of the form:

where h is a mapping from Z* to Z°.

According to the semantics of a sequential nest of loops, the different occurrences of an
instruction in the loop body are executed in lexicographic order. The order in which the
different occurrences of instruction S are executed can be alternatively characterized by the
timing function, which is a one-to-one mapping between C and {1,...,N}. The timing
function is formally defined by:

T: C+— {l,...,N}

k
T— T(@) =T(t1,02,....0) = > _[(;; —1).P] + 1
7=1
where P; = ];:j-l—l N, and P, = 1. In cases where no ambiguity is possible, the iteration

vector 7’ and the corresponding time step ¢ = 7'(?) will be identified.

2.2 Definition of the window

For the moment, let us assume that the local memory is infinitely large and no coherence
problem arises. With such assumptions, the optimal strategy for maximizing data reuse is
rather straightforward: load the data in the local memory the first time it is referenced,
then keep it in local memory. In practice, the limited size of local memories requires a more
elaborate strategy; at least, we need to know how long the data is used so that after its last
use, the data can be discarded and the freed local memory space can be reused. The basic
idea of the window concept, originally introduced in [2] mostly for studying data locality, is
to quantify precisely at each time ¢ the portions of data arrays which are “alive” (i.e., which
are worth keeping in local memory).



Definition 2.2 (Reference Window)

The reference window, W;(éx), for a dependence 6x : S; — Sz on a variable X at
time t is defined to be the set of all elements of X that are referenced by S1 at or before t
that are also referenced (according to the dependence) after t by Ss.

For the sake of simplicity, when no ambiguity is possible, we will identify the reference
window with the underlying set of indices.
Let us give an example of window:

DO 1 il == 1, N1
1 CONTINUE

The loop above has an input dependence (53( from S; < 43 > to Sy <17 +3 >. If we set
a breakpoint at the top of iteration ¢; > 3, we see:

Wisiy (%) = {X (i1 — 3), X (i1 — 2), X (i1 — 1)} (1)

If at any time ¢ the corresponding window can be kept in the local memory (or registers),
half of the memory references can be saved; in fact all the data accesses performed by S; on
X can be done from the local memory.

In a more general way, we can prove the following property concerning reference windows:

Property 2.1 Let us define the following loading strategy for the local memory:

At any time t all the elements which are contained in Wy(6x) and were not already in
Wi—1(6x) are loaded in the local memory, whereas all the elements in Wy_1(6x) which are
no longer in Wy(6x) are discarded. In the following we make the assumption that the local
memory is large enough to hold all these elements.

Then all the accesses made by Sy on data already referenced by Sy can be performed from
local memory, and the cost in terms of local memory space is minimized.

This property stems directly from the definition of a reference window.

If the dependency graph contained only one arc (therefore only one reference window
will be present), the previous property would give an intuitive guideline for loading the
local memory. However, in practice, data dependency graphs contains many edges; therefore
several window references are present and will compete for local memory space. This requires
a more quantitative evaluation of the locality properties of a reference window:

Definition 2.3 (Cost and Benefit of a Reference Window)
The cost of a reference window associated to a dependence 6x is defined as:

Cost(W(éx)) = max | Wi(6x) |
where | Wi(6x) | denotes the number of distinct elements of Wy(6x).
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The benefit Ben(W (6x) of a reference window associated to the dependence dx is defined
as the mazimal number of data references performed by Sy which can be executed from the
local memory instead of the main memory (assuming the ideal loading strategy described in

2.1 is used).

The cost and benefit metrics try to summarize the pros and cons of trying to keep a given
window in local memory, over the whole loop execution. The cost estimates how much local
memory space is required, while the benefit captures how many main memory references are
saved. In our example, the costs and benefits associated with the window W are:

Cost(W(éx)) =3 and Ben(W(éx)) = N; —3

Although reference windows are very attractive from a theoretical point of view, their
practical determination is in general extremely complex. A first problem is that their size
and shape vary over time; in the previous example, at time 2 (beginning of second iteration),
the window contains only one element {X(1)}. Then, at time 3, it contains two elements
{X(1),X(2)}. It is only after the third iteration that the window has the generic shape as
described by equation (1). For that reason, instead of dealing with exact reference windows,
one solution consists in enclosing the reference window in a window slightly larger but with
a much more regular behavior:

Definition 2.4 (Approximate Windows)
An approximate window associated with a reference window Wy(dx) is a couple con-
stituted of a mapping m from Z* on Z¢ and W a subset of Z% such that:

Vt, Wii(ox) C {X(5)/7€ m(@) + W}

The number of elements of W is called the cost of the approzimated window (denoted
Cost(W)).

For our example given above, an approximate window is:
m(iy) =1 —3; W={0,1,2}; Cost(W)=3

The key idea of the formulation of approximate windows is that the windows are enclosed
in a moving frame of constant shape and size. First, using approximate windows instead
of the exact reference windows simplifies greatly the evaluation of the local memory space
required to hold the window and therefore will allow us to design a tractable management
strategy. Second, the simple formula governing the motion of the window will reduce the
complexity of loading the local memory: determining the set of elements which are contained
in the approximate window at time ¢ and were not in the window at time ¢ — 1 amounts to
computing the difference between two sets which differ by a translation.

Finally, the impact of program transformation can easily be analyzed, and the task of
selecting the more appropriate program transformation is made much easier. On the other
hand, the approximation has to be accurate enough in order to avoid loading a large number
of unnecessary elements. All these properties and tradeoffs about approximate windows are
detailed in the rest of the paper.

Let us end this subsection with a slightly more complex example.



DO1li=1,MN
DO 1i; =1, N,
<S> B(i1,12) = A(41 + 12)
1 CONTINUE

The loop above contains a self input-dependence on S due to A. At the beginning of
iteration (¢1,12), the corresponding window is given by:

Wiz(irin)(64) = {AG152) /i1 + 1 < i+ j2 < i1+ N}
An approximate window is therefore obtained by taking:
m(il, LQ) = 'il and W = [1, NQ]

The cost is: Cost(W) = N3. The computation of the benefit requires some more thought;
the total number of accesses performed by S on A is N;N; and the number of distinct
elements of A which are referenced is Ny + Ny — 1. In fact, it is easy to check that the set
of elements referenced by S is {A(y) / 2 < j < Ny + Ny}. Keeping the window inside the
local memory allows us to save Ny Ny — (N7 + Ny — 1) main memory references.

2.3 A global strategy for managing local memory

In a first approach, we will assume that there is no attempt to restructure the code for
increasing data locality.
For determining a local memory management, three basic strategies have to be defined:

e LOADING STRATEGY: when to load an element or a portion of an array and in this

latter case what portion of the array needs to be loaded

e UNLOADING STRATEGY: when to discard data or a portion of an array that was
stored in local memory; furthermore if the data were modified, this requires writing it
back to main memory

e MAINTAINING COHERENCE: inside the same processor and between processors.

2.3.1 The basic ingredients

In this section we will focus mainly on the first two points, ignoring for the sake of clarity
the problems due to coherence. Let us first give a simple description of our management
algorithm; then we will show how to modity it to make it more practical. The basic idea is
to use the notions of costs and benefits associated with each window in order to reduce the
management problem to a classical knapsack problem, which is NP-complete, but for which
approximate solutions of good quality can be obtained in polynomial time [13].

The basic algorithm proceeds in four steps:

1. Build the atomic dependence graph.



2. Compute an approximate window W (¢é) together with its cost Cost(W(6)) and benefit
Ben(W (6)), for every dependence ¢ in the dependence graph.

3. Solve the following knapsack problem:
Find A a subset of the dependencies such that:

Ysea Cost(W(6)) < LMS
Ysea Ben(W(6)) is maximal

where LM S stands for the local memory size. This knapsack problem is approximated
via standard polynomial algorithms [13].

4. Then for every dependence in the set A, the corresponding windows are loaded into
the local memory according to the strategy defined in 2.1.

In order to be practical this algorithm requires the ability to compute approximate ref-
erence windows for arbitrary dependencies, which is far from being easy in general. Further-
more coherence constraints have to be taken into account.

2.3.2 Coherence constraints

Let us first state clearly the problem in the uniprocessor case, on the following small example:

DO i; =1, N,
DO iy =1, N,

Sy X(h(iy,i3) = - -

S, o= X (g(in,02)) -
ENDDO

ENDDO

where X is a one-dimensional array and A and ¢ are two mappings from Z? onto Z.
In general there will be 4 dependencies and 4 windows associated:

8000 S — Sy Wi(69,)
6y 0 Sy — Sy Wi(é],)
830 Sy — S Wi(é3)
Sy Sy — Sy Wi(8L,)

If we apply the simple strategy described in the previous section, we will end up having 4
different windows (covering parts of the same array) coexisting in the local memory. A priori
these four windows will be stored in disjoint subsets of memory locations: more precisely,
if 2 windows overlap (which will be very likely when dealing with approximate windows),
a same array element will have 2 different copies simultaneously alive in the local memory.
The problem arises when one of these copies is modified, the other one needs to be either
modified or invalidated accordingly. Such a phenomenon does appear in cache systems but
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is entirely managed by hardware [1]. In order to solve this problem, the idea is to avoid
having multiple copies of the array element. For achieving that, we will use the notion of
Dominant Window (DW;), which has the main property to be such that:

Vi Wi(89)) U Wi(6],) U Wi(85,) U Wi(6hy) C DW,
Let us define more formally the notion of Dominant Window :

Definition 2.5 (Dominant Window) Let G be a connected component of the atomic data
dependence graph related to the array X, a Dominant Window associated with G (noted
Wi(G)) is a set of elements such that:

Vit and V6 € G Wi(8) C Wy(G)
Vi, DWietl G) = {X(7)/T € m(@) + W)

where m is a mapping from Z* on Z% and W a subset of Z°.

The first condition imposed on the Dominant Window is going to enforce that every array
element referenced will have a single copy present in the local memory. The second condition
which is very similar to the condition imposed on the Approximate Windows simplifies
the management of the Dominant Windows. In fact, in practice, we will first determine
Approximate Windows, and then compute the Dominant Window using these approximate
windows. In the case where all the dependencies involved are uniformly generated, the
determination of a Dominant Window will be easy, because as we will see in subsequent
sections, each of the reference windows Wy(é)can be enclosed in an approximate window
with the same mapping m:

VE,¥8, Wied 6) C m(7) + W (6)

where W(6) is a subset of X depending only upon é and no more upon time. Therefore, the
determination of the Dominant Window amounts to compute a set containing all the W(4).

In the case where not all the dependencies are uniformly generated, the computation of
the Dominant Window might be extremely complex; for such a case, we chose the extreme
of computing a Dominant Window for the whole loop entirely independent of time, which in
fact amounts to compute “regions” as defined in [3]. The price of such a solution is that a
large space in local memory may be wasted because the data stored in it will be referenced
only at the beginning of the loop and not after that.

The problem of maintaining the coherence in the multiprocessor case with different local
memories is much tougher because we need to propagate data from one local memory to
another [14]. The approach which can be used is similar to the one proposed for a shared
memory system. Independently of the presence of local memories, the presence of a data
dependency across processors will require the generation of synchronization instructions to
make sure that each processor gets the right value. In this case, the array element is in fact
stored in local memory; the only thing needed is to generate code to explicitly move the
data from one local memory to another, and this code will have to be inserted just before
the synchronization instruction.
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2.3.3 The complete algorithm

For the sake of clarity, let us consider the uniprocessor case. The algorithm proceeds in 5
steps:

1. Build the atomic dependence graph G.

2. For every dependence ¢ in the dependence graph, compute an approximate window

W(é)

3. For every connected component GG’ in the data dependence graph, generate the Domi-

nant Window DW (G") as well its cost Cost(DW (G")) and its benefit Ben(DW (G")).

4. Solve the following knapsack problem:

Find I" a subset of the connected components such that:

ZG’EF COSt(DW(G/)) § LLMS

Y grer Ben(DW(G')) is maximal
where LM S stands for the local memory size. This knapsack problem is approximated
via standard polynomial algorithms [13].

5. Then for every dependence in the set A, the corresponding windows are loaded into
the local memory according to the strategy defined in 2.1.

It should be noted that two successive approximations of the reference window will be
performed: first for computing the approximate windows then for computing the Dominant
Window. In some very particular case (all the dependencies involved are input dependencies),
the second approximation can be avoided.

Our final algorithm for the management of local memory will be the one described pre-
viously except that the determination of windows will be limited to uniformly generated
dependencies. Now in the remainder of the paper, a method is described for systematically
evaluating such windows.

3 General Results

In this section, we present general results that will be used throughout the remainder of the
paper.

As mentioned at the end of the previous section, we will focus our attention on windows
stemming from uniformly generated dependencies. A formal definition of a window and a
mathematical characterization are given. Then we show how to approximate the window
by simpler sets that can be manipulated more easily, thanks to their geometrical features.
Finally, a change of the iteration basis is introduced to simplify the geometric computations.
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3.1 Some Definitions and Notations

Throughout this section we will assume that we are dealing with an uniformly generated
dependency ¢ from S; to Ss, with the following characteristics:

Sy A(hy(2)) -
Sy Alhy(D)) - -
where:
hi(2) = h(7) + dy
ha(2) = h(7) + d;
The mathematical results that are detailed in the following subsections rely on linear

algebra properties of module Z* (basis change, decomposition of linear functions, ...).
The canonical basis of module Z* and Q* is denoted by (€, ..., €x).

Definition 3.1 The rational iteration space is the cube of rational points £ € QF containing
the integer lattice cube C':

E={(q1, ", q/V1 ¢ € Q and 1 < q; < N}

For each p € {1,..,k}, we define EP as the (unbounded) hypercube obtained from & by relaxing
the constraint on ileration indez 1, :

The set 7; = {q € Q" | T(q) = t} (where the timing function T is extended to Q*) defines
a hyperplane in Q* for all values of ¢ € Q). It should be noted that when ¢ takes the integer
values 1 through N, 7; N C contains exactly one element: the iteration vector corresponding
to the t — th occurrence of < S >.

The approximation of the reference window will involve the following sets in Q*:

F.=T,NE
and

FL=T,NE"P.

3.2 Window Characterization

The reference window can be characterized in the following way:

Theorem 3.2 (Window Characterization)

The hyperplane T; splits the iteration space C into two regions C; and C} such that
Cr={TeC|T@H <t} and Cif ={T€ C|T() >t}
The reference window Wy at time t is equal to Wy = hi(C;) N hy(C).

13



Proof : This follows directly from the definition of the window.
|
The aim of the following theorems is twofold: first determine how the reference window
behaves over the execution of the loop and second evaluate the size of the reference window.
The previous characterization of the reference window is hard to work on. To alleviate
this problem, we approximate the reference window by the image of different sets of rationals
which can be manipulated more easily. Then in a second step we show how to derive estimates
of the size of the reference window.

Theorem 3.3 (First Window Approximation)
Let W, be defined as:

Wi = | (h(F: +s8) +d0) N (R(Z5) + dy)

s€[0,1]

where U is an arbitrary vector such that ¢ € h™'(dy — dy). Then the following property is
verified:

W, C W,.

Proof : Let ¢ be an element of W;.
Since Wy = hy(C;) N ha(C;1), there exists 7€ C}F and J€ C; such that:

q = h(?)+ dy and ¢ = h(}) + ds.

& being convex, for each A € ([0,1] N Q),(1 — X).7+ A.j€ £ The function Q : p € [0,1] —
T((1—-p).74 p.j) € R is continuous. Since Q(0) = T(?) > t and Q(1) = T(j) < ¢, there exists
v € [0,1] such that Q(v) = T((1 — v).7+ v.j) = . Moreover v belongs to @ N [0,1] since 7 and J
belong to Z* and all coefficients in 7" are also in Z.
Let us define % as:
F=(1-v)Tl+v]

then veck € F;. Now it is easy to verify that the vector k + v# is such that:

Wk + v8) +dy = g

|

It should be noted that in the case of a self-reference, the first approximation of the

window has a very special form. Let us assume that A is not injective (i.e., its kernel is not
reduced to the null vector), then we have:

Forél: Sy — Sy Wiy(6:1) = (h(F:) + dy) N h(Z%)
FOI'622 : 52 — SQ Wt(622) = (h(Ft) + dg) N h(Zk)

Therefore the approximate window for the dependence from S; to S, is just the set of
points in h(Z*), located between the two parallel Windows for each of the self-reference
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window. As soon as the windows associated with the self-references are determined, the
computation of the window across statement is straightforward. Therefore in the remainder,
we will focus on computing windows associated with self reference dependencies.

The shape of F; is in general a parallelepiped, which can possibly be degenerated. This
is always the case for the first and last values of ¢ (small ¢ or large t), but also for every ¢
when the iteration space is too small. The fact that F; is not always a parallelepiped makes
it difficult to compute precisely h(F;).

This difficulty is overcome in the next theorem by considering the sets F7}.

Lemma 3.4 (Geometric Properties of F})
Vi, te{l,---,N} and Vpe {l,--- k}, F; satisfies the following properties:

(i) Fo= et FF
(i) F{ is a parallelepiped

(iit) Fy = Oz(F}) where Oz is the translation of vector i = t;j;te};.
p

Proof:
(i) This is obvious.
(i) Ff o ={teLnery
—{reer | T =1
Let ‘H; =1 (resp. H;=n, be the hyperplane in Z* defined by the equation ¢; = 1 (resp.
it = Np)

For each [ # p, the intersections 7; N 'H;,=1 and 7; N H; =, are spaces of dimension
(k—1) (they are not degenerated) and are parallel. As a matter of fact 7; is not parallel
to any hyperplane of equation i; = cte, because all the coefficients in equation 7'(7) = ¢
are different from 0.

Second, for any [ and !’ different from p, the spaces 7; N H;,=1 and 7z N Hiz:l are not
parallel, because the coefficient of 4, in equation 7'(?) = ¢ is different from 0.

As a consequence, the domain defined by 7; and the (k — 1) pairs of hyperplanes is a
parallelepiped.

(iil) FP ={T€ &P iy = gt — ot gy (i — 1.2 = 1)}

This equation can be rewritten in the following way:

t . ) 1 b .
Ff = o6 +{T€ &P |ip = ——P( > (ij=1).P=1)}
J »WJFDP

where the second element in the sum is independent of the time.
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Theorem 3.5 (Second Window Approximation)
Let W = h(F}) N h(ZF)

o Vpe{l,...,k}, W, Cc WP

Vi, t e {l,....,N}, WP =0Ozh(F))Nh(Z")

where Oz ts the translation of vector v = tlTph(ep).

Proof: These properties stem directly from Lemma 3.4 and Theorem 3.3

From Theorems 3.3 and 3.5, we deduce the approximation chain for Wi:

W, c W, c WP, Wpe{l, -k}

The next step in estimating the locality of a code is to evaluate the cost of the reference
window (i.e, the maximum number of distinct elements in the window over time).

By using the inclusion chain 3.2, two approximations of the cost of the window W; can
be derived; the first one corresponds to the selection of an arbitrary integer p and the use
of the number of elements of th for computing the approximation to the cost of W. The
second requires the evaluation of all the costs associated with all the th, then taking the
minimuim over p.

Now, let us make some comments about the computation of the cost: in general this
computation will simply count the number of points with integer coordinates (because the
loop indices belong to Z) enclosed in a convex set X; such a number will be noted | X |.
These quantities are in general relatively complex to evaluate. On the other hand, a much
simpler quantity to evaluate is the volume of || X||; although the two quantities | X | and
| X|| are not related a priori, in our case because the geometric shapes manipulated are
very regular, many relations hold between these quantities. We will use the two notions,
expliciting their differences whenever necessary. In section 5.5, a example of approximation
error (second order in the loop bounds) this problem may cause, is given.

For convenience, we will often use the notation HthH for designing ||A(F7)||-

The second property of Theorem 3.5 allows us to state:

Vit e Z,|W/| = W7

so that it is sufficient to compute it for one value of ¢, for instance, ¢t = 1.

3.3 Window Size Computation - A Geometric Approach

Lemma 3.6 (Lemma of decomposition) Ifh is of rank s, then there exists a basis {f;}zzlk
of Z* such that
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o The restriction of h to spcm(fl, fg, -+, fs) Vis an isomorphism between span(fi, fa, -, fs)
and the image of h.

o {Ji+17 e ,f;;} is a basis of the kernel of h

In the following, (a})le will denote the coordinates in the new basis {ﬁ)}zzlk This theorem

allows us to view the mapping h as a projection of Z* on the submodule span(fl, fg, e ,f;)
More precisely, the image by h of an arbitrary point depends only upon its first s coor-
dinates in the new basis:

k s
h(z v-fi) = E 2;-h(f;)

Using this property, let p, be the projection of module Z* onto submodule spcm(fl, ]?2, cee f;),

parallel to Ker(h) = span(fsi1,--- ,f;;); then for any subset S of Z*, the following property
holds:

Property 3.7

As the restriction of A to span(fl, ]?2, cee f;) is an isomorphism, it follows that it is equivalent
modulo that isomorphism to compute p,(FF) N span(fi, fa, -+, fs) or WP = h(F}) N k(ZF).
That property presents several advantages:

1. All the computations can be performed in the iteration space, which is more convenient
for generating well-structured code for window management.

2. The window can be viewed as the projection of a simple parallelepiped onto a submod-
ule; this gives a more intuitive idea of what the window looks like.

3. The window size computation is simplified, as every point of p,(F}) with integer coor-

dinates on (]?1, f;, e ,f;) is mapped onto a single point in the window. This overcomes
the problem of holes mentioned in [3].

All geometric properties of a projection follow; for instance:

Proposition 3.8 Let {X]} be the intersections of the hyperplane T, with the hypercube
edges ({ X7} are the extreme points of F;). Then the window Wy is isomorphic to the set of
points with integer coordinates in the convex hull of the projections of the points {X]} on

Span(.fla.ﬁa e 7.]2)

Proof: F} is the convex hull of {X7}.
|
In the remainder of the paper, we will compute the projection p; of F; and deduce by
isomorphism the window WY.

'Here span(ui,us, - -+, u,) is defined as {v € Zk v = Zle ar.u, with o, € Z}
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4 Examples of Window Computation

In this section, we apply the general results of the previous section to some special cases
of mapping h of practical interest (in other words, which occur frequently in numerical
computations). For each case, the window size is determined analytically in function of the
loop bounds and the mapping h. First, the case of an arbitrary linear mapping from Z?
onto Z is detailed (h(i1,72) = A1i1+ Agiz). Then, using the power of the geometric approach
described in the previous section, the case where h is a Z¥ — Z mapping is analyzed. In
that case, the function h is considered as a projection on a line, which greatly simplifies
the computations. This covers the cases when the rank of & is 1, by changing the basis
as explained in section 2. Moreover, from a theoretical point of view, this even allows
us to deal with the general case of the mapping Z* onto Z? by using linearization of d-
dimensional arrays: the linearization procedure amounts to defining a linear function [ from
Z% onto Z. Therefore the whole problem can be reformulated using the composition of the
two mappings h o[, which is a Z* onto Z mapping. However, one drawback of linearization
is that the bounds of the array must be taken into account, introducing new variables in the
computation; moreover the linearization procedure destroys the structure of the array that
may help in code generation.

Last, we study the case of simple projections composed with permutations. This case is
an important one (it appears in the matrix-matrix product, for example) and is very easy
to handle in our geometrical framework.

4.1 Case h:7Z*— 7

In this section, we consider a doubly-nested loop:

DO 14, =1,N,
DO 1iy=1,N,
.. .a()\lil + )\2i2) .
1 CONTINUE

The function h is defined by h(i1,22) = A121 + Agta. We assume that h is of rank 1 (A # 0).

4.1.1 Technical preliminaries

Let us define 6 by:
ged(A, Ag) if A A #0
b=1< M if Ay =0
A2 if Ay =0
Then we introduce:
lLh=XA/6 and [ =X/b

Since 4 and [, are prime together, there exists two integers u; and us such that:

llul + lgug =1
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Then Z? can be decomposed (Theorem 3.6) into two subspaces according to:
Z2 = Z.(ul, UQ) D Z.(—lg, ll)

Following the notations of Theorem 3.6, the image by h of the vector fi = (u1, uy) constitutes
a basis of h(Z?) (in fact h(Z*) = §7) and the vector f; = (—ly,11) constitutes a basis of
Ker(h). For an arbitrary point in Z?, (i1,i2) will denote its coordinates with respect to
the original basis {€1, €3}, while (21,23) will denote the coordinates of the same point but
with respect to the new basis {ﬁ, f;} Then the following relations hold between (i1, ¢2) and

) 7 L i
(Zg)(i@ o) ()
(2)= (o ()

Theorem 4.1 () The approzimate windows W} and W2 are

4.1.2 The main result

W= (my(t)+ WHNéz

where

A

my = —t
N,y
W = [ming,enng (M + N ()\2N2 M )iz], mazi,en Ny [A + N (A2N2 A1 )iz]]
and: )
W? = (ma(t) + WHN&Z

where

Mo = )\Qt

W2 = [mmue L()\l — )\QNQ)ll + )\QNQJ mat“e [()\1 — )\QNQ)I/l —|— )\QNQ—H

The remainder of the section details how these formulas were obtained.

4.1.3 Determination of the windows

The timing function 7' is defined by T'(i1,42) = N2(11 — 1) + t2. For such a simple case,
the hyperplane 7; (determined by the equation of equation T'(¢1,23) = t ) degenerates in a
simple line. Therefore the computation of F} and F? amounts to the computation of the
intersection of a line with a stripe (C' and C? are simple stripes in Z?). More precisely, the
sets F} and F} are two segments defined by:

Flo= {(in,i2) | 1 <y < Ny, T(iy,iy) =t}
= {(F5(t—12) + 1,42), 1 <iy < Ny}
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f? = {(thg) | 1 Sll Sle T(thg) :t}
= {(,t = (N2 —1)ia) | 1 < iy < Ni}
The image by p; of these two segments will give two segments on span(ﬁ). These segments

can be easily determined by considering the image of the extreme points.
Therefore py,(F}) is an interval delimited by the points 7; and 7;/:

uo= —x(l = 1Ny) + g (t+ N
ul = —(lL—0LNy)+ ]lv—g(t + Ns)
and similarly p,(F?) is an interval bounded by the points 7, and 7,/:
i = (h—LN)+L(E+N,)
1l = Ni(lh — LNy) + L(t+ Ng)

To get a more precise idea of how these approximate windows move with respect to time,
we can rewrite them as:
[y 1

ph(j:tl) = —t+ [_N2

= (= No) + by —(l = 12N2) + ]
2

and
pu(FL) = lat + [(lh — [aNa) + 12Ng, Ny(ly — [aNo) + 1Ny

The size (length here) of the windows is given by

Ny —1

Wi = | (b = LN,))|

W21 = (N1 = 1)(l = N,

More precisely, we can compute the number of integer points they contain:

(Wil = LW/ + ()

Wil = LW + e(t)
where the notation |z]| stands for the greatest integer less than or equal to « and ¢;(¢) is 0 or
1, depending on how the interval boundaries are located with respect to the integer points
inside.

As in general, NJQVj < N; — 1, we conclude that

Ny —1

(Wil <]

(b = LN +1 (2)

The upper bound is an exact estimation of |Wt| if and only if W, = th N Wf = th, that is,
if and only if th C Wf, which can be shown to be equivalent to N, <t < Ny Ny — Ny + 1.
The conditions under which this last interval is non empty, are NyNy — 2Ny +1 > 0, or
Ny > 2.

That estimation allows us to evaluate the effects of loop interchange (if semantically
legal) : as a matter of fact, when interchanging loop, only the timing function is modified
and is given by 7"(i1,23) = (12 — 1) Ny + #1; as a consequence, we would get the following
window size estimation [|N]1\7—:1(12 — LN+ 1.
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4.1.4 Example

We illustrate the notion of reference window as well as the different approximations on the
following loop nest:

DO1i;=1,6
DO 14y =1,6
LA+ d2) .
1 CONTINUE

This corresponds to the case when the linear function A is the mapping from Z? to Z
defined by h(i1,72) = t1 +t3. Thus 6 =1, 4 =1 and I3 = 1. Taking u; = 1 and uy = 0, we
have the relation lyu; + lous = 1. Let fi, fo be the basis defined by:

dei=((o)-( 1))

In this new basis, A becomes the projection on the z-axis parallel to the y-axis.

Figure 1 shows W;_y3, the reference window at time 23. The elements of the reference
window are denoted with squares on the z-azis. At least one point on each side of line 7;
corresponds to each point in the reference window. Figure 2 shows the sets W, and th. The
two sets are identical. As was shown above, this results from the fact that we are neither in
the first or in the last iteration of the outer loop. Figure 3 shows the approximate window
Wt2:23' It can easily be seen that Wt1:23 C Wt2223. Figure 4 shows the reference window
as well as the approximation windows at time 34. This corresponds to the iteration vector
(41,72) = (6,4) which belongs to the last iteration of the outer loop. In this case, W, is no
longer equal to th.

4.2 Case h:7Z"— 7

This section is a generalization of the previous one. Here we consider a k-nested loop:

DO 1 ‘l.1 = 1,N1
DO 1 ig = 1,N2
DO 14, =1,N,
coma( Ay F Agig + - F Aglg) -
1 CONTINUE

The function h is defined by
k
h(il, ig, e ,'ik) - Z )\]L]
7=1

We suppose that h is of rank 1, i.e. h # 0. Let 6 = ged(A, Ag, -+, k), [; = A;/6 for
j=1,---,k and k integers {u;}5_; such that Y5, {ju; = 1.
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Then Z* is decomposed (Theorem 3.6) into two subspaces:
75 = 7Z.f1 & Ker(h)

where ﬁ = (u1,ug, -, ug). The image by h of fi ({h(fi) = 6}) is a basis of h(ZF) = 6.7.
The first coordinate 7; (along f1) is given by:

k
11 = Z l]"l]'
j=1

4.2.1 The main result
Theorem 4.2 () The approzimate windows Wr (p € [1,k]) are:

WP = (m,(t) + WP)N 62

where \
myp = é(t - 1)

We = [mingennienml g (Ciciz AP — AP )G) + (5o P,
. Ay
mazien,n,ienn| B (o1 (NP — M Pi)ig) + 3252 P

The remainder of the section details how these formulas were obtained.

4.3 Computation of the windows
The timing function 7" is defined by

T(ilvi% T 7ik> = Z[(L] - 1)Pj] +1

=1

The intersection of the hyperplane of equation T'(¢1, s, - ,1;) = t with hypercube [1, Ny] x
[1, N3] x -+ x[1, Ni] is the parallelepiped resulting from intersection of the k parallelepipeds
{F} ’;:1 defined by:

ftp = {(llvl277lk)|v.]7ép71 SL] SNﬁT(ilvi?a"'vik) :t}

. . 1 koo . . .
:{(Zla"'vzp—h(F(t_ Z (Z]‘—l)Pj—1))—|—1,’Lp+1,---,lk)|\V/]#p,l§Z]'§Nj}
p J=1,5#p

The projection by pj, of these k parallelepipeds on span(f;) are intervals isomorph to the
intervals h(F}). Now we study how to determine the projection of one parallelepiped on a
line.
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Proposition 4.3 Let P be a projection of the space Q¥ on one line. We consider one (k—1)-
parallelepiped D with extreme points { X, Y}, _y sk where X? and Y7 are two opposite
points (no hyperplane bounding the parallelepiped contains both). The inclusion relation “C”

induces a total order relation on the intervals 17 bounded by the points {P(X?), P(Y?)}.

Corollary 4.4 The image of D by the projection P is the greatest of the intervals {P(X?), P(Y?)}.

Let {X7, Y} be a pair of opposite extreme points of the parallelepiped F}:

X! = (L%M%vle)

Y= (i/1q7 i/2q7 e ai;cq)
The fact that X? and Y7 belong to 7; implies:
1 k
ig:F(t_ o (i —-0P—1)+1
p J=1,5#p
and
| o,
qu:F(t_ > @ —-1)P—1)+1
P J=15#p

The property that {X?, Y7} are opposite extreme points implies:
Vi # pyilif € (LN} and i #if
The interval {pn(X?),pn(Y?)} is bounded by the points:

1 & I
U=— > (P, —1,P)d+ Jj ZP +t—1)
P j=1,j#p P
1 k
== > (P, -1, —pEPth—l
P j=1#p bia
so that its length is
7 _ 4 - N; -1
W' =] = | Z €; P (Zij—lij)|
j=T,7#p v
= +1if i;-q - l;] =N, —1and ¢ =—1if i;q — L;J =1 — N;. It follows that
W7l = max [T — 7
g=1,-- 2k —2
1y N wn - )
= max €; P, — :
(EJ)J=17J¢PkE{_1’+1}k 7=1,j#p ! Pp T "
k
N:—1
= Z - |Zij - Zij|

Pp

J=15#p

As in the previous section, we conclude that

J=1,j#p P |ZP lij||J+1

|W;| < mlnp 1 HE

We verify that we get the same results as in previous section for the case k = 2.
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4.4 Case h is a simple projection composed with a permutation:
A4

In this section, we consider a k-nested loop:
DO 1 il = 1, N1
DO 1 ig = 1,]\[2

DO 1ix=1,N,

s a(lﬂ'(l)7 tr(2), Z?T(d)) e
1 CONTINUE

where 7 is a one-to-one mapping from {1, -, d} onto a d-elements subset Il of {1,2,---, k}.

The function h is defined by
h(i1, 42, - ik) = (ir(1)s tn(2)s in(a))
The rank of & is d. The decomposition of Z* (Theorem 3.6) gives:
7% = span(e;)jen © span(e;) jgn

In such a case, py, is exactly equal to h.

The intersection of the hyperplane of equation T'(i1,%9,---,1;) = t with hypercube
[1, Ny] x [1, N3] x --+ x [1, Ng] is the parallelepiped resulting from intersection of the k
parallelepipeds {ff}’;zl defined by:

Ff = {(617@77lk)|vj7ép71§L]§NjaT(Llal%7lk):t}
. . 1 oo . .
= {(Zlv"'vlp—h(F(t_ Z (Zj_l)Pj_1))+172p+17"'7zk)|
p J=1,5%#p

Vj#p, 1 <i; < Ny}
The shapes of the projection of these k parallelepipeds onto span(e;);en depend on p:
o If p & Il then A(F}) is the d-hypercube

MFE) = {(izq), s tn@) Vg € {1,...,d},1 <iingg) < Npg}

It can be seen that the set h(F}) is independent of the time ¢, and its volume is easily

computed:
d

W) =TT (Weey = 1)

9=1

just as the number of points with integer coordinates in that parallelepiped:

d
W T =11 Nao

9=1
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e If pell, p=n(r) then h(F}) is the d-parallelepiped

h(f?) = {(lﬂ(1)77l7r(d))|vj € {177k}7j 7ép71 < l] < Nj7

_ 1 G
iy = (Ht= 2 (G=DFA-1))+1}
P J=1,j#p
t
= (0,0,---,—," 0
( s Vo 7Ppa ) )
ko po_
+(0707"'71+E]_17]¢p ! 7.”70)
Pp
—I_{(Z'T(l)?.. )L?r’/‘ 1) — 5 Z Pjijy m(r+1) iﬂ(d))|
p] 1,5#p

VJE{ka}aJ#pvlSL]SN]}

The decomposition above of h(F}) as the sum of three terms is particularly interesting:
the first term shows the motion of the window with respect to time ¢, the second one
refers to a constant shift vector (independent of time) representing the “origin” of the
window, the third one gives the shape of the window: it is a d-parallelepiped of volume

\Wt\—[H —1—[2

g=1,9#r p J=1,5#p

and the number of points in th with integer coordinates is bounded by:

HNq) ZPN

q=1,9#7r p J=1,5#p
We conclude that
|Wt| < min(mingZI([H(i:Lq¢r Nﬂ(q)]#m[Z;?:l,j#ﬂ(r) PJN])]7 Hg:l Nﬂ(q)) (5)

This formula will be used in the next section for the case of a matrix-matrix multiply.

5 LOOP TRANSFORMATIONS

In this section, the impact of loop transformations such as loop interchange, blocking or
reversal on data locality is analyzed. Using the analytical characterizations for windows
approximations detailed in the previous section, such an impact can be studied very easily,
therefore simplifying the process of determining the most appropriate loop transformation
for optimizing data locality, taking into account parallelization constraints.
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5.1 Expressing the benefits of loop transformations

Up to now, all the computations were performed for a given loop structure and the goal
was to exploit at best the data locality exhibited by the original loop structures. A much
more powerful approach consists in transforming loops in such a way that data locality
is increased. The problem is complex because all the legal transformations have to be
considered: this number might be fairly large, for example, in a k-nested DO-loop, assuming
any loop interchange is legal, there are k! possible forms. Moreover, among all the possible
transformations, one has to select the transformation yielding the “largest” data locality
but which also preserves a sufficient amount of parallelism: in fact a subtle trade-off has to
be reached in optimizing simultaneously these two criteria. For cache-based systems, Lam
et al. describe a systematic methodology for reducing the complexity of searching the best
solution ([15]).

In our case, the situation is different since via windows we have an entire control of the
way locality is going to be exploited. Moreover the structure of the windows as well as its
costs and benefits can be expressed in an analytical manner in function of A, the timing
formula, and the loop bounds. Therefore any change of these parameters will not require
any extra computation but just substitution. Let us examine the three cases:

e Changing the mapping h. This transformation corresponds either to the case where
the array is restructured before loop execution or the case of loop reversal.

e Changing the timing function 7. This corresponds to loop interchange, which might
be viewed as a different sweep of the iteration space.

e Changing the loop bounds. This might be used for investigating loop blocking strate-
gies; the amount of locality exhibited by the inner blocks can be easily obtained by
substituting the values of the block sizes in place of the original loop bounds. More-
over, because of the simple analytical expressions of the window size, the values of the
block sizes maximizing locality usage can be determined.

As a consequence, the computations of the window for a given loop may guide for the choice
of a good transformation, and eliminate a priori a large set of transformations that would
otherwise have had to be tried explicitly.

In the next section, we show how to express the usual transformations in our framework.

5.2 Example of loop interchange

As mentioned above, loop interchange can be viewed as a change in the timing function. For
instance, instead of having T'(i1,12) = (i1 — 1) Ny + 22, we get T"(41,42) = (12 — 1) N1 + 11. As
an example, let us consider the loop

DO 14y = 1,20
DO 14y =1,30
A4k —6xig) -
1 CONTINUE
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For this configuration, by applying the formula of section refsec:Z27, (N; = 20, Ny = 30, Ay =

4,0y = —6,1; = 2,13 = —3), we obtain a window of size:
Ny —1
Cost(W) = || (I, — Io.N,)|| +1 = 89
2
Now, assuming loop interchange is legal, such a transformation would result in a new window
of size: N
Cost(W') = || ——(l, = [,.N,)|| + 1 = 41

1
It should be noted that in both cases, the benefit associated with each window will be the
same (in fact loop interchanging does not affect that characteristic); therefore it is preferable
to choose the second loop order, since it will provide the same benefit at a lower cost in
terms of local memory space.

5.3 Loop Reversal

Loop reversal amounts to a change in the mapping h; reversing the innermost loop on 2, in
the previous loop results in:

DO 1i;=1,20
DO 1i;=1,30
1 CONTINUE

The coefficient A\; = —6 of ¢3 in h is changed into A, = 6. So I, = 3 and the size of new

window is:

N2 —1
2

Now if we first perform interchanging followed by a loop reversal of the innermost loop, it is

easy to check that we obtain a final window of size 36. Since the benefit is affected neither

COST(W") = |

by loop interchanging nor loop reversal, this latter form results in the best solution.

5.4 Loop Blocking

Loop blocking consists in dividing the iteration space into smaller blocks and modifying the
way the iteration space is swept. The innermost loops consists in sweeping the iterations
inside a block while the outermost loops define the order in which the blocks themselves
are executed. The window relative to the iterations associated within a block can be easily
computed by substituting the values of the block size. For instance, the latter loop could be
blocked (if semantically legal) in the following way:
DO 1 j; = 1,20,b,
DO 1 j, = 1,30,y
DO 1 ’il = jl,min(QO,jl + b1 - 1)
DO 1 i22j27m111(307j2 + bg - 1)
o A(dw ity —6%1g) -
1 CONTINUE
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where by and by give the block sizes. The size of the resulting window (when considering

the two innermost loops) is: Cost(W,) = L%|b2b;1()\1 — A2b2)|] + 1. By choosing by = 15,

the resulting window size is 44. If before blocking, loop interchange was performed, the
resulting size of the window would have been: Cost(Wy) = L%|blb:1()\2 —Mb)|] +1 =21,
for by = 10, for example. For each case, the benefit depends on b; and by: Ben(W,) =
Ben(W;;) = biby — 2b; — 3by 4+ 4. This formula is obtained as the difference between the total
number of references to the array A (b1by) and the number of distinct elements referenced
(2b1 + 30y — 4).

Now, let us try to solve the inverse problem: assuming that blocking is semantically
legal, let us compute the maximal size of the block such that the corresponding win-
dow requires less than S memory locations. This consists in finding b; and b, such that:
L%Wb;l()\l — Aab2)|] +1 < S (for the first case when innermost loop is on 73) or
L%|blb;1 (A2 = A1by)|] +1 < S (for the second case when innermost loop is on #y).

Let us notice that it is useless to block the i;-loop in the first case because b; does not

appear in the formula, and to block the z;-loop in the interchanged loop for the same reason.
Suppose S = 16, we can choose by = 5 (first case) and by = 7 (second case), so that the
whole window fits into the memory.

When a true 2-dimensional blocking is not possible because of the presence of data
dependencies, it is always possible to block the innermost loop. Then, we can still apply the
window theory to that innermost loop and determine the best blocking.

This section has shown how to handle the loop transformations in our framework. We
have seen that they result in very minor changes in the window computation, and also that
they provide interesting guidelines for the choice of a transformation to improve data locality.

5.5 Matrix-matrix Product

Let us consider the computation of the product of a matrix B of size N; x Ny by a matrix
C' of size Ny x N3, the result being stored in a matrix A of size Ny x N3. After a phase of
initialization, the computation looks like :
DO 14 =1,N,
DO 1iy=1,N,
DO 145 =1, Ns
Air,i3) = A(in, i3) + Bi1, i) % C(iz, is)
1 CONTINUE

The size of the window has to be evaluated for the the six possible orders of nesting (1, 29, 23),
(‘il, ‘l.3, 'l.Q)j (’ig, ‘1:1, ‘ig), (ig, ’ig, ‘il), (‘ig, il, i2)7 (’ig, i27 Ll) The tlmmg function is T(‘il, ’ig, 1,3) =
Pi(iy — 1)+ Py(ia — 1) + P33 — 1) + 1. We intentionally do not explicit the coefficients
(P;) and use them as parameters for using directly the formula 5. Arrays A, B, and C are
accessed via respectively hya, hp, he, defined by ha(i1,2,3) = (i1,%3), hp(t1,22,23) = (21, 22),
he(i1,12,13) = (i2,13). Let wa, wp, we denote the size of the windows generated respectively
by the three access functions. By applying the formula 5, we get

N, N
wy = min(??’(PgNg + PNy), f(}ﬂlN1 + P,N,), NiN3)
1 3
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. N N
wp = mln(?Q(PQJVQ —|— P3N3), ?I(PlNl —|— P3LN3), JVlJVQ)
1 2

N
we = mill(?S(PSJV:g + PlNl),
2

Ny

3

Now expliciting the values of the (P;) coefficients results in:

iz (P2Ny + PyNy), NaN3)

Nesting order
(il,iQ,ig) (il,ig,iQ) (ig,il,ig) (iQ,ig,il) (ig,il,ig) (ig,iQ,il)
w A ]\73 1 + JV3 Nl JV3 Nl 1V3 1 + lVl lVl
wpB 1 + J\TQ J\TQ 1 + lVl lVl ATl JVQ lVl JVQ
we NyN3 NoNs3 Ns3 1+ N3 Ny 1+ Ny
w 14+ No+ N3 | 14 N3+N2 | 14N+ N3 | 14N +N3 | 14N+ No | 14 N1+ No
+N3 N> +Na2 N3 +N1 N> +N1N; +N1 N2 +N1 N>

The last line gives the sum w = w4 + wp + we of the three window sizes and represents
the amount of memory space required for loading the variables only once from main memory
and then working on them from the local memory.

For evaluating the accuracy of our approximation for computing windows, the exact
window sizes are given in the table below:

Nesting order
(i17i27i3) (i17i37i2) (i27i17i3) (i27i37i1) (i37i17i2) (i37i27i1)
w' 14+ N, 14 Ny 14 N 14+ N, 14 Ny 14N
+N3 N> +Na N3 +N1N3 +N1 N3 +N1 N> +N1N>

It can be noted that the approximated results are close to the exact ones. The difference
comes from the computation of the size of the window corresponding to the input depen-
dence induced by the innermost loop invariant (B(i1,) for the nesting order (u1,19,13) for
instance). This is an example of phenomena described at the end of section 3.2. It can
be found easily that in that simple case the window size is 1 instead of 1 + N,. It is clear
that such cases could be detected by a special preprocessing phase before the computation
of windows using the general formulas.

In the following, the approximate sizes of windows as obtained by the general formula
will be used. Due to the symmetric nature of the window sizes for the different ordering, the
minimal window size is min;;(1 + N; + N; + N;N;). This value is obtained for the ordering
which assigns the largest number of iterations (max; N;) to the outermost loop. For example
if Ny = 10, N; = 50, N3 = 100, then the best order of nesting is (is,%2,%1), which result in
a size of w' =14+ Ny + Ny + N1 Ny = 561 of local memory required for loading every data
only once.

Blocking the loop requires to determine the size of the block (b1, b2, b3) and the order in
which the iterations inside a block are swept. The order of the three outermost loops does
not matter because locality is only used inside a block. The determination of the best block
size is reduced to the following standard optimization problem: maximizing the quantity
4b1bybs — b1 by — bybs — by bs (i.e. the benefit) under the constraints that min,; 146, +b;+b;b; <
LMS (i.e. the windows corresponding to the block fit in the local memory) and 1 < b; < N;
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(¢ = 1,2,3). The complexity of this optimization procedure can be simplified further by
imposing the possible blocks to be square; instead of functions of multiple variables, only
simple polynomials have to be manipulated.

5.5.1 Combining parallelization / vectorization with data locality optimization

The problem here is to find the best parallel or vector form of a program, taking into
account data locality. For that purpose, we have to answer such questions as: is it better
to have vectors of length 30, and 600 hundred main memory accesses, rather than vectors
of length 20, and only 400 hundred main memory accesses? To be answered correctly, such
questions require detailed knowledge of specific characteristics of the machine such as timings
of the vector operations and memory accesses. More generally, this requires a more or less
accurate analytical model of the machine performance, for a given program. Such models
can be derived using static code analysis combined with empirical data obtained through
experimentation. An example of such a model is the Load-Store model which was used in
[4] and [5].

The key advantage of our approach is that all the computations involved in our local
memory management strategy are entirely parameterized and most of the standard loop
transformations can be easily taken into account. In particular, as a by product of our
scheme, we get analytical expressions of the benefits, which allows us to compute precisely
how many memory references are saved. Similarly, the extra operations which might be
involved in moving to and/or from the local memory can be precisely evaluated (cf. Section
6). Such information can be used as input to an analytical model of the performance for
determining what is the best parallel/vector structure of a program.

Let us give a small example which is a variant of the example given in section 5.2. Let
us assume that we have to optimize the following piece of code on a vector machine:

DO 14 = 1,20
DO 14y =1,30
B(i1,12) = A(4 %141 — 6 % 13)
1 CONTINUE

In such a form, the cost associated with the window relative to the self dependence on A is
89 words (cf section 5.2). The innermost loop is clearly vectorizable with vector of length 30.
It is clear that interchanging is legal. If interchanging is performed, the cost of the window
will be reduced down to 41 words (cf section 5.2) but the vector length will be also reduced
down to 20. However, in both versions, the benefits (number of memory references saved)
are the same. Now if we assume that the local memory has a size bigger than 89, it is clear
that the original version of the code will perform better due to the longer vector length.

If the local memory size lies between 41 and 89, the right form of the loop is tougher to
determine. However, the interchanged version might end up to perform better because it
will not only save memory references but memory references with stride 2 which in general
perform badly in interleaved memory systems.

The case of the matrix multiply is also typical of a situation where a trade off between
parallelism and data locality has to be precisely quantified. The results of the previous
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section provides us analytical formula (in function of the block sizes) for the benefit in
terms of locality. Assuming that the unit of computation allocated to a processor is the
computation over a whole block (i.e. parallelism is used between blocks), these formula
quantify the performance of a single processor. Now the amount of parallelism as well its
costs can be quantified (using simple performance models) in function of N;/b;. By combining
together the two aspects, a correct tradeoff can be found.

6 GENERATING CODE WITH IMPROVED DATA
LOCALITY

In the previous section we have given several characterizations and approximations of the
reference window (see Theorems 3.3 and 3.5). In section 3, we have exploited the general
results in order to compute estimates of the size of the reference windows. The size of the
reference window was used as a metrics to evaluate the locality of a code and thus provided
a good criterion to guide loop transformations.

In this section the problem of generating code with improved data locality is tackled. The
code generation strategy is derived from the ideal strategy for local memory management
outlined in section 1, which consists in keeping all the elements belonging to the reference
window in local memory. However, instead of using the exact reference window, which was
shown to be complex , we use window approximations which can be more easily computed
at compile-time.

Let W; be an approximation of the reference window W; (i.e. Vt € {1,.., N}, W; C W;).
For this given window approximation, we consider the following local memory management
strategy derived from the ideal local memory management:

At any time t all the elements which are contained in Wy and were not already in Wy_;
are loaded in the local memory , whereas all the elements in Wi_y which are no longer in W,
are discarded.

As a matter of fact, the efficiency of this local memory management strategy is highly
dependent on the accuracy of the window approximation. However, there is a trade-off
between the accuracy of the approximation and the complexity of the behavior of the window
over the loop execution. An accurate window approximation results in a better optimization
of the local memory space needed to support data locality, at the price of a higher complexity
in the management of the local memory. Conversely enclosing the reference window in a
moving frame of constant shape and size eases the management of the local memory.

This trade-off has to be considered in relation with the target architecture: if the local
memory is large enough, we can allow coarser window approximations; on the contrary, when
the local memory is scarce, we need to use accurate window approximation otherwise we
might lose data locality. Moreover, this trade-off also has a direct impact on the complexity
of the code generation process as it will be seen later.

In the remainder of this section, we will illustrate the code generation process in the case
of a 2-nested loop with a single self-dependence involving a(h(i1,42)) where h is a mapping
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from Z2% to Z.

6.1 The window approximation choice

We consider the following set of loops:
DO1i =1,N,
DO 1iy =1, N,

. A(/\lzl + AQZ.Q) Ce
1 CONTINUE

The notations and results used in this section stem from sections 2 and 3. In particular,
h is defined by h(i1,42) = Aty + Mgtz = 6(li21 + [229) where 6 = ged(Aq, A2) and [; = %] for
j=12.

Let W; be the reference window associated with the self-dependence 64 at time ¢.

We will consider the two following window approximations:

) th as defined in sections 3 and 4: th is characterized as the intersection of a rational
interval with Z, where the rational interval is translated at each time step by a rational
distance. As a consequence, the size of W}! may vary over the loop execution.

o the extended window; the extended window agglomerates the reference windows over
several consecutive time steps. This results in more regularity in the sense that the
extended window is translated by an integer distance.

6.1.1 The th approximate window

In the sections 3 and 4, the reference window W; was shown to satisfy the following properties:

1. If Ny > 2, then W; C Wl C Wf as long as Ny <t < NyN; — Ny + 1. This means that,
but for the first and last iteration, VV1 N VV2 VV1

2. W} = [21(1), 2} (1)] N Z where:

‘ Condition H x1(t) ‘
Ii — LNy, <0 ]lv—;(t—l)+ll+12
li — 5Ny >0 jv—lz(t -~ + 4 L+ 1N,

(t) |
(t -1) + -+ I,N,
(75 -1+ 11 + [

2|z |

3. Wiy = [a(t) + 4£, 21 (1) + £]N Z

When generating code, we need to know, at each time step, which array elements should
be fetched from main memory and which array elements should be written back to main
memory (if modified) and discarded from the local memory. This requires us to be able
to compute precisely the set of integers belonging to the window th at each time step.
Unfortunately, th is given as the intersection of a rational interval with the set of integers

Z.

Two cases need to be distinguished:
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[
oﬁgEZ

th is given by:
ly

th NQ (t - ]‘) + th 1
where WL, = [z1(1),z}(1)] N Z.

o]l\,—geQ—Z

This case is somewhat more complex and will be detailed in the following.

As a matter of fact when N—l is not an integer, Wt exhibits a complex behavior. In
particular, its size is likely to vary over the execution of the loop.

Example 6.1

Let us consider the following linear function h(iy,i2) = 3i; + 5iz and Ny = 1.
The reference window at time t can be approzvimated by W} which is given by :

W} = [?(t— 1) +8,?t+35] NnZz.

th takes the following values:

Wi, =1[8,35]n
WL, =19,35n Z
WL, =1[9,36]nZ
WL, =1[10,36]N Z
Wt1:5 = [10,37] N
Wt1:6 = [11,37] N
Wi, =[11,38n

The size of the window th is either 27 or 28.

We enclose the window W} in a frame of size ma:l:te{17...7N}|Wt1| which was shown to be
equal to

Ny —1

2

i

Then we apply the previous local memory management. Before executing the loop, we load
thzl into local memory. Then at each time step ¢, we load the array elements in th — th_l
and discard the elements in th_l — th.

The general structure of the optimized code is the following:

(L — LNy + 1.
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Load thzl into local memory
DO1¢u =1, Ny
DO 11 =1, Ny
Update the content of local memory
... Load from local_memory[A(A1i1 + Aziz) .. ]
1 CONTINUE

It should be noted that the approximation window th has a periodic behavior in the
sense that:

2 l 2 Ny
Whe=6—4+W' where § = ———.
t+é N2 —I_ ¢ ng(ll, NQ)
This periodicity can be taken into account when generating the code for updating the content
of the local memory.

6.1.2 The extended window

The complex behavior of th requires management on a time-step-by-time-step basis (i.e.
update the content of the local memory at each new iteration). To alleviate this problem, we
compute a larger approximate window, as defined in section 1, which moves more regularly
and also more slowly over the array. The extended approximate window spans over several
consecutive iterations and holds the array elements accessed in the consecutive iterations as
well as the array elements which are going to be reused.

This relies on the following definition and theorem.

Definition 6.1 (Extended Approximate Window)

We define thﬁ to be equal to:
t+6-1

J w
u=t

Theorem 6.2 (Extended Approximate Windows)

Let ki < N, be such that kljlv—g belongs to N. (i.e. ki is a multiple of gcd(]lv%Nz) and
ki < N3). Then the following property holds:
v, W, c W — {AG) 1) € [kt 4
r W C Wt gk ={AU) |J € Lk_lj 1E+ 1k )
Proof:
Thanks to Theorem 3.5, W; is a subset of W} and consequently a subset of WLILJM-H by
_ k1 ’

The equality stems directly from the computation of the W!, .

HJkH-LkJ

|

We now compute the set Wi, . Wi, = [y1,yi] N Z where:
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SR LR s+l
B D e n | e+
511—>Z(Q)N2>0 (]l\,—gw+l2N2 kljlv_lz)_(]lv—lﬂ—l—ll—l-b
20 kv,

The previous theorem provides us with an approximate window moving every k; time
steps with a displacement equal to &y ]l\,—;

Example 6.2 We illustrate the concept of the extended approzimate window on the previous
example.
The only suitable value for ki ts 5 since 3 and 5 are prime together.
Then
VT/I{7 =1[8,38]N~Z

The size of this approzimation window is equal to 31 as opposed to the mazximum size of th
which is equal to 28.
Moreover, for each 1 <t < 7Ny, the reference window Wy satisfies:

t

Wtc;ﬂ7

|1+ ([8,38] N Z)

Then we apply the following local memory management: Before the beginning of the
loop, we load W11,k1 into local memory. Then every k; time steps, we update the content of
the local memory. The general structure of the optimized code is the following:

Load Wi k, into local memory
DO1#u =1, N
DO 1 55 =1, Ny, kq
Update the content of local memory
DO 11 =1, ky
... Load from local_memory[A(A1i1 + Aziz) .. ]
1 CONTINUE

Blocking the inner loop is always legal. If we choose k; to be equal to Ny, we only need
to update the content of the local memory each time we begin a new iteration of the outer
loop.
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6.2 Code Generation

For sake of simplicity, we consider a simple target architecture, basically a uniprocessor with
a memory hierarchy consisting of a local memory and a main memory. The transfers between
main memory and local memory must be explicitly specified at compile-time.

Up to now we have not detailed the precise management of the data belonging to the
window approximation. This requires us to answer the two following points:

e How should the array elements belonging to the approximate window be stored in local
memory?

e How do we generate the reference to the array elements in the loop body?

We chose the following strategy: we allocate a temporary array 7'M P, in local memory,
with a size A equal to the size of the extended window. The temporary array is managed
as a cyclic buffer, i.e. array elements are loaded and unloaded in such a way that at a each
time t = T'(7) where 7 € C' the following property holds:

a(h(ir,i2)) = TMP((h(i1,12) — Cte) mod A).

This is made possible by the fact that, at each time ¢, the approximation window cor-
responds to a set of consecutive integers each of which can be mapped to a unique place in
the temporary array T'M P. This management scheme makes it easy to generate the array
references in the loop body by simply replacing the reference a(h(i1,72)) by the reference to
the temporary T M P((h(i1,12) — Cte) mod A). The computation of the replacement address
is however more complex.

7 CONCLUSION

In this paper we have developed a global strategy for managing a local memory. First,
“active” portions of arrays (windows) are detected and characterized; these windows can
be enclosed in simple constant geometric shape moving regularly across the array. Associ-
ated with each window, two metrics (size and degree of locality) are evaluated. We have
shown that for the most important cases (self-reference windows), all these quantities can
be computed symbolically in function of the loop bounds, the index function and the way
the iteration space is swept. This allows us to reduce the management of the local memory
to a classical knapsack problem. Furthermore the symbolic form of the windows and their
characteristics enable to perform a simple analysis of the impact on locality of the most
common loop transformations. Finally, several examples showing the power of the approach
have been detailed. The strategy described is currently being integrated into an interactive
parallelization environment developed by D. Gannon at University of Indiana.
Several problems deserve further refinement:

e The choice of the best strategy to perform the transfers needs to be explored; there is
a trade-off between the speed at which the window moves inside the array and the size
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of the window. Choosing large windows simplifies the transfer policy at the potential
price of keeping too many elements in local memory

The tradeoffs between data locality and parallelism requires further investigation; in
particular, a systematic strategy has to be determined to select an appropriate trade-
off (criteria). This should be achieved by integrating the techniques described here
into a performance evaluation system.

The management strategy described in this paper was mainly focused on local memory;
however similar techniques can be applied to registers. This is becoming increasingly
attractive as the number of registers available in recent RISC processors has increased;
such a large number of registers can be used systematically for retaining data across
iterations (exploiting “long-term” locality) in addition to the classical use of registers
for exploiting locality inside a given iteration.
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