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Abstract 

Given a generic m x n matrix A, the simplicial complex/C(A) is defined to be the collection 
of simplices representing maximal lattice point free convex bodies of the form {x : A x  <~ b}.  The 
main result of this paper is that the topological space associated with/C (A) is homeomorphic with 
R m-1  . ( ~  1998 The Mathematical Programming Society, Inc. Published by Elsevier Science B.V. 
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1. Introduct ion 

Let A be a real m x n matrix with rows al  . . . . .  am and consider  the family of  integer 

p rogramming  problems 

min  a l  • z subject  to 

ai • z ~ bi for i = 2 . . . . .  m and z C Z n, ( 1.1 ) 

obta ined by selecting arbitrary right hand sides bi. 

A generic matr ix  A has associated with it a unique,  finite set o f  lattice points ,  N ( A ) ,  

called the neighbors  of  the origin. The neighbors  form a test set for this family  of  integer 

programs,  in the sense that an integer vector z, satisfying the constraints  o f  any one of  

these problems wil l  be opt imal  for that p rob lem if  for every h E N ( A ) ,  the vector z + h 

* Corresponding author. Email: scarf@cs.yale.edu. Supported by NSF grant SES-9121936 and the program 
in Discrete Mathematics at Yale University. 

l Partially supported by the Hungarian NSF grant 1909 and the program in Discrete Mathematics at Yale 
University. 

0025-5610/98/$19.00 @ 1998 The Mathematical Programming Society, Inc. 
Published by Elsevier Science B.V. 
PH S0025-5610(97)  00023 -3 



2 L Bdrdny et aL/Mathematical Programming 80 (1998) 1-15 

is either infeasible or yields an inferior value of the objective function than does z. 

Moreover, if a lattice point is eliminated from N ( A ) ,  there will be an integer program 

obtained by specifying a particular value of the right hand side, and some feasible but 
not optimal lattice point z, whose lack of optimality cannot be detected by using this 

smaller test set. 
The neighbors of the origin are simple to describe for certain matrices. A generic 

matrix of size 3 by 2 will have six neighbors, which are easy to calculate. A general 

matrix with two columns may have quite a few neighbors - if the entries of A are 

integers, the number of neighbors may be exponential in the bitsize of the matrix, but 

they can always be organized into a "small" number of linear segments. Another simple 

case arises when the matrix has n + 1 rows, n columns, and the following sign pattern 

÷ . . . .  

• .. : 

. . . .  ÷ 

with ~-~<i aLi> 0 for i = 1 . . . . .  n. In this case, the neighbors of the origin consist of all 
of the vertices of the unit cube in n space, and their negatives. 

In the general case, the set of neighbors can be calculated using Groebner basis 

algorithms borrowed from algebraic geometry. They can also be calculated by what 

might be thought of as homotopy methods. To calculate N ( A ) ,  for a particular matrix 

A, one can find a matrix of the same size B whose neighbors are known, and examine 

the linear family of matrices A ( t )  = tA ÷ (1 - t )B .  It is quite simple to find those 

particular values of the parameter t where the set of neighbors makes a discontinuous 

change, and it is possible to describe the precise changes that take place in the set of 

neighbors as t passes through this discontinuity. 

Neither of these procedures is particularly fast; for integer matrices they are not 

polynomial in the size of A. But there is considerable theoretical evidence to suggest 

that the set of neighbors can be examined rapidly for a fixed number of variables. 

Unfortunately we do not know, at this moment, how to find a polynomial structure for 

the set of neighbors; the best that we can do is to look for any structural properties of 

this set of lattice points that can augment the current state of our knowledge. 

In this paper, we construct a canonical simplicial complex associated with a generic 

matrix A. The simplices in the complex have lattice points as vertices, and lattice 

translates of a simplex will also be in the complex. In the n ÷ 1 by n matrix given 

above, with a particular sign pattern and with positivity of the sum of the entries in 

the first n rows, the simplicial complex consists of the most conventional simplicial 

subdivision of the cube, translated by Z n, 

The importance of the complex is that the set of neighbors is precisely the collection 
of edges emanating from the origin in those simplices containing the origin as one of 

its vertices. The main theorem of the paper characterizes the global structure of the 

general complex, and shows, in fact, that from a topological point of view, the complex 
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is as simple as it can possibly be. It is our hope that this result will lead to concrete 
structural features of  the set of  neighbors, and ultimately to improvements in our ability 

to solve difficult integer programming problems. Perhaps the geometric representation 
of  the complex, via the exponential map, will turn out to be useful: this is a highly 

symmetric polyhedron where the additive structure of/C (A) is reflected multiplicatively. 
We make the following assumptions on A. 

A1. There is a strictly positive row vector ,~ E R m with ,~A = 0. 

A2. If, for some i E { 1 . . . . .  m) and z E Z ~ aiz  = 0 ,  then z = 0. 
A3. The n × n minors of  A are all nonsingular. 

The first and the third condition imply that for any b C R m the convex set 

g b  = ( Y  E R m : A x  <~ b}  (1.2) 

is bounded. Condition A2 asserts that the hyperplane a i x  = fli contains at most one 

lattice point. This condition is much more stringent than necessary for our analysis and 

can be relaxed to allow an open set of  matrices containing A in its interior. Condition 

A3 can be replaced by the assumption that AA = 0, and ,~ ~> 0 implies that at least n + 1 
components of  ,~ are strictly positive. 

Definition. Kb is a maximal lattice free convex body (or MLFC body, for short), if 

( 1 )  Kb has no lattice points in its interior, 

(2) any closed convex body which properly contains Kb does have a lattice point in 
its interior. 

By A1 and A3, Kb is a convex polytope. Notice that if Kb is a MLFC body, then so 
i s Z + K b f o r e v e r y z  E Z  n. 

Condition (A2) implies that every facet of  a MLFC body Kb contains a unique lattice 

point in its relative interior. Let z i be this lattice point when the facet is defined by 

the ith inequality a ix  ~ fli. Some inequalities a i x  ~ fli may not define a facet of  Kb 

in which case the inequality a i x  ~ f l i  can be replaced by a i x  ~ fli with any f l i  > fli 
without changing Kb. Thus different right-hand sides (i.e., different b's) may give rise 
to the same MLFC body. 

To avoid this ambiguity we set ~ i  = ÷OG for an inequality that does not define a facet. 
A convenient way to do this is to introduce "ideal points" w I , w 2 . . . . .  w m by defining 

a i w J =  f + ~  i f i = j ,  

t -cx~ otherwise. 

Let W = {w 1 . . . . .  win}.  

Assume now that Kb is a MLFC body. We shall represent it by an m-element set 
o- C Z ~ U W in the following way. For i = 1, 2 . . . . .  m define 

z i if a i x  ~ fli defines a facet, and z i E Z" is on this facet, S i = 
w i otherwise. 

Let o-= {s 1, s 2 . . . . .  sin}.  
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On the other hand, an m-element set o- C Z n U W determines a convex set Kb via 

t~i = m a x { a i s :  s C o-}, and b = (ill . . . . .  tim) T. 

The set Kb is a MLFC body if the elements of  o- can be indexed as o- = {s 1 , s 2 . . . . .  s m } 

so that the following holds: fli = ai Si (i  = 1 . . . . .  m) ,  ai Sj < Hi, i f j  v~ i, and there is no 

z E Z ~ with aiz < Hi for all i = 1 . . . . .  m. 
Define now the complex KS(A) associated with this collection of  MLFC bodies as 

the simplicial complex whose simplices are the finite sets o- representing MLFC bodies 

together with their subsimplices. The vertex set of  KS(A) is Z n U W so it is infinite. 

Given a simplex o- = {z 1 . . . . .  z p, w jl . . . . .  wJ',} E KS(A) with p /> 1, its cell, t l, is 

the set of  all abstract mixed combinations from o- that are defined as 

P q 

x = Z Y(k)zk + Z f l ( J t )wh  (1.3) 
k=l l=l 

where y ( k ) , f l ( j l )  >/ 0 and ~ P  y ( k )  = I. Notice that Io-I is not a subset of  R n since 

the points z i and wJ are thought of  as abstract points. 

The body of  KS(A), [KS(A)l, is the union of  cells of  simplices o- containing at least 

one non-ideal point. This is not the usual definition of  the body of a simplicial complex 

but it suits our purposes well. 

We will show later (Lemma 2 in Section 5) that every point of [KS(A)[ is contained 

in finitely many cells of  KS(A), i.e., KS(A) is locally finite except possibly at the ideal 
points. This implies that the topology of  ]KS(A)] is well defined. 

Now we can state our main result. 

Theorem 1. IKS(A)I is homeomorphic  to R m-l .  

This theorem is a generalization of  a result from [ 1 ] where the case m = n ÷ 1 is 

considered. The constructions and the proofs of this paper take their origin from [ 1 ], 

but a different and novel approach is needed here at several places: Assumption A3 

is necessary here to ensure local finiteness of  KS(A); there are no ideal points when 

m = n ÷ 1; and the geometric realization of  KS(A) (see Section 7) is simpler in [1].  

2. Examples 

Before presenting further theorems and the proofs it is instructive to consider a few 

examples. 

When m = n + 1, ideal points are not needed since every MLFC body is a simplex. 

When n = 2 and m = 3, KS(A) has a particularly simple structure (cf. [7] ). Namely, 
there is a basis, e 1, e 2, of  the lattice Z 2 such that the simplices of  KS(A) are lattice 
translates of  {0, e 1, e 1 + e 2} and {0, e 2, e I + e2}. The corresponding triangles and 

their lattice translates form a tiling of  the whole plane and constitute a simple geometric 

realization of  KS(A) as R 2 (see Fig. 1). 
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e2 I el + e2 

/ ; /  
Fig. 1. The 3 x 3 case. 

w 2 

w 3 

Fig. 2. The 3 x 1 case. 

When n = 1 and m = 3 the inequalities in the system (1.1) can be put in the form 

- x  ~< /31, x <~ /32, x ~< /33. The MLFC bodies are the intervals [k, k + 1] (k c Z) .  

They are represented by simplices of  KS(A) of  the form 

{k, w 2, k + l }  and {k, k + l ,  w3}. 

The ideal point w I does not appear in any simplex of  KS(A). IKS(A)I is given in two 

ways in Fig. 2: first the ideal points are in the plane, and, second, they are placed at 

infinity. 
The case n = 2, m = 4 can be treated using results of  [7].  In this case some three 

of  the inequalities in (1.1), a l x  <~ /31, a2x <~ /32, a3x <~ /33, say, determine a bounded 
region and the 3 by 2 case applies. Each of  the two types of  simplices obtained from 

these three inequalities alone is augmented by w 4 in order to get a maximal simplex in 

KS(A). Some other three inequalities, a2x <~/32, a3x <~/33, a4x ~</33 say, also determine 
a bounded region, and the 3 by 2 case applies again. Of the ideal points only w 1 and w 4 

are needed and they only appear in this way. The remaining maximal lattice free bodies 

do not involve the ideal points; the four lines corresponding to the four inequalities are 
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Fig. 3. The 4 × 2 case. 

Fig. 4. /C(A) is not locally finite. 

placed at four lattice points z 1 , Z 2, Z 3, Z 4 whose convex hull is a parallelogram of 

unit area. One can visualize the abstract simplicial complex K~(A) as the collection of  
"3-dimensional" parallelograms, with vertices coming from Z 2. The boundary of their 
union consists of  two pieces: each piece is homeomorphic to R 2 and corresponds to the 

tiling (o f  R 2) by triangles from the 3 by 2 submatrices. (Above each tiling there is a 
suspension to infinity by w I and w4.) This is what we like to call the quilted paplan. 

As these simple examples, show not all ideal points belong to simplices o f / C ( A ) .  
On the other hand, a result of  Doignon [3],  Scarf [6],  and Bell [2] states that a 
MLFC body can have at most 2 n facets. Thus for a maximal dimensional simplex 
o v = {Z 1 , Z 2 . . . . .  Z k ,  W jl . . . . .  W jm-k } C IC(A) one has n + 1 ~< k ~< 2 n. 

As we mentioned, the well-conditioning assumption A3 ensures the local finiteness of  
)U (A).  An example due to Lov~sz [ 5 ] shows that if  A3 does not hold, then/C (A) may 
not be locally finite. The example (Fig. 3) is for the 4 by 2 case: two of the vectors, 

say al and a2 are opposite (al  + a2 = 0) and have irrational slope. Fig. 4 depicts two 
parallelograms {z I , z 2, z 3, z 4} E E ( A ) ,  from an infinite sequence of  parallelograms 
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that contain the point z 4 = 0 and correspond to MLFC bodies. A3 is violated here by 

the 2 by 3 minor [a l , a2 ]  r of  A. 

We mention further that the same well-conditioning assumption A3 was needed in 
[5] in order to show that the "shapes" of  the MLFC bodies of  the type Kb (with A 

fixed, again) can be approximated by the shapes of  a finite subset of  this type. Details 

can be found in [5].  

3. The exponential map 

The proof of  Theorem 1 will be based on a geometric realization o f / ¢  (A).  The key 

construction is the exponential map E : R n X (0, o0) --+ R m defined by 

E(x,  t) = (exp{talx},  exp{ta2x} . . . . .  exp{tamX}) T. 

Quite often the parameter t E (0, ec) is not important and we simply write E t ( x )  or 

E(x) .  
Consider now A E R~ from condition A1 and set 

m 

M =  {y  E R~ : I I Y i  ai= l} .  (3.1) 
i=1 

Notice that M is the boundary of  the strictly convex set {y C R~_ : IIy{' >~ 1}. Further, 

Et (x)  ¢ M for every x E R m. 
We remark that, more generally, for a row vector /x E R~ wi th /xA = 0, one could 

define 

M(/z)  = { y C  R ~ :  f l y i  p'i= 1}. 
1 

It follows then that Et(x)  ¢ M(Ix) for every such/x so that Et maps R n to r] M(I,Z). 
In what follows, however, we will only make use of  this fact wi th /z  = A. 

Define now Vt = Et(Zn) .  Obviously Vt C M. Moreover, no point of  Vt is contained 

in the convex hull of  other points of  Vt. Define 

Ct = R~ + cony Vt, 

a convex set that has extreme points y C Vt. Denote the standard basis of  R m by 

{e(1)  . . . . .  e (m)} .  
Let v 1 . . . . .  v p C Vt (p  >~ 1) and jl . . . . .  jq c {1 . . . . .  m} (q ~> 0) and define 

F = conv{v 1 . . . . .  v p } + pos{e( j l )  . . . . .  e(jq) } (3.2) 

where cony X and pos X denote the set of  convex combinations and non-negative com- 

binations, respectively, of  the elements of  X. Clearly, F lies in Ct and is a convex 

polyhedron. F will be called a face of  Ct if it is the intersection of  Ct with a supporting 
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hyperplane. In this way we can define vertices, edges . . . . .  facets of  Ct as well. It is easy 

to see that the vertices of  Ct are the points in Vt. 

The connection between K;(A) and the facets of  Ct is established in the following 

theorem. 

Theorem 2. There is a to > 0 such that f o r  t > to the following statements are 

equivalent. 

(1)  o- = {z 1 . . . . .  z p, w jl . . . . .  w j',} is a maximal simplex o f  )E( A ) (i.e., p + q =  m). 

(2)  F = conv{Et (z  1) . . . . .  E t ( zP)  } + p o s { e ( j l )  . . . . .  e( jq)  } is a facet  o f  Ct. 

It follows from Theorem 2 that for t ~> to, p + q = m holds for the facet F in (3.2) .  

The boundary of  Ct is going to be a geometric realization of  the complex /C(A).  In 

order to show this we have to prove that the boundary of  Ct consists of  faces of  the 

type (3.2) .  

Theorem 3. Ct is a closed set. Its boundary consists o f  faces o f  the form (3.2) with 
U i = E t ( Z  i)  f o r  s o m e  z i E Z n (i = 1 . . . . .  p ) .  

Notice that every point  of  Ct is of  the form ~ oliEt(z i) q- ) -~ f l je ( j )  where the first 

sum is a convex combination and the second is a nonnegative combination. Thus the 

first part of  Theorem 3 implies the second. We mention further that Theorems 2 and 3 

show that the combinatorial  structure of  the face lattice of  Ct stabilizes after t > to. 

4. Z n acts o n / C ( A )  and C 

We mentioned earlier t h a t / ~ ( A )  is invariant under translations by integers. Precisely, 

given z E Z n define 

J" z + x  when x ~ R n, 
Tz (x) 

x when x C W. 

The group o f  translations T ~ = {T z : z ~ Z n} is isomorphic to Z n and leaves 3S(A) 

invariant, i.e., i f  o- E /C(A),  then Tz(o-) = {s + z : s E o-} E E ( A )  as well. The 

orbit  of  o- C /~ (A)  under T" is the set of  all simplices of the form To- with T E T ". 

Moreover, T" acts transitively on the vertices of  K~(A) (belonging to Zn),  i.e., for every 

pair z, u E Z n there is a T C T n with z = Tu. So we have the following simple 

L e m m a  1. The orbit o f  every o- E I~( A ) with O- A Z ~ 0 contains a simplex with a 

vertex at the origin. 

Z n acts on the convex set Ct as well in the following way. Given z E Z n define the 

m x m diagonal matrix D z as 

D z = d iag(exp{ ta l  z } . . . . .  exp {tamz }) .  
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Dz : R m ---+ R m is a nonsingular linear map and D n = {Dz : z C Z n} is a group 

isomorphic to Z ~. Notice that Dz leaves Vt and R~ invariant since 

DzEt(zo)  = E t ( z  q- ZO) and DzR~ = R+. 

It follows that O z C  t = Ct so that Ct is invariant under the group D n of  linear transfor- 
mation. This implies that if F is a face of  Ct then so is Dz F. It is clear, moreover, that 

Dn acts transitively on the vertices of  Ct and therefore Ct looks the same at every one 

of  its vertices. Thus Ct is a highly symmetric convex set which is, as we shall see later, 

locally a polytope. 

As the group T ~ acts on I~(A)I one can factor it out to obtain the topological space 
]IC( A ) [/T n. We shall prove 

Theorem 4. I ~ C ( A ) l / Z  n is homeomorphic to the direct product o f  the n-torus and 
R m -  n-- 1. 

This result is the natural extension of  Theorem 2 from [ 1 ]. Its proof uses equivariance 

as well but this time the exponential map is not simplicial and we have to use an unusual 

extension of  E, cf. (8.1). 

5. Auxiliary results and proof of Theorem 3 

We will need a few properties of  the complex /C(A). The first is local finiteness 
which we state in the form of 

L e m m a  2. Each lattice point z C Z n is contained in a finite number o f  simplices o f  

1CC A) .  

Proof. It is enough to prove this for z = 0. Assume, to the contrary, that an infinite 

number of  maximal dimensional simplices, a - ( l ) ,  0-(2) . . . .  E /C(A) contain 0. We 

can further assume (after possibly reordering the rows of  A and deleting some of  the 

a-(k))  that each a-(k) is of  the form 

o- (k )  = { z l ( k )  . . . . .  z P ( k ) ,  w p+I . . . . .  w m} 

where z l ( k )  = 0 (Vk) and 

m a x  a i z J ( k )  = a i z i ( k )  =:  f l i ( k )  ( i  = 1 . . . . .  p ) .  
j=l  ,...,p 

As the sequence o-(k) is infinite, some of  the f l i ( k )  c a n n o t  be bounded, Assume (again 
by deleting some of  the t r (k ) )  that 

f l i ( k )  --~ fli for i = 1, 2 . . . . .  pt,  and 

f l i (k)  Z oo for i= p '  + l . . . . .  p 
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where 0 < pt < p and/3i < oc for i = 1 . . . . .  p~. Notice that t~i(k) = aiz i (k)  > a iz° (k)  
so that 

f l i > ~ O f o r i = l  . . . . .  p/. 

Moreover, the sets 

Q ( k )  = { x  C R n : aix <. B i ( k ) ,  i =  1 . . . . .  p ' }  

cannot be bounded (they contain the infinite sequence Z p ( k ) ) .  Consequently the cone 

Q ( O )  = { x  C R n : aix <. O, i =  l . . . . .  p ' }  c Q ( k )  

is not bounded. Now condition A3 readily implies that int Q(0 )  v~ ~b. Then Q(0 )  

contains infinitely many lattice points. But the sets 

Q ( O )  N { x  E R n : aix  <. [~i(k),  i = p '  + 1 . . . . .  p }  

form an increasing sequence as k ---, oc (since ~ i ( k )  S oc)  and cannot be lattice point 
free. This contradiction demonstrates Lemma 2. [] 

Remark .  The Lemma is equivalent to the fact that the number of  one-dimensional 

simplices of  the form {0, z} C ~ ( A )  is finite. Such a z E Z n is a neighbor of  the 

origin (cf. [7] ). Therefore Lemma 2 says that there are finitely many neighbors of  the 

origin if A is well conditioned, i.e., it satisfies A3; similar statements were proved in 
[9,7]. 

We mention further that Theorems 2, 3, and Lemma 2 show that Ct is locally a 

polytope (when t > to). Indeed, every point of  OCt belongs to some facet by Theorem 
3; and every facet comes from a maximal simplex of  K~(A) by Theorem 2. Then, by 

Lemma 2, any vertex v of  Ct is contained in finitely many facets; Ct has the structure 
of  a polytope at any one of  its vertices. 

We need two more properties of  the sets Kb. Both of  them are stated in [ 1 ] for the 

n +  1 by n case. The proof given there extends without difficulty and is, therefore, omitted. 

L e m m a  3. There is a 81 > 0 (depending only on A)  wi th  the fo l lowing  property. Le t  S 

be a f in i te  set o f  lattice points  and define 

K =  { x C  R" : Ax<<, b} where  f l i = m a x { a i z  : z E S}. 

I f  K contains a lattice po in t  in its interior, then it contains a lattice po in t  z such that 

aiz < fii - 81 f o r  all  i = 1 . . . . .  m, 

L e m m a  4. There is 8 2 > 0 (depending only on A)  such that i f  or = {z  l . . . . .  z p, w j~ . . . . .  

w jq } E I ~ ( A )  wi th  p + q = m and z is a la t t i cepo in t  different f r o m  z 1 . . . . .  z p, then f o r  

some i E {1 . . . . .  m} \ {jl . . . . .  jq}  

aiz >/ max aiz j Jr 62. [] 
.j= l , . . . ,p 
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Proof of Theorem 3. We prove that Ct is closed. We may assume t = 1. 

Notice that V is discrete, i.e., every compact set contains only finitely many elements 

of V. By the definition of C, every element c E C can be written as a mixed combination 

c~ivi+ ~ '~ f l j e ( j ) ,  i.e., the first sum is a convex combination of some v i E V and 

the second is a nonnegative combination. As V C R~, ~ f l j e ( j )  and every oliv i is less 

(componentwise) than c. 

Assume now that c is from the boundary of C. Then c = limk__.o~ c (k )  with c ( k )  = 

v ( k )  + f ( k )  where v ( k )  C convV and f ( k )  C R~ for all k = 1,2 . . . . .  The sequence 

f ( k )  must be bounded so we may assume (by considering a subsequence if necessary) 

that l i m f ( k )  exists and equals f E R~, say. Then l i mv( k )  exists and equals v = c - f .  

As v ( k )  E cony V C R m, every v ( k )  can be written as a convex combination of m + 1 

elements of V: 

m 

v (k )  = ~ a i ( k ) v i ( k ) .  

i=o 

Considering a subsequence if necessary we assume that lim ol i ( k )  = t~ i for i = 0, 1 . . . . .  m. 

Clearly cei ~> 0 and ~ 0 '  a i  = 1. To have convenient notation assume a i ~ 0 for i = 

0, 1 . . . . .  j and t e  i = 0 for i =  j + 1 . . . . .  m. Then, for i =  0, 1 . . . . .  j ,  the sequence v i (k )  

must be bounded and we may assume that l imv i ( k )  = v i. Since V is discrete, v i c V. 
Thus l im ~ J  ai (k) vi(k) = ~-~ ceiv i = u, say. Consequently v - u = lira ~--]d~+l oii(k) vi(k) 

and the limit is in R~ since every summand is there. Thus c = u + (v - u) + f and here 

u is of the form ~ aiC i, a convex combination, and (v - u) + f E Rm. [] 

6. Proof of Theorem 2 

We essentially repeat the argument for the (n + 1) × n case from [1] with the 

necessary modifications. 

We show first that (2) implies (1).  Let h be the normal to C at F, i.e., 

hy ~> 1 for all y E C, with equality for y E F. (6.1) 

Clearly h = (hi  . . . . .  hm) v is nonnegative and hi = 0 if and only if F is parallel with 

e( i ) .  To simplify notation assume j l  = m, j 2  - -  m - 1 . . . . .  jq = m - q + 1. Thus h i = 0 

if i ~> m -- q + 1 and we rewrite (6.1) as 

m--q 

~-~hi  exp{ ta i z}  >/- 1 for all z E Z  n, with equality for z = z  1 . . . . .  z p. (6.2) 
i=1 

It follows from the equality case that hiexp{taiz  j }  <~ 1 (i = 1 . . . . .  m - q, j = 
l . . . . .  p ) ,  implying aiZ j ~. 1 log hi 

max  aiz j ~ 1 j=l, ,p - t  log hi ( i  = 1 . . . . .  m - q). (6.3) 
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We wish to show that o- = {z 1 . . . . .  z P , w  m-q+1 . . . . .  w m} E LS(A) (in particular 

p + q = m),  i.e., there are no lattice points other than z I . . . . .  z p in 

K = { x  E R n : a i x  <~ t~i, i = 1 . . . . .  m - q }  

where f l i  = m a x { a i z  j : j = 1 . . . . .  p }  and, further, that z 1 . . . . .  z p are on distinct facets 

of  K. Let z be a lattice point  satisfying aiz  < fli for i = 1 . . . . .  m -- q (Z = z j is 

possible) .  Then, by Lemma 3, for i = 1 . . . . .  m - q 

aiz <~ m a x { a i z  j : j  = 1 . . . . .  p}  - -  31. (6.4) 

On the other hand, (6.2) shows that there is an i C {1 . . . . .  m - q} with 

1 1 
hi e x p { t a i z }  ~ - - ,  or, aiz >/ - - t ( 1 o g  h i + l o g  ( m - q ) ) .  

m - q  

Thus by (6.3) 

1 
a i z  > / - -  t log hi - l og (m - q) 

1 
>~ m a x { a i z  j • j = 1 . . . . .  P }  - t l og (m - q) ,  

contradicting (6.4) i f  t > tl = ~ log(m - q).  

It follows that K is a MLFC body and there is at most one zi on every one of  its 

facets implying p ~< m - q. Finally, p + q ~> m follows from the fact that F is a facet. 

We now turn to the second part of  the argument and show that (1)  implies (2) .  

Assume 

t r =  { z  1 . . . . .  z p,  w p+I . . . . .  w m} E I C ( A )  (6.5) 

(using convenient notation, again).  Let h E R~ satisfy hi = 0 for i = p + 1 . . . . .  m and 

h E t ( z  j )  = 1 for j = 1 . . . . .  p. (6.6) 

We will show the existence of  a t2 such that h E r ( z )  /> 2 for every t > t2 and 

z C Z n, different from z l , . . . , z  p. Assume the vertices have been permuted so that 

a i z  i = m a x { a i z  j : j = 1 . . . . .  p } .  

We compute hi  . . . . .  hp from the system of linear equations (6.6).  By Cramer's  rule 

we have 

det N 
hi = 

d e t (  e x p {  t a i z  J } ) 

where N is the matrix obtained by replacing the first row by (1 . . . . .  ! )  in the matrix 

appearing in the denominator. The determinant in the denominator can be written as 

the sum of  p!  terms, each one based on a permutation of  {1 . . . . .  p}.  But for each 

permutation ~r, other than the identity, the corresponding term is (H e x p { a i z ~ - ( i ) } )  t 

which is strictly less than ( I I  e x p { a i z i } )  t so that for large t this single term will be the 
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asymptotic value of  the denominator. Similarly, the numerator is asymptotically equal 
to the same product with index ranging from 2 to p. Thus we get that 

hi = (1 + el ( t ) )  e x p { - t a l z  1} 

with el ( t)  --~ 0 as t --~ oo. An identical argument gives that for i = 1 . . . . .  p 

hi = ( 1 + e l ( t )  ) e x p { - t a i z  i} 

with e i ( t )  --~ c~ as t --, oo. In particular, there is a t2 so that for all t ~> t2 we have 

hi >>. 2 e x p { - t a i z  i - t62} for i = 1 . . . . .  p (6.7) 

with 82 the constant in Lemma 4 since 1 + e i ( t )  >> 2exp{- t82}  for large enough t. 

Assume now that v = E t ( z )  and z E Z n is distinct from z I . . . . .  z p. We have to show 

that hv ~> 2 for t >~ t2. But using Lemma 4 we get that 

hv = ]~hig i ~/ ~ 2 e x p { - t ( a i z i  + 82) } e x p { t a i z }  ~ 2. 

In this argument the value of  t2 depends on the particular simplex o- E /C(A). In 

order to complete the proof of  Theorem 3 we must show that a single value suffices for 
all simplices. To see this recall that if o- is the simplex in (6.5), then o'0 = Tzo- is a 

simplex o f / C ( A )  again. It is an easy matter to check now that if t2 is the value given 

by the above argument for o-, then the same value will do for o-0 as well. This means 

that a single value of  t2 suffices for the orbit (under the group T n) of a simplex. By 

Lemma 1 every such orbit contains a simplex with one vertex at the origin. Lemma 2 

implies that there are finitely many simplices in /C(A) containing 0 and consequently, 

finitely many such orbits. [] 

7. Proof of Theorem 1 

Assuming t > to we suppress t from the notation. Theorem 1 gives a geometric 
realization of  ]/C(A)[ as the boundary of  the convex set C in the following way. We 

define a map f :  [/C(A)] ---+ C. Let 

o ' =  {Z 1 . . . . .  z p, w j~ . . . . .  w k }  E I ~ ( A )  

be a simplex with p >~ 1. The abstract mixed combination from (1.3) 

P q 
= ' 

k=t 1=1 

(7.1) 

(which is a point of  the cell Io-I in [/C(A)I) is mapped to 

P q 

f ( x )  = E ' y ( k ) E ( z k )  + E ~ ( j t ) e ( j t ) .  
k=l /=1 

(7.2) 
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One can see easily that f is well defined, i.e., if x belongs to two simplices o f /C (A)  

then the corresponding definitions coincide. Now f : [E(A) I -~ aC is one-to-one by 

Theorem 3. Moreover f is continuous in both directions as one can readily check. Thus 
f is a geometric realization of  ]/~(A)I, and so I/C(A)[ and 3C are homeomorphic. But 
OC is homeomorphic to R m-1 so Theorem 1 follows. [] 

8. Proof of Theorem 4 

Assume again t > to. We need to define an equivariant extension 

E* : I~ (a ) l  ~ o6 

of the exponential map E : /C(A)  --~ 3C, Equivariance here simply means that E* (Tzx) = 
DzE*(x)  for all x E /C(A)  and all z E Z n. 

It is easy to see that f in (7.2) is not equivariant since Dze( j )  = exp{agz}e(j) .  
As E is simplicial on the simplices o- without ideal points, for these simplices the 

extension of  E is the usual simplicial one: for x in (7.1) with q = 0 we have E*(x) = 
~Pk=l Y ( k ) E ( z k )  • For a generic point X E I/C(A)I which is of  the form (7.1) define 

p q p 

E* ( x) = ~ y(  k ) E( z ~) + ~-~ fl(j l)  Z y( k ) exp{aj, zk}e(j t) .  (8.1) 
k=l 1=1 k=l 

It is not difficult to check that E* is equivariant, one-to-one, and continuous in both 

directions. 

Next, we define a map g : OC --~ M which is equivariant with respect to D z, i.e., 

Dzg(y)  = g(Dzy)  for every y E 0C and every z E Z n. Let R(y)  be the ray starting at 

the origin and passing through y and define simply 

g(y)  = M A R(y)  

which is clearly a point in M. g is equivariant since R(Dzy)  = DzR(y )  and M is 
invariant under Dz. We see now that the following diagram 

I/~(Z)l ~ a f  g,  M 

Tz I Dz ~ Dz 

I1C(A) [ e~+ OC g, M 

commutes for every z E Z ~ implying that the quotient space I /C(A)lIT n is homeomor- 
phic to M / D L  

M is homeomorphic to R m - I  and a natural homeomorphism M --* R m - I  is the 

componentwise logarithm of y E M. Write D* for the set of  all m by m diagonal matrices 
whose diagonal entries, dl . . . . .  din, are positive and satisfy lq]nd~ k = 1 (cf. (3.1)) .  D* 

acts on M as the group T* of  all translations acts on R m-l. Dn is a discrete subgroup 

of  D* and the natural isomorphism D* --+ T* (taking componentwise logarithm of the 
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diagonal  entr ies)  maps  Dn onto an n-dimensional  latt ice o f  T*, i somorphic  to Z n. Thus 

the quot ient  space M / D n  is homeomorph i c  to R m - 1 / Z  n proving  the theorem. [] 
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