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A note on exploiting structure when using slack variables 

A. R. Conn, Nick Gould and Ph. L. Toint 

October 15, 1992 

Abstract 

We show how to exploit the structure inherent in the linear algebra for constrained 
nonlinear optimization problems when inequality constraints have been converted to 
equations by adding slack variables. 

1 Introduction 

In this note, we consider solving the problem 

minimize f(x) subject to ly:::; c(x):::; Uy and lx:::; x:::; Ux (1.1) 

by introducing slack variables y to create the equivalent problem 

mmnmze f(x) subject to c(x)- y = 0, ly :::; y:::; ny and lx:::; x :::; Ux. (1.2) 
xE~n, yE~m 

We attempt to solve ( 1.2) by a sequential minimization of the augmented Lagrangian 
ftmction (ALF) 

within a region defined by the simple bounds 

(1.4) 

where the components >.; a.re La.grange multiplier estimates and JL is a positive penalty 
parameter. Notice that we do not include the simple bounds in the ALF. 

For given x and y, we define Lagrange multiplier updates 

:-\ = ,\ + (c(:z:)- y)/Jt (1.5) 

We let g(x) denote the gradient f(x), a;(x) denote the gradient Y'xc;(x), A(x) be the 
Jacobian matrix whose rows are a;(xf and H(.'r,A) = Y'xxf(x) + 2::::~ 1 >.;Y'xxc;(x) be the 
Hessian matrix of the La.gra.ngian function. 

Consider the derivatives of (1.3) with respect to x and y. The gradient is 

(1.6) 
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and an appropriate approximation to the Hessian matrix is 

(1.7) 

where B is a suitable approximation to H(:v, X). 
At the heart of any iterative algorithm to minimize (1.3) (for fixed values of A and 

J1), one normally constructs a quadratic model of the ALF and (approximately) minimizes 
this within the region defined by the simple bounds, and, perhaps, a trust-region, on x and 
y. A simple-minded approach to this - in fact the approach taken within the LANCELOT 
code SBMIN (see Conn et al., 1992b)- is to treat all variables in the same way. Thus 
slack variables are not treated differently from the problem variables x. If there are many 
slack variables relative to the number of problem \·ariables- for instance, as would be the 
case for problems where a parameterized (or semi-infinite) constraint is approximated by 
a large number of representatives at discrete values of the parameter, the linear algebra 
will typically involve matrices of 0( m) + 0( n ). The exact order will be determined by the 
number of free va.riables- i.e., those which lie away from their bounds- at any instant. 
However, if slack variables are handled explicitly, we shall show that the linear algebra 
need only involve matrices of order O(n). 

Throughout this note, we shall use the following notation. Let .M = {1, 2, ···,m} and 
N = {1, 2, · · ·, n}. Then, if 1' is a vecr.or with m components and I~ M, V[I] is the vector 
whose components are v;, i E I. Furthermore. if A is a.n m by n matrix and :J ~ N, 
A[I,.7] is the matrix whose components ;ne .4;.J, i E I, j E J. 

2 The model 

At each iteration of an iterative method to solve ( 1.2) a simplified model of (1.3) will 
typically be (approximately) minimized \Vi thin a region, henceforth called the feasible 
region, defined as the intersection of the simple bounds (1.4) and, perhaps, a trust region. 
It is particularly convenient when the infinity norm is chosen to define the trust-region as 
then the sides of the simple bound '·box" and the trust-region align. We shall be concerned 
with the case when the quadratic model 

'llm(x,y) c~f 'll(x,y,A,fL) + ((x- :rf (y- y)T) ( g(x) +_·1(xf:X ) + 

l((x _ x)T (- _ 7? ( B + T,A(x)TA(a:) -~A(x)Y ) ( x- x ) 
2 . y y ) _.lA.(.1:) .lJ y--y 

~ ~ 

(2.1) 

is chosen to predict improvements .t and y to :r ancl y. This model is, of course, just a 
second-order Taylor series approximation using the approximate Hessian (1.7). 

We allow the possibility that a feasible correction .1: and y for which 'l!m(x, fj) ~ 
'l!m(x,y) has already been computed a.ncl that. we are interested in computing feasible x 
and y for which '11 m ( x, !J) :::; '11 111 ( .1:, :i)l. \Ve refer to ( .1:, f)) as the cm-rent iterate. We note 
that the gradient of the model at the cnnent iterate is 

(2.2) 

where the multiplier estimates ~ satisfy 

' - 1 1 
A= A+ -A(x)(i:- :r)- -(fj- y) 

{i {i 
(2.3) 

2 



and fJ is given by 
g(x) = g(x) + B(x- x). (2.4) 

We also note that the multiplier estimates (2.3) are predictions of the first-order updates 
(1.5) evaluated at the current iterate. 

3 Linear Algebra 

We assume without loss of generality that the first na problem variables, indexed by Ax, 
and the first ma slack variables, indexed by Ay, are active (i.e., lie on one of their bounds) 
at the current iterate. Vle denote the indices of the n f = n- na inactive problem variables 
and m/ = m- m0 inactive slack variables by Ix = N \ Ax and Iy = M\ Ay respectively. 

3.1 Direct methods 

If we are using direct methods, the Newton correction (px, ]Jy) to the iterate ( x, f)) satisfies 

B + lA(x)TA(x) 
Jl 

-~A[Ay ,A,J(x) 
- f.A[Iy .Ax](x) 

I 
0 

_lA (x ·) 
Jt [Ay ,I,J · 

-tA[Iy.I,.J(x) 

0 

0 

(Px )[A,] 

(Px )[Ix] 

(py)[Ay] 

(py)[Iy] 

Ax 
>.y 

.!.I 
Jl 

0 0 

I 0 

Y[A,J(:r) + A.[M,A.,J(x)T~ 
T' 

Y[I,J(x) + A[,\1,I,J(x) >. 

-~[Ay] 
-~[Iy] 

0 

0 

I 
0 

0 

0 

0 

0 

0 
0 

I 
0 

0 
0 

(3.1) 
where Ax and Ay are La.grange multipliers associated with the active variables. Using the 
last two block equations of (3.1) to eliminate the variable 

(3.2) 

and extracting the second and fourth block equations, we obtain 

(3.3) 

vVe may factorize the coefficient matrix of (3.3) to obtain 

(3.4) 
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The importaJlt point here is that when we zero the upper right block of the matrix, this 
also zeros the .4[:r

11
,:r,] terms in its upper left block. Thus we may solve (3.3) by successively 

solving the pah of intermediate equations 

and 

( 
B[I.,,I,] + ~A[A 11 ,I,J(xf A[A11 ,I,j(X) 0 ) ( (Px)[I,) ) 

-A[Iy,Ix](:v) I (py)[I11] 
(3.6) 

The first of these, (3.5), yields that 

(q11 )[Iy] = tt5.[Iv] and (q,.)[I,) = -t'[I,J(:r)- A[A11 ,I.,J(xf.\[A11 ], (3.7) 

where once agajn we see complete cancellation between the A[r
11
,I,] terms in the second 

equation, and both solutions are obtajned \vithout any inversions. Then we can obtmn 
(Px)[I,] from (3.6) by solving 

[B[I,,I.,] + ~-4[A11 ,I.,J(xfA.[Ay.I,J(x)] (PJ·l[:r,] = -(.9[A11 j(x) + .4[A11 ,I.,J(xf.\[A11 J) (3.8) 

and thus recover, again without inversion, (p11 )[:rv] from 

(3.9) 

Hence, the only system of equa.tions that needs an explicit solution, (3.8), requires the fac­
torization of an n f by n f matrix. Note that, if the Newton equations are to correspond to 
the minimizer of a con vex model, one needs to ensure that B[:r.,,:r,)+ ~A[A11 ,r.,j( x f A[A

11
,:r,J( x) 

is positive definite. 
If the Newton step lies outside the feasible region, one can perform a linesearch along 

the piecewise linear path obtained by projecting the arc (x + o:px, y + ap11 ), a 2': 0, back 
into the feasible region (see Bertsekas, 1982 or Conn et al., 1988). Furthermore, additional 
Newton steps may be performed using reduced sets of free variables if so required (see, for 
instance, Conn et al., 1992b. Section 3.2.3 ). 

3.2 Iterative methods 

If we wish to use an iterative method. we merely need to find a. vector (Px )[I,] for which 

(3.10) 

We might achieve this by, for instance, applying a CG truncated-Newton method (see, for 
example, Dembo et al., 1982 or Taint, 1981) to approximately minimize the model 

HPx)fr,J[B[I,,I"] + ~A·[Ay,T,J( xfA[A11 ,T.,J( .?: )j(p,,. l[I,,) + (P:v lfr,J(Y[A 11J(x) + A[A11 ,I,J(xf ).[A11J)· 

(3.11) 
Using such a (p.1,)[I.r)• we use (3.9) to find (p11 )[:rv) · It then follows from (3.2), (3.9) and 
(3.10) that, as 

(3.12) 
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the overall search direction is a descent direction for the ALF from the current iterate. 
Once again, the new iterate may have to be projected back into the feasible box to maintain 
feasibility and, if desired, the CG process can be restarted. As the number of free variables 
strictly decreases each time a restart is undertaken, only a finite number of restarts are 
possible. 

4 Discussion 

A number of the options within the software packa.ge SBMIN require that the matrix {3.4) 
is formed and factorized. This has a number of disadvantages: 

• The matrix is of dimension n f + m f rather than the dimension n f of B[I, ,I.,] + 
~A[.Ay,Ix](xf A[Ay,I.,J(x). \\.Then there are many inequality constraints present, this 
implies that considerable extra work will be performed. 

• When a direct method is used, even if the pivot sequence is chosen to eliminate 
the slack variables fir st , no account is ta.ken of the fact that the Schur complement 
after m! pivots is B[I.., ,I ., ] + ~-4.[A 11 , I.r]( X )T_4.[.Ay ,Ix](x). That is, a.s we have already 

mentioned, there would be exact cancellation of the term ~ A[Iy,I:r]( x f A[Iy,I,J( x) in 
the Schur complement in exact arithmeti c. This is bad as a) the ordering is based on 
a symbolic factorization, which would not. recognize such a cancellation, and b) it is 
likely that there will be "small" rounding numbers in the positions once occupied by 
the lA[I I J( x )TA[I I J(x) term when finite lHecision arithmetic is used. This may tt y, .r . y, ;:r .. 

lead to bad orderings of the variables for the factorization and unnecessary fill-ins. 

• An iterative method will suffer because a ) the work per iteration will be larger, b) 
the spectrum is likely to be stretched as the matrix is biggel' and c) (for what its 
wol'th) a. finite con vergence result. would occur after at most n f + m f rather than n f 
iterations. 

It seems to the authors that the performance of their optimization package LANCELOT 
can be considerably improved if the structure of the slack variables is properly exploited, 
especially when m ~ n. This should improvf> the work per iteration to the sa.me level as 
is possible for methods, such as those based on the sequential minimization of barrier or 
La.grangia.n barrier functions (see, for example, "'right, 1992 or Cmm et al., 1992a), which 
treat inequality constraints directly. 
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