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ABSTRACT

We present a new algorithm for solving a linear least
squares problem with linear constraints. These can be equality
constraint equations and nonnegativity constraints on selected
variables. This problem, while appearing to be quite special,
is the core problem arising in the solution .of the general lin-
early constrained linear least squares ptoblem. The reduction
process of the general problem to the core problem can be done
in many ways. We discuss three such techniques.

The method employed for solving the core problem is based
on combining the equality constraints with ditferentially
weighted least squares equations to form an augmehted least
squares system. This weighted least squares system is solved
with nonnegativity constraints on selected variables.

Seven small examples, including a constrained least squares
curve fitting example, are presented. A reference to user instructions
for subprograms to compute solutions of constrained least squares ﬁroblems

is included.



1. INTRODUCTION

The primary purpose of this paper is to present a new and
numerically stable algorithm for solving the following linearly
constrained linear least squares problem.

Ex
(1) Problem NNLSE  Ax

(equations to be exactly satisfied)

ne
g irh

(equations to be approximately

satisfied, least squares sense)
, i=24+1, ..., n, 0<% <n

A\"
o

X3

The real matrices E and A are of respective dimensions My by

n and my by n. Variables X1, .-.s Xy are free to take on
either sign. ‘

In case the equations Ex =’§ are inconsistent, we take
x = x* 4+ y» where §+ is the minimal length solution of the

~ ~

equations and y is some solution of Ey = 0. The remaining
freedom in y is chosen to minimize the residual vector length
b - Ax subject to the nonnegativity constraints X, 2 0, i > 2.

" The problem that is seen frequently in practical computa-
tions is often stated

Ex = ¢
(2) Problem LSEI Ax = b
Gx > h (inequality constraints that the

solution must satisfy)
where G is an ms by n real matrix.
While Problem LSEI appears to be a more general problem

than Problem NNLSE, it really is not. There are a number of
ways to transform Problem LSEI into one of the form of Problem



NNLSE, Eq. (1). Thus, once the computational capability for
solving the system of Eq. (1) is obtained, the system of Eq.
(2) can be solved, or it can be shown that no solution exists.

FORTRAN language subprograms for solving the problems of Egs. (1) and (2)
are described in Ref. [15].

The remainder of Section 1 is devoted to the discussion of
three methods for reducing Problem LSEI to the core problem,
Problem NNLSE. This material is not essential to the under-
standing of Sections 2-4.

Sections 2 and 3 develop necessary theory and computational
algorithms for solving Problem NNLSE. Section 4 discusses 4
rank deficient constrained curve-fitting problem and six small
problems illustrating the various relations between problem
discussion and rank. '

It is well known that by introducing slack variables Eq.
(2) can be converted to a system of the form of Eqp-(l). To
this end, an mgs-vector w of nonnegative variables is intro-
duced into the inequality constraints of Eq. (2) so that they
become equality constraints Gx - w = h. With the expanded
matrices and vectors ) )




and S - .

' o - x]} n
(3) XxX=|"
, : [YJ‘ ms

we obtain the constrained least squares system

(4) . A

IR A
I
1o

=
\'4

0

The problem of Eq. (4) is of type NNLSE, with the parameters
(mg,my, n, £) of Eq. (1) identified with the dimensions
(mE + Mg, My, N + Mg, n) of Eq. (4).

While this transformation is conceptually straightforward,

- the techniques we present next are often more efficient for
solving Problem LSEI of Eq. (2).

-The important special case°of:Probiem LSEI of Eq. (2) with

S mg < inequalities can be more efficiently transformed di-
rectly to Problem NNLSE. This apparently new development re-
sults in a core problem with about the same number of para-
meters as the original problem. Perhaps the most important
fact about this idea is that the transformations required can
all be computed and stored in essentially the same storage as
that needed for the original data. '

Suppose that G is of rank g < m; < M. As before, intro-
duce the m; slack variables

0 ¢« w = Gx - h

-~ ~

\n



Using ms by m; and n by n orthogonal matrices H and K, com-
pute an orthogonal decomposition of the m, by n matrix G so
that

where T is a g by g lower triéngular nonsingular métrix,
We change variables by letting
x = Ky

Using the matrices for the equaljty constraints and least
squares equations in Eq. (2), we have

iy ng
(s) . Eq E,
'ﬁ'K = A{ Aé.

We also introduce the partitioned vector ‘and matrix

vy |te
y =
) Y2 [t n-8
(6) and '
g ngs
H = [Hi ~;2|



Following theichange of variables for x and the use of the
orthogonal decomposition for G, the equation Gx - h = w becomes

Ty, =H |w+h|

(7) | and

Making these substitutions in the equality constraint and
least squares equations of Eq. (2) leads to the constrained
least squares problem for the n + m; - g vector

x =(y,, wi)T

~ ~

( ~

Bjy, + Epw = f

(8) | { MYz * A =B
w>0

\ o> 0




Some easy algebra and Eqs. (5)-(7) show that the matrices
and vectors of Eq. (8) satisfy

>
—
b1l]

=]
3
)
'
o

m >

n

[ 4z 35
il
P ——

and

b
(o]
1
b
=~
-3

P;]BvAzh

The relative ordering of the yectors Y, and w in the vector g
was chosen so that the problem statement of Eq; (8) would be of
type NNLSE of Eq. (1). This is Problem NNLSE with the para-
meters (mE, My, n, %) of Eq. (1) identified with the dimen-
sions (mE + Mg - g My, N+ Mg - g, N - g) of Eq. (8).



It is easy to see that an L-shaped additional strip of
storage beyond the storage for E and A of Problem LSEI is re-
quired for the problem of Eq. (8). The number of additional

storage locations required is (mg + my +mg - g +n + 1)(mg; - g).

Since we anticipate that g = Mg, Very 11tt1e additional stor-
age (none if g = mG) is requ1red

A third technique for transforming Eq. (2) into a problem
of the type NNLSE is described by Cline in [4]. Briefly, this
method reduces Problem LSEI to

/N
=

k
c e 2
minimize X

(9) Problem LPDP

subject to Gx > h

We have used the same notation for the inequality constraints.
The integer k is determined during the reduction process.

Problem LPDP is solved using a formulation which involves
the solution of two problems of type NNLSE of Eq. (1). Further

4

details are given in [4]

Chapters 20 and 23 of [3] present Algorithm LDP for solving
the special case of Eq. (9) where k = n. In Chapter 23 an
error occurred in the development of the reduction of Problem
LSEI of Eq. (2) to Problem LDP. This development is valid only

in the special case where the matrix IEJ is of full column rank

k = n. Cline in [4] has given a mathematical development for

‘0



solving Problem LPDP of Eq. (9) for all values k €< n. 1In

principle this allows one to solve Problem LSEI for any value

- o . . [ E
of the rank of [A ) .

Numerically stable methods for solving certain cases of the
constrained system of Eq. (2) have also been proposed by Stoer
rd
[1], Golub and Saunders [ 2], and Elden [10].

2. NONNEGATIVITY CONSTRAINTS AND EQUALITY CONSTRAINTS
BY DIFFERENTIAL WEIGHTING

In this section we discuss a mathematical method for solv-
ing Problem NNLSE of Eq. (1) using differential weighting of
the equality constraints and least squares equations. Lemma 4
establishes the convergence of the mathematical algorithm to a
solution of Problem NNLSE, provided one exists.

Problem NNLSE of Eq. (1) has nonnegativity constraints on
variables & + 1,..., n. By eliminating the variables 1, ...,%
it can be reduced to a form where all variables are constrained
to be nonnegative. Thus, to make this section easier for the
reader to understand, we assume that £ = 0 in Eq. (1). How-
ever, in the Algorithm WNNLS described in Section 3, we solve

Problem NNLSE for any 2, 0 € 2 < n.

Our approach to solving Problem NNLSE of Eq. (1) is based
on solving the differentially weighted least squares problem of
Eq. (10). We will show that a solution to Problem WNNLS of
Eq. (10) has a limit as € = 0+. Furthermore, if the set
{x : BEx = £, x > 0} is nonempty, this limit vector is a solu-
tion of Problem NNLSE of Eq. (1). This development and its
proof are summarized in Lemma 4.

10



(10). Problem WNNLS

AX Zb_with [A€:§€]= E: £ |} mg
x>0 | eA i eb|ym,

\"4

where ¢ is a small positive real parameter.

Another way of stating this is that the function to be
minimized in Eq. (10) is

R a1
subject to 5-2'9 ‘

Here the vector norms used are euclidean lengths. Our ap-
proach, therefore, amounts to a penalty function minimization
method that is implemented in a numerically stable way.

In principle, Problem WNNLS, for each € > 0, can be solved
uéing Algorithm NNLS of Lawson and Hanson, Chapter 23, [3]
In practical computations there are other considerations that
must be made when solving Problem WNNLS. These consist of
using weighted euclidean lengths in tests for linear indepen-
dence of column vectors of the problem matrix generated during
the orthogonal decomposition process. We must, in fact, use
the values of<mE, ma and £ to compute this weighted
euclidean norm in the algorithm.

Thus, the mathematical solution of Problem WNNLS of Eq.
(10) is obtained using Algorithm NNLS of [3] . Computational
distinctions are further discussed in Section 3.

In Lemmas 1-4 we show that the solution of Problem WNNLS is
well-defined. in its dependence on the small parameter ¢ > 0.

11



The discussion in these lemmas refers only to the mathematical
description of the algorithms.

In Lemma 1, the statement and proof refer to notation and
discussion of Algorithm NNLS, Chapter 23, loc. cit.

Lemma 1

e

The solution of Ae§ @e, X > 0 obtained using

Algorithm NNLS is a vector ¥ =% » 0 for each €. The set

: €
Zo =41 : x;(e) =0} is fixed for 0.< €< €gs £
sufficiently small.

Proof: ©Each of the choices of indices in steps4 and 7-11
are determined by the sign, min or max of functions that
are meromorphic in the parameter ¢ near ¢ = 0. Once we
agree always tobtake the smallest indexes for the choice of
min or max, it follows by the finite convergence of
Algorithm NNLS and the meromorphicity of the choice
functions, that for some €g > 0, all the indices are

fixed for 0 < e < €. '

Lemma 2

The constrained least squares problem Ay s

n
o

e
A\

0
has a solution Y - This solution has a limit up as ¢ > 0.

Proof: Those components of u. which are positive are a
fixed set for 0 < € < €o> if €0 is sufficiently small.

This follows from Lemma 1. Eliminating those components of
u which are identically zero for all € and reverting to the

12



original notation, we must show that the solution of a
least squares problem

1K

A u =>
€ ~e

without constraints has a limit as € -+ 0.

The matrix Ae has full column rank, by virtue of its

choice in Algorithm NNLS. Now using the methods of Chapter
22, loc. cit., e.g. Eq. .(22.34) and the related
development, we see that U. > yg-as €>0.

Lemma 3

Suppose we consider the two constrained least squares

Broblems

Eu = £ Au = b

Au = b Problem NNLSE Problem WNNLS
u=>0 u >0 -

A solution: u 3 0 A solution: u_> 0;

‘(obtained 'with Algorithm NNLS)

Suppose that Eu = f is consistent for a feasible u; that

is, there exists u > 0 such that EG = f.
Then

and for any € > 0

13
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(b) NBu -£1% + ZnAg_ - i’

for any u > 0

~

(c) NBu_ - £#% ¢ eiAd - b’

(d) A, - bW < wAg - bi?

Proof:

Part (a) Let y = Efﬁ + Y, where Ey = 0 and E'f +y 2 0.

<WEBu - £1% + ¢%jAu - b

~

Here E* is the Moore-Penrose pseudoinverse of E, [3].
Then 0 <« WEJ - £l s I E§ - £ = 0, implies Eu = f.

Part (b) This fpilows from'thé»fact,that u. is the least

squares solution of A u = b

€
in the region u 3 0.

Part (c) Set uy = é»in the right member of the inequality of

(b) and use (a).
Part (d) Similar to proof of
Lemma 4

Assume the same hypothesis as

(c),

Lemma 3, and the same notation.

Then

(a) 1lim u
c>0

It
{=

£ 0 ——

~—~
v
—
tr
-
o
)
tHh

14



(c) WAy, - bl = NAY - bl

Proof:
" Part (a) is Lemma 2.

Part (b) follows from using the bound for IEu - f“z of
Lemma 3, (c) as & > 0: ‘

Part (c) follows by observing that the bound of Lemma 3, (d)
implies that Hi Ay, - bll < WAy - blil. But since y'» Q is

a least squares solution of Au ='b for all u > 0 satisfying
Eu = £, we must have [Ag - bll < Il Aug - bll. These last
ipequalities together show that IlAy, - bll = uAﬁ - bl

This completes the proofé of the lemmas.
Lemma 4 provides the mathematical basié of an algorithm for

sblving Problem WNNLS, and thus solving Problem NNLSE. In com-
puting a solution of Problem NNLSE numerically, the system

A%E = b, (x > 0) of Eq. (10) is solved just once using a suffi-
ciently small positive €. This value of ¢ is chosen by the
algorithm to compute the solution to full working accuracy.

3. THE WNNLS ALGORITHM

In this section we will discuss the overall description of
the numerical algorithm used to solve Problem WNNLS of Eq. (10)
in Section 2. This discussion wi11,include"the;choice of the
small parameter € and the norms used in rank determination.
Because of the complexity of the algorithm, oniy the essential
points are given here.

15



To ease notational problems in this section, we restate the
problem of Eq. (10). The augmented matrix [AE : b ] of Eq.
(10) is written as a new augmented matrix [DA : Db]. Thus, we
define the vector and matrix |

<« =Xt % , Y unconstrained
B L1 B B A A

~ Mg My
D = diag(1l,...,1, €,...,€)

and Problem WNNLS becomes the constrained least squares problem

o

DAX
(11) W

~

Db Ais mby n, m= mg + my
0. |

\"4

We partition the matrix of Eq. (11) as

2 A n-»4%
——

DA E[nAl H DAz]

corresponding to the dimensjons of the vectors y and w.

In the following discussion Algorithm WNNLS will be pre-
sented in a top-down, structured format, In addition to giving
a clear description of the algorithmic steps at the outer level
of detail, the structured algorithm very closely parallels the
actual source code that was used to implement the algorithm.
The notation used below closely follows the description of a
similar algorithm by C. L. Lawson in [6] .

16



Algorithm WNNLS

INITIALIZE-VARIABLES-AND- INITIALLY- TRIANGULARIZE
Until (done) ' ,
COMPUTE- SEARCH-DIRECTION-AND- FEASIBLE-POINT
If (hit-a-constraint) then '
ADD-CONSTRAINTS

Else _ .
PERFORM- KUHN - TUCKER - TEST - AND-DROP-A- CONSTRAINT
COMPUTE-FINAL-SOLUTION

The names in capital letters denote procedure calls. The.
italicized parameters are logical variables manipulated within
the procedures. ' '

We will discuss each of the procedures used by Algovithm
WNNLS in Sections 3.1 - 3.3.

3.1. Initialization, Initial Triangularization and Final
Solution Procedures ' ‘ '

The initial phase of the algorithm performs three main
functions. First, the weight € is chosen. Second, the matrix
DA1 is triangularized. Third, dependent equality constraints

are eliminated.

A We have found any choice of the weight & in the range
(L/n)11 <e<e = n% to be satisfactory. Here L is the
smallest positive machine number and n is the relative machine

precision. The upper bound of n% is motivated by Eq. (22.37),
and the preceding development, of [3]. A weight of at most

n% is needed to achieve full working accuracy in an equality

constrained least squares problem. The lower bound of (L/n)l/2

is to prevent damaging underflows.

17



Using an orthogonal decomposition we initially triangu-
larize the m by & submatrix DAl' Premultiplying transfor-
mations are applied to the remaining columns and right-side
vector. We triangularize DA1 using essentially the Golub-
Businger algorithm with extensions for rank deficiency, [3],
Chapter 14. Givens orthogonal transformations are used to com-
pute the forward triangularization. As in the Golub-Businger
algorithm, column interchanges are performed to maximize the
size of the resulting diagonal term at each major step. When
DA, is rank deficient, Householder orthogonal transformations
are applied from the right to obtain an upper triangular,
square, nonsingular matrix.

Thus, we compute Q, and H, satisfying

k 2:-%

v R, 0
(12) Q(DA,) H{ = \\\;J o [ymg  =f1

0 bm-mg [0 0

Here k is the rank of'DAl. The horizontal dotted 1line in the
middle term of Eq. (12) corresponds to the value of mg. Any
relation can hold between the integer values of %, k, Mg and
m satisfying 0 < k < £ and 0 < mg € m.

When k< Mg, We again use the Golub-Businger algorithm in
the submatrix consisting of rows k + 1, ..., mg and columns
2 +1, ..., n. If any dependent equality constraint equations
are found, they are removed from the problem and mg is re-
duced corresponding to the rank deficiency of this submatrix.
As a result of this step, the equality constraints are linearly
independent when we enter the nonnegativity constraint part of
the algorithm discussed in Section 3.2.

18



During the elimination process we want the weighting of
rows 1, ..., mg and rows mg + 1, ..., m to remain disparate
at cvery step. We eliminate the subdiagonal terms in the non-

zero column j as follows:

: Col. j
row 1 - X
TOW Mg > ).(
row mg + 1 > €

E , 0)
row m - 0

Figure 1. Elimination Order in Column j

The elimination proceeds with row i being '"chased" to

row 1 - 1, i =m, ..., My + 2, using Givens transfor-

mations. Next, the element in the (mE + 1)8¢ row, shown
schematically in Fig. 1, is chased into the row of largest
index, p, which is nonzero, where j < p < mE.‘ Then the elim-
ination of the subdiagonal terms in column j is completed by
chasing row i torow i - 1, i = p, «.v, J + 1. This pivoting-
like step is necessary to avoid mixing weighted and non-

weighted rows.

In the exceptional case where components j, ..., mp are
zero, we express the fact that we have solved for yj in terms
of yj+1, oo Yo and w as a new and additional equality con-
straint. This is accomplished by an interchange of rows

mp + 1 and j and an increase in the value of mE’by 1.

19



In this initial phase of the algorithm the rank of the ma-
trix DA; is determined by declaring column j, j s‘mE, to be
dependent if the euclidean length of components j, ..., m is
insignificant compared to the euclidean length of components
1, ..., j - 1. For j > My wWe use the same criterion but the
weighted euclidean length ID(.)Il. We have used a rather large
tolerance of 10-4 for this test in the FORTRAN subprogram
WNNLS( ) that solves Problem WNNLS of Eq. (11).

Once the vector w > Q0 has been computed using the pro-
cedures discussed in Section 3.2, the final solution is com-
puted. We want to solve the least squares problem

~

DA;y = b - DA,

Using the orthogonal decomposition of Eq. (12) we define
g = Qb - DAZQ)i Then we. compute '

~

(13)  §=H

The final solution of Eq. (11) is given by
] , with corresponding residual vector length

-1 . T
ip~*fo, ..., O, A Sy g ".

This completes the discussion of the essential features of
the first and last subprocedures of Algorithm WNNLS.

20



3.2. Distinctions Between Algorithm WNNLS and Algorithm NNLS

In this section we consider the remaining subproblem of the
Until loop in Algorithm WNNLS where all the variables are con-

strained to be nonnegative. This amounts to solving Problem
WNNLS of Eq. (11) with & = 0. Mathematically, this is Problem
NNLS of [3], Chapter 23. Because of the disparate weighting
matrix D in Problem WNNLS, a number of additional details are
required to successfully implement Algorithm WNNLS. As in Sec-
tion 3.1, most of these considerations are based on maintaining
the disparate weighting of the data matrix at each step of the
computation. |

The algorithm begins with all constraints active, w = 0.
At each iteration a feasible point w > 0 is generated with a
reduction in the length of the residual vector r = D (b - Aw).
When no reduction is possible the flag done is set true.

During the course of the algorithm as constraints are
dropped and added, it is possible for some of the rows
1, ..., mp to become disparately scaled. Suppose there are j
positive components in the solution, corresponding to the first
j columns. Prior to dropping a new nonnegativity constraint,
rows j + 1, ..., mp are tested for disparate scaling. If
such a row is found, it is reclassified as a least squares
equation and the value of mg is reduced.

Each variable which is to enter the solution set must be
positive. As each such variable enters, the orthogonal de-
composition is updated. This amounts to triangularizing a ma-
trix which is already upper triangular except for the last col-
umn, which may be entirely nonzero. The updated triangular
form is obtained using exactly the same chasing procedure de-
scribed for the unconstrained problem in Secton 3.1, Fig. 1.

2l



Recall that this may involve solving for some variables (using
least squares equations) in terms of the remaining variables
and an increase in the value of Mg

The independence of the additional column vector, corre-
sponding to the constraint just dropped, is decided by solving
for wj and removing this constraint only when

0 < Wi < Il'b I /n* and aj; # 0
The idea here is to use solution components that are positive
but '"'not too large." This test was used because it accounts
for the consistency of the right-side vector with respect to
the disparate row scaling of the matrix D of Eq. (11). A test
for independence of this new vector based only on the condition
number of the j columns of the triangularized matrix was found
tc be inappropriate for .our algorithm. This is because of the
disparate row scaling. Nevertheless, the linear systeh has a
well-determined solution because the scaling is consistently
applied to the right-side vector.

At each major step of the algorithm we test to determine if
any solution components are nonpositive. Thus, we see if a
constraint has been hit or violated. If this occurs, an inter-
polation to a feasible point is made. 1If this interpolation
step 1s necessary, at least one column must be removed from the
‘triangularization. The orthogonal decomposition of the non-
active constraints must be retriangularized. In the implemen-
tation of Algorithm NNLS of [3] this redecomposition was
accomplished simply by chasing the subdiagonal elements to the
diagonal of the Hessenberg matrix resulting from removing the
column. The use of Givens ‘transformations is particularly
efficient because of the special structure of the upper
Hessenberg matrix. In the implementation of Algorithm WNNLS



this retriangularization is necessarily more complicated than
in Algorithm NNLS. Again, this is due to the disparate row
scaling shown in Eq. (11). The retriangularization of the
Hessenberg matrix proceeds as in Algorithm NNLS except that we
pivot to avoid mixing of disparately weighted and nonweighted
TOWS ,

Mathematically, when a constraint is hit or violated, the
interpolation performed will always cause a move to a non-
negative point. Numerically, it is possible for one or more
solution components to remain nonpositive. Thus, after a con-
straint has been added, other constraints must be added until
all components are positive. Each such step results in re-
triangularization of a Hessenberg matrix as described above.

3.3. Miscellaneous Algorithmic Details in WNNLS

The premultiplying Givens transformations used are the
modified Givens transformations discussed in (8], [3], and
[7]. This is a natural choice here because of the premul-
tiplying scaling matrix AD, where D appears in Eq. (11). The
modified Givens algorithm updates the square of this matrix at
each elimination step of the WNNLS ( ) subprogram.

In our FORTRAN implementation of Algorithm WNNLS we multi-
plied both sides of Eq. (11) by the large parameter A = e 1,
This mathematically equivalent weighting scheme was chosen
because we anticipate that the majority of uses will have me
small compared to My This reduces the amount of extra work
that must be done for rescaling during the modified Givens

transformations.

Elden [10] has remarked that Stoer's constrained least
squares algorithm [1] includes Algorithm NNLS as a special

23



case. In a strict mathematical sense this is true, at least
for problems of full column rank. (Algorithms NNLS and WNNLS
do not require this full rank assumption). As Elden implies,
there are a number of additional details in the FORTRAN sub-
program NNLS( ) that are included to cope with finite precision
arithmetic. Without such practical considerations the code
would be unreliable. The FORTRAN subprogram WNNLS ( ) imple-
menting Algorithm WNNLS also includes such needed practical
details.

The subprogram WNNLS ( ) is coded using FLECS [9], a struc-
tured FORTRAN preprocessor. In particular, the outer level of
coding detail using FLECS can be stated exactly as the struc-
tured outline of Algorithm WNNLS given at the first of this

section. '

In addition to the use of FLECS, the use of the BLAS [8]
further assists in modularizing the code. '

4. ILLUSTRATIVE EXAMPLES

In this section we give examples that are intended to show
that the new algorithm presented for solving constrained least
squares problems has wider applications than existing
algorithms. These sample problems can also be used to aid
those doing future algorithmic development on constrained least
squares problems.

4.1. A Rank Deficient Constrained Curve Fitting Example

Here we present an example of fitting data points (xi,yi),

i=1,..., 7, by a piecewise cubic function parameterized using
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hermite cubics, [13]. Due to additional problem-related infor-
mation, the curve is to be convex downward, nonincreasing and
nonnegative. This leads to a constrained least squares problem
that is underdetermined and rank deficient.

We used piecewise cubics because the convexity can be
achieved by a linear constraint. We used the hermite cubic
basis functions rather than de Boor's B-splines, [14], because
of their simplicity. The particular choice of breakpoints
shown in Table 1 makes no claim to being optimal in any sense.
The rank deficiency comes from the fact that iantervals 3, 4 and
5 have, in total, only one data pointl Fewer intervals would
avoid this particular difficulty.

Data Data Nodes of
i Independent Variable Dependent Variable the Hermite
Values, xj Values, yj Cubics
1 0.2066 0.1510 0.2066
2 0.2762 0.1410 1.2050
3 0.4367 0.1250 3.1380
4 0.7407 0.1030 5.0710
5 0.5848 0.0970 8.9360
6 2.4390 0.0500 16.6670
7 16.6670 0.0140 } --

Table 1. Discrete Data and Piecewise Cubic Nodes

In order to constrain the piecewise continuous second
derivative to be nonnegative globally it is necessary and suf-
ficient to constrain it to be nonnegative at the left and right
limits at nodes 2, 3, 4, 5 and at the right for node 1 and at
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the left for node €. A nonpositive constraint for the first
derivative and a nonnegative constraint for the function at
node 6 guarantee that the fitted curve has the desired shape.

This leads to a linear constrained least squares problem
of the form

’ 'T
Ax =b , A7x12> 13=ly,-.--,y T
1 7]

Gx> h -, Giz2x12> h =0

where fi is the piecewise polynomial function value and f{
is its derivative value at node i.

We used an orthogonal decomposition of the matrix A based
on the subprogram HFTI( ), [ 3], to reduce the problem to one of
type LPDP of Eq. (9). A tolerance of 10" N A Il was used in
the rank test, and the pseudorarnk of A was computed as G by
HFTI( ) using that value.

Constrained Solution Residual Vector
o Vector , Length /v7
i £y i = R.M.S. error
1 0.01514 -0.1626
2 0.0875 -0.0248 4.76 x 10-3
3 0.0389 -0.0247 :
4 0.0140 0.0
5 0.0140 0.0
6 0.0140 0.0

Table 2. Values of the Constrained Curve and its Decrivative
the Nodes
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For purposes of comparison we plotted the piecewise her-
mite cubics obtained without constraints. This corresponds to
the solution of minimal iéngth to Ax = b. The R.M.S. error
3 about half the
R.M.S. error as in the constrained case. The graph of this
curve is shown in Figure 2. Using the coefficients resulting
from the constrained least squares problem found in Table 2, we
have the graph of Figure 3.

with the unconstrained curve is 2.49 x 10
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In Figures 2 and 3 the interior vertical lines mark the
nodes shown in Table 1. The 7 data points are marked with an
"x." Nctice that the dependent variable scales are different
from Figure 2 to Figure 3.

Without any additional information there is no reason to
prefer the curve of Figure 3 to the curve of Figure 2. But
with the requirement that the curve '"have the same shape as the
data" (or, more precisely, be convex downward, decreasing and
nonnegative), the constrained least squares formulation is nec-
essary and the constrained solution satisfies these require-
ments.

4.2 Examples Formulated Using Slack Variables

In [3], p. 3, there it a rough breakdown of an m hy n
least squares problem Ax = b of rank k into six cases.

Case a Case b
1 m = n = rank (A) k = rank (A )<m = n
2 k=n«<m k< n<m
3 k =m< n k <m<n

Table 3. Various Relations Possible Between m, n, and
~k = rank (A).

In (3.22) - (3.27) of [3] there are six matrices illustrating
l,a, 2.a, 3.a, 1.b, 2.b, and 3.b, respectively. The last three
cases are classified as rank deficient by Algorithn HFTI, [ 3],
using a tolerance T = 10'4HAH. These provide us with a set

of test problems for each of the six categories of Table 3.

The right-side vector b used in all cases was the m-vector
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[1,..., 1]T. Each of the systems was scaled by the constant
104 so that all of the data in the matrices could be input as
integers.

To generate inequality constraints the unconstrained solu-
tion of minimal length, x, determined using Algorithm HFTI,
[3] , was used, together with the 6 by 6 matrix 104Q using Q
of (3.26), [3]. The six-vector h' = (first n columns of
10%Q)x

- Gx was computed. Then we defined the right-side
vector o

= i

of the constraints by

h,. = h

2i-1 2i-1 1=

hy. = hyy - 10071, i=1, 2,3

Thus the constrained least squares problem formulated
~using six slack variables as in Eqgs. (3)-(4) will have a solu-
tion (xT, wDT = (T, 0, 1, 0, 10, 0, 100)T. In the

sample cases 3.a, 1.b, 2.b, and 3.b we cannot expect our
algorithm to obtain that solution, however. This is due to the
fact that the solution (with w > Q) is not uniquely determined
'in those cases which are rank deficient. However, the residual
‘vector length will be minimized at the solution obtained.

Tables 4-9 show the results obtained using Algorithm
WNNLS described in Section 3. These tables show that w > 0 and
that the residual vector length is acceptably minimized.
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1 -3.21200 1. x 10-9
2 -0.07557 1.000

3 3.52600 0.

4 -- 10.000

5 -- 2. x 10-9
6 -- 100.000

I(Residual Vector Length HFTI) - (Residual
Vector Length WNNLS)| =

2.

x 10-11

Table 4. Sample Case l.a m~=n =k = 3
i

1 -9.077 x 10-3 0.4639

2 0.35880 1.4990

3 0.49770 0.

4 0.61560 10.8900

5 0.27320 0.

6 -- 100.1000
I(Res1dua1 Vector Length HFTI) - (Residual

Vector Length WNNLS)| = 3. x 10-3

Table 5. Sample Case 1.b m =n =5, k =
F 2

1 1.77000 0.

2 0.34940 1.0000

3 -- 0.

4 - 10.000

5 -- 0.

6 -- 100.0000

|(Residual Vector Length IIFTI) - (Residual
Vector Length WNNLS)| =

Table 6.

Sample Case 2.a

0.
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B X w
1 0.04648 ’ 0.
2 0.34270 4 0.3611
3 0.51270 : 0.
4 0.58510 8.4270
5 0.29040 1.9730
6 99.5100

| (Residual Vector Length HFTI) - (Residual
Vector Length WNNLS)| = 3. x 10-°

Table 7. Sample Case 2.b m =6, n =5, k =3

. — _ -
i X W
1 -1.34700 5. x 10-190
2 3.16200 1.0000
3 0.30450 0.
4 -- 10.0000
5 -- 6. x 10-10
" 6 -- 100.0000

| (Residual Vector Length HFTI) - (Regidual

Vector Length WNNLS)| = 2. x 10-1
- Tablev8.' Sample Case 3.a m =2, n =3, k =2

i X W

1 0.44080 0.

2 0.04467 0.9417

3 1.26000 0.0585

4 0.04087 . ‘ 10.0200

5 -0.18260 0.

6 -- 99.9500

| (Residual Vector Length HFTI) - (Residual
Vector Length WNNLS)| = 2. x 10-6

Table 9. Sample Case 3.b m=4,n=5, k =3



3k

[2]

[3]

(4]

(5]

[6]

[7]

[9]

(10]

I11]

[12]

BIBLIOGRAPHY

Joseph Stoer, '"On the Numerical Solution of Con-
strained Least Squares Problems,'" SIAM J. Numer.
Anal., 8, No. 2, (1971), 382-411.

G. H. Golub and Michael A. Saunders, '"Linear
Least Squares and Quadratic Programming," Integer
and Nonlinear Programming, II, J. Abadie (€d.7,
North-Holland Publ. Co. ‘r1970) 229-256.

C. L. Lawson and R. J. Hanson, Solving Least
Squares Problems, Prentice-Hall ![971%.
Alan Cline, "The Transformation of a Quadratic

Programming Problem into Solvable Form," ICASE
Report No. 75-14, August. 1975.

P. Wolfe, "Finding the Nearest Point in a Poly-
tope," Math. Prog. 11, No. 2 (1976), 128-149,

C. L. Lawson, '"On the Discovery and Description
of Mathematical Programming Algorithms," Lecture
Notes in Mathematics, Vol. 506, A. Dold, B. Eck-
mann (eds.), sSpringerVerlag (1976), 157-165.

M. Gentleman, "Least Squares Computations by
Givens Transformations without Square Roots," J.
Inst. Maths. Applics., 12, (1973), 329-336.

C. L. Lawson, R. J.. Hanson, D. R. Kincaid, F. T.
Krogh, "Basic Linear Algebra Subprograms for FOR-
TRAN Usage," Trans. Math. Software %to appear).

T. Beyer, "FLECS--FORTRAN Language with Extended
Control Structures. User's Manual,'" University
of Oregon Computing Center, Eugene, OR, September

- 1974.

Lars Elden, '"Numerical Analysis of Regularization
and Constrained Least Squares Methods,'" Part V,
Linkoping Studies in Science and Technology, Dis-
sertations. No. 21, LiTH-MAT-R-1977-20, 1977,

C. L. Lawson, '"'The Covariance Matrix for the So-
lution Vector of an Equality-Constrained Least-
Squares Problem," Jet Propulsion Laboratory,
Tech. Memo. 33-807, December 1976.

R. J. Hanson, '"Selected Algorithms for Least
Squares Computations - A User's Guide,' SAND77-
1090, February 1978.



[13] G. Strang and G. Fix, An Analysis of the Finite

Element Method, Prentice-Hall (1573), p. 50.

(14 ] Carl de Boor, "Package for Calculating with B-
, Splines," SIAM J. Numer. Anal., 14, No. 3,
(1977), 441-472. -

(15] Haskell, K. H., Hanson, R, J., "Selected Algorithms for
the Linearly Constrained Least Squares Problem - A User's
Guide," SAND78-1290.

KH:0443A:3jc:06/17/78

35



Distribution:

J. A. Wisniewski
528 Schroeder Ave., Apt. 1
Peotone, IL 60468

Dept..

of Computer Science

Report Section

Royal Institute of Technology
5-100 Lk

Stockholm 70, SWEDEN

1116
1223
1223
1223
1223
2600
2610
2613
2613
2613
2613
2613
2613
2613
2613
2613
2614
26k40
4231
L4231
L4410
Lh10
4410
h732
5532
5600

5640
5641
5641
5641
5641
56L2
5642
5642
5642
5642

36

Plimpton
Easterling
. Hall

Iman
Prairie
Hollingsworth
Detry '
. Aronson

. Bertram

. Ghiglia
Marder
Haskell (25)
E. Jones

R. Scott
Vandevender

A. Watts

R. Tacoletti
L. Tischhauser
Biggs

. J. McDaniel

K. Cole

L. Daniel

W

C

S

. Fravier
. Bartel

OrrodnE D 20RO RIC Y HIHT G

D. B. Shuster

Attn: 5610 A. A. Lieber
5620 M. M. Newsom
5630 R. C. Maydew
Simmons

Davis

Morgan

Steck

Thompson

Amos

Hanson (25)

Hiebert

. Hulne

Shampine

CEROwWOQaQmG
£l e I BN o R, o I R

8322
8325
8325
8325
8325
8325
8327
8326
3141
3151

J. Kee

E. Chang

. E. Huddleston
H. Jefferson
A. Manteuffel

C

F. Lathrop

A, A, Aas

T. L. Werner (5)

W. L. Garner (3) :
For DOE/TIC (Unlim. Release)

3172-3 R. Campbell (25)

For DOE/TIC



Org. Blidg. Name Rec'd by * | Org. Bldg. Name Rec'd by *

* Recipient must initial on classified documents.





