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The definition of random polytope adopted in this paper restricts consideration to those 
probability measures satisfying two properties. First, the measure must induce an absolutely 
continuous distribution over the positions of the bounding hyperplanes of the random 
polytope; and second, it must result in every point in the space being equally as likely as any 
other point of lying within the random polytope. An efficient Monte Carlo method for their 
computer generation is presented together with analytical formulas characterizing their 
aggregate properties. In particular, it is shown that the expected number of extreme points for 
such random polytopes increases monotonically in the number of constraints to the limiting 
case of a polytope topologically equivalent to a hypercube. The implied upper bound of 2 ~ 
where n is the dimensionality of the space is significantly less than McMullen's attainable 
bound on the maximal number of vertices even for a moderate number of constraints. 
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Polytope Properties. 

1. I n t roduc t i on  

W e  cons ide r ,  in this  pape r ,  the  p r o b l e m  of  gene ra t ing  and c h a r a c t e r i z i n g  

r a n d o m  feas ib le  reg ions  of  l inea r ly  c o n s t r a i n e d  m a t h e m a t i c a l  p r o g r a m s .  In  

pa r t i cu la r ,  a large  c lass  of  such  r a n d o m  feas ib l e  r eg ions  (or c o n v e x  p o l y t o p e s )  is 

o p e r a t i o n a l l y  def ined,  eff icient  M o n t e  Car lo  p r o c e d u r e s  for  the i r  g e n e r a t i o n  are  

d i s cus sed ,  and  ana ly t i ca l  f o r m u l a s  c h a r a c t e r i z i n g  the i r  aggrega te  p r o p e r t i e s  a re  

p r e s e n t e d .  

The  m o t i v a t i o n  for  this  s tudy  is two- fo ld .  F i r s t ,  wi th  the  i nc r ea s ing  pro l i -  

f e r a t i on  of  new and c o m p e t i n g  m a t h e m a t i c a l  p r o g r a m m i n g  a lgo r i thms ,  s o u n d  

p r o c e d u r e s  for  the i r  c o m p a r a t i v e  t e s t ing  have  t a k e n  on  new i m p o r t a n c e .  M a n y  

of  t he se  eva lua t i on  s c h e m e s  re ly  on the  resu l t s  of  a p p l y i n g  the  a lgo r i t hms  to a 

ser ies  of  r a n d o m l y  g e n e r a t e d  t es t  p r o b l e m s .  T h e r e  is c o n c e r n ,  h o w e v e r ,  a b o u t  

b i a se s  tha t  m a y  be  i n a d v e r t e n t l y  c r e a t e d  b y  an unc r i t i ca l  i n t r o d u c t i o n  of  ran-  

d o m n e s s  [7]. The  e m p h a s i s  he re  is on the  t e rm i n a d v e r t a n t ,  s ince  spec ia l  

s t ruc tu re  c o n s i s t e n t  wi th  the  c lass  of  rea l  wor ld  p r o b l e m s  be ing  s imu la t ed  is 
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welcome, and, indeed, necessary. We introduce here extremely efficient pro- 
cedures that generate geometrically unbiased feasible regions. Controlled special 
structure may then be induced through standard rejection techniques. Second, 
turning to the observed performance with real world problems of mathematical 
programming algorithms in general and the simplex method in particular, it 
remains to this day an open question as to why they perform so well [10]. As 
Liebling [18] has remarked,  one can view this performance as the result of a vast  
simulation provided by real world testing. The success of the simplex algorithm 
in particular is remarkable for  the following reason. Klee and Minty [14] 
demonstrated that the simplex method may at times search every extreme point 
of the polytope of feasible solutions before arriving at the optimum. Moreover ,  
McMullen [20] has shown that the maximal number of extreme points that a 
convex polytope may attain is equal to that of the class of cyclic polytopes, and 
this number grows exponentially in the size of the problem. These results, and 
others, have led to speculation that real world convex polytopes must be much 
better behaved, on the average. The mean number of extreme points for the 
class of random polytopes considered in this paper is supportive of this con- 
jecture. In particular, we show that the expected number of vertices is bounded 
from above by 2 n for any number of constraints, where n is the dimensionality 
of the problem. 

The general class of random polytopes considered in this paper is defined in 
Section 2. We make it as general as possible, with any special characteristics 
being motivated by geometric notions of randomness. Section 3 discusses an 
efficient Monte Carlo procedure for the generation of random polytopes. Their  
aggregate properties are demonstrated in Section 4. In particular, explicit analy- 
tical formulas are derived for the expected number of vertices, edges, facets,  
etc. These results are essentially distribution free. In Section 5, we propose a 
special class of random polytopes that are defined to be those whose random 
properties are preserved under Euclidean transformations. Their generation 
leads to a choice of distribution that is geometrically random. 

2. A definition for random polytopes 

An operational definition of random polytopes is employed in this section to 
indirectly define the class or population of random polytopes to be considered. 
More precisely, we restrict the allowable distributions in the Monte Carlo 
generation of random polytopes. 

As mentioned in the Introduction, a general convex polytope [25], hereafter  
referred to as a po ly tope ,  ~ is the intersection of a finite number of closed 

What we have referred to as a polytope is more conventionally termed a polyhedral set [12]. The 
term polytope is usually reserved for bounded polyhedral sets. 
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half-spaces .  Algebraical ly ,  P C_R" is a po ly tope ,  if and only  if it can  be 

represen ted  by  

P = { x ~ R " : a i . x < ~ b i ,  a i E R n ,  b i E R ,  i = 1 , 2  . . . . .  m}. 

N o t e  tha t  P m a y  be unbounded .  

In  order  to define the not ion of  a r a n d o m  poly tope ,  we first need  to 
parameter ize  the class o f  all po ly topes .  This could  be done  via (a  ~, b~), i = 1, 

2 . . . . .  m. H o w e v e r ,  this parameter iza t ion  is no t  one- to -one  since (ka  ~, kbi), i = 1, 

2 . . . . .  m, fo r  all k > 0, refers  to the same poly tope .  We  need  our  paramete r iza t ion  

to be one- to -one  in Sect ion 4, and so we adopt  the one- to -one  paramete r iza t ion  

s = ((pl, il), (p2, i2) . . . . .  (pro, ira)) E S = (R" × {0, 1}) m 

cor respond ing  to 

P = {x E R~: pJ -  x  llpql 2, pJ ~ R ", j = 1, 2 . . . . .  m} 

where  the sense o f  the j th  inequali ty is - - f o r  ij. = 0 and -> for  i t = t. Geomet r i c -  

ally, pJ is the foo t  of  the perpendicular  f rom the origin to the j th  cons t ra in ing  
hyperp lane  (Fig. 1). 

The r andom po ly topes  being cons idered  m a y  now be defined by  imposing a 

mult ivariate  probabi l i ty  distr ibution F over  the pa ramete r  space  S. It  is clear  
that  some  s ~ S co r r e spond  to empty  po ly topes  (e.g., s = ((p 1, 0), (p2, 0), (p3, 1)) 

in Fig. 1). To rule out  these pathological  cases ,  we define F as the condi t ional  
probabi l i ty  distr ibution over  S given that  the po ly tope  genera ted  by  the prob-  

ability distr ibution F0 over  S is non-empty .  The  proper t ies  we assume for  F0 
and,  by  implication,  fo r  F are s tated below.  2 

0 

/ 

Fig. 1 

2 Letting g be the set of all s E S corresponding to feasible polytopes, F assigns zero measure to 
any set in S - S. Restricting F to g and considering any event E C_ S, we get F(E) = kFo(E) where 
k = liFo(g). 
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Assumptions on the generating probability distribution Fo 
(a) The multivariate distribution over p =(p l ,  p2 . . . . .  pm) ERmn is absolutely 

continuous with respect to Lebesgue measure. 
(b) The multivariate distribution over (it, i: . . . . .  ira) ~ {0, 1} m is given by P(ij = 

1 0) = P(ij = 1) = ~ independently 3 for all j = 1, 2 . . . . .  m and independently of p. 

Assumption (a) is motivated by the need to rule out degeneracy and other 
exceptional alignments of constraining hyperplanes. The polytopes generated 
are, in fact, with probability one so-called simple polytopes, i.e., polytopes 
whose vertices are formed by exactly n facets [12]. This is a necessary 
assumption for the analysis in Section 4, where the aggregate properties of these 
polytopes are investigated. The effect of this assumption is to also, with 
probability one, rule out sparsity and integer constraint coefficients. Assumption 
(b) in the presence of assumption (a) is equivalent to assumption (b'): 

(b') Every point is equally as likely as any other point of lying in the random 
polytope generated. 

To deny (b) in the presence of (a) necessarily leads to a procedure for 
selecting regions that is biased towards (or against) those regions covering 
exceptional points (e.g., the origin). Procedures for generating random test 
problems often force feasibility of the origin to assure non-emptiness of the 
region generated. For the class of simple product mix problems this is justified 
and necessary on conceptual grounds. On the other hand, for the class of diet 
problems, for example, the origin should, with probability one, be excluded. We 
view the class of random problems defined by assumptions (a), (b) as an 
aggregate class, subsuming these and other special subclasses. There is, accord- 
ingly, no reason to favor or disfavor some points over others. 

The equivalence of (b) and (b') is seen by conditioning on a realized 
configuration of the hyperplanes corresponding to pl, p2 . . . . .  p,n. Let x0 be any 
point. Then we want the probability that x0 lies in the region selected by the 
choice of il, i2 . . . . .  im given that the region is non-empty. But this is simply k(½) m 
by assumption (b), where k is one over the probability that the region generated 
by F0 is non-empty. The reverse implication is argued similarly. 

An important corollary of the above analysis is that for a particular realized 
configuration of hyperplanes, each polytope so created is equally likely to be 
selected. This follows from choosing a representative interior point of each 
polytope and noting that each point is equally likely to lie in the polytope 
generated. Hence assumption (b) amounts to a simple random selection of a 
polytope from the population of realized polytopes. 

3 i l ,  i2, . . . ,  im are dependent under the induced distribution F since, under F, the polytope generated 
is necessarily non-empty. 
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3. Efficient generation of random polytopes 

An operational definition of the class of random polytopes considered in this 
paper was given in the last section. We turn now to designing an efficient Monte 
Carlo procedure for their generation for a fixed F0 and hence F. 

A direct implementation of the definition of Section 2 would be the following 
iterative procedure. First, generate p l, p2 . . . . .  pm according to the multivariate 
distribution induced by F. Second, generate m uniform [0, 1] random variables 
ul, u2 . . . . .  um and if uj ~ [0, ½) select -< for constraint j and otherwise select - .  
Third, determine whether the resulting polytope is non-empty. If so, we are done 
and if not, return to the second step. 

Unfortunately, the procedure is not practical. First, Step 3 requires an effort 
equivalent to solving a linear program of m constraints in R n. Second, the 
expected number of iterations through Step 3 required to attain a non-empty 
region grows exponentially in the number of constraints m. For example, for 100 
lines in the plane, the expected number of iterations 4 is in the order of 1026. 

We could avoid the computational difficulties of generating a feasible polytope 
altogether by forcing feasibility through a selection of -< for all constraints. Such 
a procedure does not, however, represent a simple random selection from the 
regions generated and therefore violates our definition of a randomly generated 
polytope. This is not a minor point, because a choice of the region covering the 
origin biases the choice toward larger regions in an effect similar to the 
inspection paradox of renewal theory [9]. A more sophisticated approach would 
be to attempt to prune the tree of inequality choices. This can also introduce 
subtle biases in region selection. For example, in a depth first search where a 
node is fathomed if it corresponds to an infeasible partial selection of constraint 
directions, the ultimate selection is biased toward those regions bounded by 
constraints forming early branches of the tree. 

The algorithm we propose for region selection is based on an assignment of 
vertices of the partition to regions so that corresponding to each region is a 
unique vertex. A simple random selection of a vertex, which is easily ac- 
complished, then corresponds to a simple random selection of a region. 

We first enclose all vertices of the partition in a hypercube (see Fig. 2). The 
intersection of the interior of the hypercube and the partition then forms a 
collection of bounded regions corresponding in a one-to-one fashion with the 
original regions of the partition. The assignment of vertices to these bounded 
regions proceeds by randomly generating a hyperplane H0 which is successively 
passed through vertices of the larger partition that includes the 2n bounding 
hyperplanes. The region associated with a given vertex is then that unique region 
lying wholly within a fixed half-space of H0 (see [19] for a proof that this region 

4The expected number of iterations is, in general, given by ((~=0(~"))/2") -~. The result follows 
from the fact that ~'-0(?) represents the number of regions created (see Section 4). 
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Fig. 2 

is unique with probability one). It is clear that each of the bounded regions is 
with probability one assigned one and only one such vertex since every bounded 
linear program whose constraints are in general intersection has a unique optimal 
extreme point solution with H0 representing the objective function. 

The procedure then is to randomly generate a set of m hyperplanes H1, 
H2, ..., Hm and enclose all vertices so formed with 2n hypercube constraints. 
Next pass a randomly generated hyperplane /40 through a vertex V simply 
randomly selected from the set of all vertices formed by the m + 2n hyperplanes 
and identify the unique bounded polytope lying in a fixed half-space of H0. If 
that polytope lies within the enclosing hypercube, accept it and the correspond- 
ing original polytope. If it lies outside, reject it and repeat the procedure with 
another simply randomly chosen vertex V. In contrast to the other procedures 
discussed, the probability of being successful on any given iteration converges to 
one as the number of hyperplanes m grows large. 

The following formal statement of the procedure includes a constructive 
algorithm for identifying the unique region that lies in the fixed half-space of H0. 
This is a non-trivial problem, since the determination of each inequality direction 
is dependent on the joint configuration of all of the hyperplanes passing through 
V. 

Monte Carlo procedure for the generation of random polytopes 
(1) Simply randomly select without replacement any n of the m + 2n constraints 

indexed il, i2 . . . . .  i, and let B = [pi,, . . . ,  p,°]T and set V = B-'[llp',ll 2... liP'.l]2] T. 
Note: B -1 exists with probability one. 
(2) Randomly select c E R" and let the corresponding hyperplane H0 pass 

through V, i.e., cTx = cTV. 
(3) The unique bounded polytope Pc lying in the half-space cTx >_ cTV is then 

given by the following assignment of inequalities: Let  y* = cTB 1. Then the 
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ijth inequality is -> if y ~ > 0  and -< if y~<0 .  Set the directions of all 
inequalities of hyperplanes not passing through V to make V feasible. 

N o t e :  y~ = 0 will with probability one not occur. 
(4) If Pc lies wholly within the enclosing hypercube, accept it and remove the 

hypercube constraints. Otherwise, reject it and return to (1). 

Step (3) is justified by the following argument. By construction, V is optimal 
for the linear program 

minimize c T x ,  

subject to (p  iOXx +-- sj = Ilp'~ll J -- 1, 2 . . . . .  n, 

sj ----- 0, 

where the _+ sign in front of sj is understood to be chosen so that the resulting 
feasible region is the polytope Pc. By the Strong Duality theorem, there exists an 
optimal solution y* to the dual program: 

n 

maximize ~ Up i~112 yJ, 

subject to BTy = c, 

--+ yj----0, j = l , 2  . . . . .  n. 

In particular, y*= B - T c  must be dual feasible. This condition determines the 
signs of the slacks si in the primal problem and hence the inequality directions as 
in Step (3). 

4. Aggregate properties of random polytopes 

Aggregate properties, such as the expected number of vertices, for the class of 
random polytopes we consider are of interest for at least two reasons. First, 
prior to a possible use of rejection filters to introduce special structure and 
thereby complex constraint dependencies, most random mathematical pro- 
~ramming test problem generators fall within our definition for some implied 
distribution F. Aggregate properties of the feasible regions so generated can help 
explain and even predict algorithm performance on test problems. Second, to the 
extent that our class of random polytopes mimics the statistical characteristics 
of real world problems, we may be able to gain insight into the observed 
behavior of algorithms on real world problems. We may also begin to understand 
why the simplex method performs so phenomenally well. 

Renyi and Sulanke [24] and Efron [8] derived formulas for the expected 
number of vertices of convex hulls of random points in R 2 and R 3. Cover and 
Efron [6] and Carnal [3] generalized these results to n-dimensions in the 
asymptotic case where the number of points increases without bound. The 
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results are not distribution-free. Moreover ,  they are not directly applicable to 
our case, since the process of forming a convex hull induces dependencies 
among the constraints; in fact, the faces of the polytopes so generated are, with 
probability one, simplices. Liebling [18] indirectly utilized these results in a dual 
framework,  where points correspond to hyperplane constraints, to establish 
formulas for  the expected number of vert ices for  random polytopes so induced 
under various special distributions for generating the parametric point set 
(uncorrelated multivariate normals and so on). Unfortunately,  the dual frame- 
work used forced a selection of the polytope covering the origin, and the mean 
number of vertices is therefore not only distribution dependent  but peculiar to a 
biased polytope selection. Schmidt and Mattheiss [27, 28] performed extensive 
simulation studies on aggregate properties of random polytopes under various 
distributional assumptions, but, again, the polytopes generated were chosen to 
cover the origin. Finally, Goudsmidt  [11] and Miles [21] considered aggregate 
properties of random polygons and polyhedra in R 2 and R 3, respectively, as the 
number of lines and planes dividing space increased without bound. They  found 
that the average polygon, for example, was a quadralateral. Our results general- 
ize these asymptotic properties to n dimensions and, moreover ,  give aggregate 
properties for an arbitrary number of dividing hyperplanes. 

We now turn to deriving a formula for the expected number of k-dimensional 
faces of a random polytope in R" whose generating distribution F0 satisfies the 
assumptions of Section 2. The expected number of k-dimensional faces Ek(m) is 
shown to be dependent  only on the dimension of the face k considered and the 
number of constraints m. The result is, in this sense, distribution-free. Note that 
for  k = 0 we get the expected number of vertices, for k = 1 the expected number 
of edges, for k = n - 1  the expected number of facets,  and for k = n  the 
expected number of non-empty polytopes. 5 

Theorem 1. The expected number of  k-dimensional faces Ek(m) of  a random 

polytope in R n generated by m constraints in accordance with assumptions (a), 
(b) is given by 

m n 

where k = O, 1, 2 . . . . .  n and m > n. Moreover, Ek(m)--< (D2 n-k for  all m > n and 
limm-~ Ek(m) = (D2 n-k. 

Proof. We observed in Section 3 that assumption (b) leads to a simple random 
selection of a polytope from the population of polytopes formed by the m 

5 It has come to the authors' attention (July 1981) that S.E. Berenguer has independently stated and 
proven the results in Theorems 1 and 2 below in his unpublished Ph.D. Thesis, "Randomly generated 
linear programs", University of California, Berkeley, CA Oune 1978). These results and others are 
summarized in I. Ader and S.E. Berenguer, "Random linear programs", ORC Report 81-4, University 
of California, Berekeley, CA (March 1981). 
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hyperplanes partitioning R". Hence the expected number of k-dimensional faces 
is the average number of k-dimensional faces in the population. Now each 
k-dimensional face of the partition is determined by n -  k hyperplanes all 
passing through a common point and in general intersection with probability one 
by assumption (a). Hence each k-dimensional face is shared by exactly 2 "-k 
polytopes of the partition with probability one. Let X~(k) be the number of 
k-dimensional faces in the ith polytope of the partition where i = l, 2 . . . . .  N, and 
let fk be the number of k-dimensional faces in the partition. Then 

N 

Ek(m)  = ~ X i ( k ) / N  = 2"-kfk/N. 

But it is elementary that for partitions formed by m hyperplanes in R" in general 
= Q-k)(i ) regardless of the particular configuration (see intersection, fk ~,~=,-k i m 

Buck [2]). Hence 

n r n  

since f ,  = N, the number of polytopes in the partition. As for the limiting result, 
the numerator is of the order ,-k , ,1 2 (,-k)(,) for large m while the denominator is of 
the order (~). Their ratio then converges to 2" k(,'_'D. The convergence is from 
below since term by term 

( ~  ( m ;  , ) ) ( n  l_ ~ ) ( ? )  ~ ( ~  ° ( 7 ) ) ( n  ' - k ) ¢  ;~ ' )  

for each I = n - k, n - k + 1 . . . . .  n, with strict inequality holding for at least the 
n m + l  n m term with l =  n -  k. Dividing through by (~j=0( i ))(~i~0(i)) and summing on i 

from n - k  through n, we get 

i = n  k - -  k = n  k - -  J 

or Ek(m)  <-- Ek(m + l) and the result follows inductively. 

The bound on the expected number of k-dimensional faces in Theorem l 
suggests that the worst average case for a random polytope is monotonically 
approached as the number of constraints grows large. This case is topologically 
equivalent to an n-dimensional hypercube. In particular, the average number of 
vertices for randomly generated feasible regions is bounded from above by 2". 
This is dramatically less than the theoretically attainable upper bound for the 
number of vertices of a convex polytope of m constraints Vmax where: 

"max: (m -.* -.÷ 
with Ix] the greatest integer less than or equal to x (see McMullen [20]). To give 
a numerical illustration, consider the case of n = 7 and m = 19 constraints (Table 
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Table 1. Means and bounds for random 
polytopes 

n m Eo(m) 2" Vm~x (~) 

7 19 68.48 128 910 50,388 

1). The average number of vertices is an order of magnitude less than the 
maximal number. This suggests, for example, that complete enumeration of 
extreme points for fairly large linearly constrained problems is not com- 
putational unreasonable. Incidentally, the fact that the average number of 
vertices converges to 2" as the number of constraining hyperplanes goes to 
infinity can be seen directly. We established in Section 2 a one-to-one cor- 
respondence between the vertices of a partition and a subset of the regions 
within it. In the limit, the correspondence is over all regions. Since each vertex is 
shared by exactly 2" regions, the result follows immediately. 

One of the more promising ways of reducing the computational complexity of 
large scale mathematical programs is to delete redundant constraints prior to the 
search for an optimum. The resulting reduction in size of the system of linear 
inequalities can significantly reduce subsequent computational effort. The fol- 
lowing theorem indicates that for the class of randomly generated feasible 
regions we consider, the improvement in efficiency gained by this approach can 
be expected to increase significantly as the size of the problem increases. That 
is, the proportion of redundant constraints increases quite rapidly in the number 
of constraints m. 

Theorem 2. Let P in R" be a random linearly constrained feasible region 
generated by m constraints in accordance with assumptions (a), (b). 

(a) The probability 7r,~ that a constraint is redundant is given by 

7rm 1 (2"~1 m - 1  ~ m = 

and 
lim 7rm = 1. 
r n  - - ~  

(b) The expected number of non-redundant constraints C.(m) is given by 

i 

Moreover, 

lira C.(m) = 2n. 
m ~  
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Proof. (a) We want the probability that a randomly chosen constraint is redun- 
dant in a randomly selected polytope. Considering the complementary event,  and 
reversing the natural order of selection, we may view the problem in the 
following way. First, tag a randomly selected constraint, then determine the 
probability that a randomly selected region is bounded by that constraint. The 
number of regions bordered by a given constraint is twice the number of new 
regions created in adding that constraint. But the number of regions created by 
adding the ruth constraint is the number of regions the ruth hyperplane is 
divided into by its intersection with the m - 1 hyperplanes already in place. But 
this is nothing more than the number of regions an (n - 1)-dimensional space is 
partitioned into by m - 1  (n -2 ) -d imens iona l  hyperplanes;  that is, f,_l = 
E n-l l 'm-1 ~ i=0~ i ~- Twice this number divided by the number of regions formed in R" by 
the m constraints is then the probability that the randomly selected constraint is 
non-redundant and the result follows. As for the limiting result, 1 - ~rm for large 

2( . -1) / ( . )  which converges to 0 as m ~oo. m is given by m 1 m 

(b) Let  Z be the number of non-redundant constraints for a randomly 
generated feasible region P and let Z~ = 0 or 1 as constraint i is redundant  or 
non-redundant for P. Then 

rn 

C , ( m )  = E Z  = E ~_, Zi = mEZi  = m(1 - 1rm) 
i=]= 

and the first result follows. The limiting result follows from the fact that 
C , ( m )  ~2m(~211)/(~) which converges to 2n as m ~o~. 

5. The class of Euclidean random polytopes 

We have until now purposely left the class of random polytopes considered as 
general as possible. This maximizes the range of real world problems and 
randomly generated test problems that fall within our classification. Turning now 
from the descriptive point of view to the normative,  although the procedure for 
deciding constraint inequality directions is specific, the distribution F governing 
the positions of the hyperplanes has until now been assumed continuous but 
otherwise arbitrary. 

From the standpoint of generating test problems, F should clearly be chosen 
to agree closely with the distribution exhibited by the class of real world 
problems for which the algorithm tested will ultimately be applied. The difficulty 
is that very little is known about the distribution of real world problems. The 
approach often then used may be described as the generation of hyperplane 
positions in as unbiased a way as possible followed by a filter that rejects all 
sampled feasible regions that fail to satisfy various structural properties that the 
real world problem class is known to possess. Our focus in this section is on how 
to choose F so that the candidate population of feasible regions generated is 
'unbiased'. 
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In the absence of any structural information,  we interpret  bias as (Euclidean) 

geometr ic  bias and our search is then for a distribution F that is geometrical ly 
random. For example ,  the likelihood of obtaining a plane nearly orthogonal  to 
the x~-axis should be the same as that of a plane nearly orthogonal to the xz-axis 
(rotational symmetry) .  Also, the likelihood of the plane being near the origin 
should be the same as the likelihood of it being one unit away (translational 
symmetry) .  In short, all hyperplane positions and orientations should be equally 
likely. This proper ty  of space homogenei ty  may be more  generally expressed in 
the following way: The probability of  all geometrically equivalent events 6 should 

be the same. We can rephrase this definition of being geometrically random for  
the parameter  space as follows. 

Definition. A random hyperplane parameter ized by p will be said to be Eucli- 

dean random if the probabili ty measure  M generating p is invariant under 
t ransformations of the parameter  space induced by Euclidean t ransformations of 
the solution space. 

Various authors have already noted the importance of requiring the dis- 
tribution over  p to be rotation symmetr ic  (see, e.g., Liebling [18], Schmidt  and 
Mattheiss [27], Van Dam and Telgen [7]). In addition, Van Dam and Telgen [7] 
noted the significant geometr ic  regularity induced by an uncritical introduction 
of randomness  such as choosing the constraint  coefficients independently and 
uniformly over  the interval [0, 1] as many  mathemat ical  programming test 
generators  do (see, e.g., [1, 4, 16, 17, 29]). However ,  to our knowledge, no one 
has noted in this context  the equally important  requirement  of translational 
symmetry .  For example,  selecting p uniformly within a hypersphere  has rota- 
tional symmet ry  but fails to have translational symmetry .  

The following theorem explicitly character izes a probabil i ty density function 
that is invariant under translations and rotations. The theorem is a generalization 
to n dimensions of a result p roven  for n = 2 and 3 by Kendall  and Moran [13]. 

Incidentally, Poincar6 [22] and Polya  [23] showed that the Euclidean invariant 
measure  is unique for the case n = 2 and 3. 

Theorem 3. The density funct ion f ( p )  = 1/llPl[ n- '  defined over B = 

{P :IlPll - 1} C_ R n induces a probability measure M ( E )  = f E f ( P )  dp for  measur- 
able E C_ B that is invariant under transformations induced by Euclidean trans- 

formations of  the solution space. 

Proof. Since any Euclidean t ransformat ion can be expressed  as the composi t ion 
of a rotat ion and a translation, it sufficies to consider them separately. Le t  S be a 

6 An event in our context is a (measurable) collection of hyperptanes in solution space R n. Two events 
are geometrically equivalent if there is a rotation and translation of the solution space that makes one set 
of hyperplanes coincide with the other. 
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rotat ion or translation of hyperplanes  in R" and let E'= T(E) be the image of 
E C B under the invertible t ransformat ion T in paramete r  space induced by S. 

We want  f (p )  such that M(E')= M(E). But M ( E ' ) =  f~ . f (p ' )]J~(p)[  dp by the 
change of variable theorem where 

O(p{, ._,p') 
JT(P) = det O(pl, ,p,) 

is the Jacobian of T and p ' =  T(p).  Hence  we require f(p) to be such that 

fEf(P) dp =.fEf(P ' ) I /T(p) I  dp for  all measureable  sets E. Then we must  have  
I (p ) - - I (p ' )  IJT(p)I or, equivalently, we get the following necessary  and sufficient 

condition o n / ( p ) :  

I(P) _ Jr(p). 
I(P') 

(Rotations) Since a rotation in solution space induces a rotation in paramete r  
space,  p ' =  Tp, where T is orthogonal.  Then 

f ~  = ] l ~ n _  l = i l p l l n ~  1 = [[TII = 1 = JT(P) .  

(Translations) Lett ing the translated x '=x  + c ,  we find that the new p ' =  
(1 + cTp/llpll~))p, s o  t h a t  

a(pl, p~ ..... p~)_ 
It(p) = o(m, p2 ..... p,) 

l + UP[IZ[cTp +_c lp j ] -  2 ( c Z p ) p  2 IIpll:c2pL- 2 ( c Z p ) p , p :  . . .  [Ip[l~c.pl- 2 ( c r p ) p l p .  

IlpU 4 ilpU' llpll' 
IIPlI2c'P:- 2 ( c T p ) P ' P 2  1 + IIP[IZ[cTp -[- C2p2]- 2 (cTp)p]  . . .  Ilpll:c.p2-- 2(cTp)pap.  

ILv LI' lip Ir ILp 11" 

llpil2c,p. - 2 ( c T p ) p , p .  IIpl1202p° -- 2(cTp)p2p, ,  Ilvll~[dp + c .p . ]  - 2 ( cTp)p  2 . 
Ilplr LI~¢ . - .  1 + UplI' 

S u b t r a c t i n g  (PilPi+l) t imes row i +  1 f rom row i for i =  1, 2 . . . . .  n - 1 ,  and 
factoring k = 1 + (cTp]IIpII 2) out of  the first n - 1 rows yields 

k n i 

1 - P ~  0 . . .  0 
P2 

0 1 - P ~  ' 0 
P3 

0 0 1 . . .  0 
: - . 

Pn 1 0 0 0 . . .  
P. 

IlPil2c'P" - 2(cTp)P'P" IIP[12c2p" -- 2(cTp)P2P" IIPII2c3p" -- 2(cTp)P3P . . . .  1 + IIPII:[cTp ÷ c.pnl -- 2(cTp)p~ 
lip 114 lip II ~ llp IP lip 11' 
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Expanding by the last row gives 

IJT(p)I = kn I[IIPlI2c'P'- 2(cTp)p~+ IlPll2czP2- 2(cTp)p~ + "'" 
L Ilpll' Ilpll' 
Ilpll2[cTp + c.p.] - 2(cTp )p ~ ] + 1 + 

IIP]] 4 J 

lipii ~ + 
1 + cTp ,-1 = IIp'll "-1 _ f ( p )  

= ~ Ilpll"-' f (p')  

so that the measure is preserved. 

Theorem 3 characterizes the probability distribution that describes Euclidean 
random hyperplanes. The next theorem spells out a Monte Carlo procedure for 
generating hyperplanes that satisfy such a distribution. 

Theorem 4. A Euclidean random hyperplane parameterized by p meeting the unit 
hypersphere B can be obtained by selecting the direction d of p as a point 
uniformly distributed on B and independently and uniformly selecting its length r 
along the line segment in B in the direction d. 

Proof. Since any measurable set E can be represented as a countable union of 
differences of cones, it suffices to show that the theorem is true for a cone E, 
with vertex at the origin and which is spanned by a finite set of vectors. 

Let  e~, e2 . . . . .  e, be unit vectors along the edges of the cone E. Let  

D =  d i d =  Xiei, x->0, I l x l l = l ,  
= 

the set of feasible directions of unit length within E. For d ~ D, let r (d )=  
max{r I r > 0, rd E E}. Note that the length chosen along d is just Ilpll, so that, by 
a result in [5], we can change to a spherical coordinate system determined by d 
and r to get 

r(d) r(d) 

M ( E ) =  f  dp= f f 1 rn_ l d ( d ) d r =  f f d(d)dr .  
E D 0 D 0 

Hence the joint density f(r, d) = 1 for all r and d. Now the conditional density 
f ( r  I d) = f(r,  d)[f(d)  = 1 since f (d )  = f01 f(r, d) dr  = 1. The conditional and 
marginal densities being constant, the result follows. 

The Monte Carlo procedure outlined in Theorem 4 requires a random deviate 
uniformly distributed on the unit sphere (i.e., a random direction). A number of 
efficient techniques for  its generation exist, the simplest of which is to generate n 
independent normal random variables and divide by their norm (see Knuth [15]). 
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6. Conclusions 

In  this paper ,  we dealt  with three issues.  Firs t ,  g iven a mul t ivar ia te  d i s t r ibu t ion  

sat isfying cer ta in  general  a s sumpt ions ,  how does one  r a n d o m l y  select  a po ly tope  

f rom the regions fo rmed  by  the genera ted  mat r ix?  We  showed that  such a 

select ion could be accompl i shed  in an efficient m a n n e r  by  us ing a p rocedure  

exploi t ing cer ta in  pr imal-dual  re la t ionships .  Second,  we examined  s u m m a r y  

measures  for r a n d o m  poly topes ,  and showed that  the average  po ly tope  exhibi ts  

the character is t ics  of an n - d i m e n s i o n a l  hype rcube .  This  me a ns  that ,  on  the 

average,  the n u m b e r  of ver t ices  of a poly tope  is subs tan t ia l ly  less than  is g iven 

by  M c M u l l e n ' s  a t ta inable  upper  bound ,  and may  help expla in  the o f t en  obse rved  

real-life efficiency of the Simplex  algori thm. Third,  we showed how to choose  a 

mul t ivar ia te  d is t r ibut ion  so as to genera te  po ly topes  that  sat isfy  geometr ic  

no t ions  of r a n d o m n e s s .  These  no t ions  rule out ,  for  example ,  us ing  the un i fo rm 

dis t r ibut ion,  and require  a dens i ty  exhib i t ing  both  ro ta t ional  and  t rans la t iona l  

invar iance .  
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