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1. Introduction
We shall be concerned here with the classical nonlinear complementarity problem

2, 3, 4, 10] of finding an = in the n-dimensional real space R" such that
(1.1) F(z)20, 20, zF(z) =0 (NCP)

where F:R™ — R"™. An obviously related constrained minimization problem is the

following
(1.2) mxin {:EF(:E)IF(:B) >0, z =0} (MP)

It is evident that the NCP is solvable if and only if the MP has a solution with a zero
minimum value. Because of the special structure of MP, at a solution & such that
ZF(Z) = 0,  plays the role of a multiplier for the constraints F(z) 2 0, while F(Z)
plays a similar role for the constraints # 2 0. This is most easily seen if we assume
that F' is monotone (an assumption that will not be made in general for this paper,
but only in Section 4). Thus, the following Kuhn-Tucker saddlepoint condition for MP
with @ = Z and o = F(Z)
ZF(z) — uF(z) — vi £ TF(%) — uF(z) — 9% £ ¢F(z) — uF(z) — Uz

(3) Y(u,v) € R® x R%, Vz € R

follows directly from ZF(Z) = 0 and the monotonicity of F. The fact that the pair
(i, F(:i)) can be used as an optimal multiplier for MP, was first observed for the
monotone differentiable case by Cottle [2, Chapter IV, Theorem 4] and Cottle and
Dantzig [4, Theorem 1] to show that every constraint-qualification-satisfying local so-
lution of MP (which incidentally is not a convex program, since neither its objective is
convex nor the constraint function F(z) is concave) is a global solution of (1.2) with
a minimum value of zero and hence solves NCP. Motivated by this fact we were led to

investigating an augmented Lagrangian formulation [19, 14, 1] for MP

(1.4) L(z,u,v,a): = zF(z)+ -.‘Zla— (H (—a.F(a:)+u)+|l2 — “u“2 + “ (—a$+v)+ H2 - Hv“z)

where the norm is the 2-norm and (z)+ denotes (z+)i =max {#;,0}, 1 =1,...,n. With

u replaced by ¢ and v by F(z) this led to the following unusual but very interesting
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implicit Lagrangian function

Mz, =P (o) + 5 (I(-aF(@) +2), I = el

(1.5) , ,
+ |[(~az + F(2)), |* - |F @)

Tt turns that this function is nonnegative on R™ X (1,00), and is zero if and only if z
is a solution of the NCP without regard to whether F' is monotone or not (Theorem
2.1 below). If F is differentiable on R, then so is M(-, ), and its gradient vanishes
at all solutions of NCP for @ > 1 (Corollary 2.2). Furthermore, at nondegenerate
solution points of NCP at which the gradients of the active constraints are linearly
independent, M(z,a) has a locally unique global minimum solution (Theorem 2.3). In
a neighborhood of such points locally superlinearly convergent Newton Methods [5] can
be applied (Remark 2.4). We note that in a similar vein, Di Pillo and Grippo [6, 7]
solved for the multipliers in terms of the original variables of a constrained optimization
problem to obtain exact penalty functions.

The paper is organized as follows. In Section 2 we establish the above results for
the implicit Lagrangian M(z,«). In Section 3 we point out three other functions which
also have zeros or unconstrained minima at solutions of NCP. One function P(z,a)
(see (3.1)) is simply an asymptotic exterior penalty which merely has zeros at such
points but not necessarily minimum points. Another function E(z,a) (see (3.2)) is an
exact penalty, which, however, is nondifferentiable and is valid only for monotone F.
The third is a simple function Q(z,a) (see (3.3)) based on the residuals of the NCP.
Numerical comparisons of these three functions are made with M (z,a) on a simple one-
dimensional nonmonotone complementarity problem and appear to favor M (z,a). In
Section 4 we state a Wolfe dual (4.1) to MP (1.2) and derive most of the standard duality
results, Theorems 4.2-4.4, for it under monotonicity and differentiability assumptions.
It is interesting to note that these duality results, which in general require convexity
of the primal problem, hold here despite the fact that MP (1.2) may have a nonconvex
objective function and a nonconvex feasible region. Section 5 contains some concluding
remarks and some open questions.

We describe our notation now and some concepts employed in the paper. For

a row or column vector z in the n-dimensional space R™ with components z;, ¢ =
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1,...,n, z+ will denote the orthogonal projection on the nonnegative orthant R%, that

is (w+)i:= max {z;, 0}, ¢ = 1,...,n. The norm H . “ will denote the 2-norm (a:w)lz‘
Other norms will be subscripted such as Hx”oozz 1rél_a,<x lmzl and ”m“l = Z 1m,| A
== i=1

function F: R® — R" is said to be monotone on R™ if
(1.6) (y —z)(F(y) — F(z)) 2 0, Vz,y in R"

The slightly unusual, but convenient, notation F (z)~! will denote (F(z)7!), =
Fi(z)™, i = 1,...,n. If F is differentiable at =z, then VF(z) denotes the n x n Ja-

cobian matrix, with rows VFi(z), ¢ = 1,...,n, where VFi(z) is the 1 X n gradient

vector (6167;(33)’ , ag;(m)), and VF(z)T will denote the transpose of VF(z). For
1 n

an m X n matrix A, A; denotes the ith row, i = 1,...,m. For M(z,a):R* x R —
~ (0M(z,q) OM(z,a) 0 (P M(z, @)\ ..

R,VM(z,a): = ( o Ban ) and V:M(z,a):= ( 52101 ), i, =

1,...,n. For L(z,u,v): R XR"XR" — R,V L(z,u,v):= (BL(;;?’U),.. - 8.1)(;:;:,1)))

0?2 L(z,u,v)

and Vo L(z,u,v): = ( ) i,j =1,...,n For f:X C R* — R, argmin f(2)

0z;0z;

denotes the set of minimizers of f(z) in X. The identity matrix of any order will be
denoted by I. If JU K is a partition of {1,...,n}, then Fj(z): = Fiej(z), Fr(z):=
Ficx(z),VF(z):= VFicj(z) and Iy:= Licy.

Finally, we note that by elementary arguments (just consider the individual cases

—aFy(z) +z; 2 0 and —aFi(z) + 2; <0 separately, etc.) we have for a > 0 that

(1.7) F(z)20,z20,zF(z) =0z = (—aF(z)+ a:)+ & F(z) = (~az + F(a:))Jr



2. Properties of the Implicit Lagrangian M(z,«a)
We first establish nonnegativity of the implicit Lagrangian M(z,«) and show that
it vanishes only at solution points of the NCP. For convenience in the proofs we decom-

pose M(z,a) as follows

(2.1a) M(z,a) = Z Mi(z,a)
where
(2.16) Mi(z,a): = o:Fi(z) + -é% (aFi@) +2:)% - o7 + (~azi + Fi(@), - Fi(o))

We state and prove our first principal result.

2.1 Theorem The implicit Lagrangian M(z,a) defined in (1.5) is nonnegative on
R"™ x (1,00). For a € (1,00), M(z,a) vanishes if and only if z solves the NCP (1.1).

Proof Let z € R*, a € (1,00) and let Fj:= Fj(z). Consider four cases:

Case 1: —aF;+2;20,~az; +F; 20
It follows that
z; 2 aF; 2 a’z; and F; 2 az; 2 a’F;

Since a? > 1 we have that z; £ 0 and F; £ 0 and hence from (2.1b)

(2.2)
2aM;(z,a) = 2az;F; + (a*F} — 2az;F; + 2}) — z} + (a?s? — 2aa;F; + F?) — F}

=a2F2+a w — 2az;: F;
= (aF; — az;)’ + 2a(a — 1)z;F; 20

Case 2: —aF;+z;20,—az; +F; <0
(2.3) 2aM;(z,a) = (a® —1)F? 20
Case 3: —aF;+z; <0,—az; + F; 20

(2.4) 2aM;i(z,a) = (a® —1)z? 20

Case 4: —aF;+z; <0,—az; + F; <0



It follows that
z; < aF; < aza:i and F; < az; < azFi

Since a? > 1 we have that z; > 0 and F; > 0 and hence

2 2 2 .2 2
293,-—-:1:,--Fi —ﬂfi—“Fi

(2.5) 2aM;(z, @) = 2az; F;—a; — F} 2 < > 2 |2} -F?[ 20

2 2 2 2 2
2Fi _xi_Fi _"Fi —:Z:i

n
Since these four cases exhaust all possibilities it follows that M(z,a) = Z M;(z,a) is
=1

nonnegative on R™ x (1,00).

Suppose now that & solves NCP (1.1) and let o € (0,00). Hence by (1.7)
(2.6) tF(z) =0, = (—aF(z)+ a:)+, F(z) = (—az + F(a:))+

It immediately follows that M(z,a) = 0 for such z and « € (0,00). This establishes
the “if” part of the theorem. We now establish the “only if” part.
Suppose now that M(z,a) = 0 for some z € R and a € (1,00). It follows from

the four cases above, since M;(z,a) 20, ¢ =1,...,n, that
(2.7) Mi(z,a)=0,i=1,...,n

We again look at four cases 1',2',3' and 4' corresponding to the four cases 1, 2, 3, 4

above.

Case 1': It follows from z; £ 0, F; £0, (2.2), a > 1 and M;(z,a) =0, that F; = z;
and z;F; = 0. Hence z; = F; = 0.

Case 2' : It follows from (2.3), « > 1 and M;(z,a) = 0 that
F,=0, z; >0

Case 3': It follows from (2.4), « > 1 and M;(z,a) = 0, that
z; =0, F; >0

Case 4' : It follows from (2.5) and M;(z,«) = 0, that z? = F?. Since z; > 0 and
F. > 0 we also get that z; = F;. Using all these facts in (2.5) again we get that
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z; = F; = 0 which contradicts the assumption of Case 4 that —aF; + z; < 0. Hence
this case is vacuous when M(z,a) =0 and o > 1.

Combining the outcomes of Cases 1',2' and 3' we have that = solves NCP (1.1)
and the theorem is established. O

Theorem 2.1 establishes a one-to-one correspondence between solutions of the NCP
(1.1) and global unconstrained minima of the implicit Lagrangian (1.5), all of which are
zero in value. Note that no monotonicity or differentiability of F' was assumed here.
However, M(z, ) is differentiable if Fi(z) is differentiable. We thus obtain the following

immediate consequence of Theorem 2.1.

2.2 Corollary If F is differentiable at a solution z of NCP (1.1), then VM(Z,a) =0
for a € (1,00).

In fact, Corollary 2.2 holds for a € [0,00) as can be easily seen by evaluating
VM(z,a) (see (2.9) below) and noting by (1.7) and a > 0 that & = (—aF(z)+ £)+
and F(z) = (—aZ + F(8)),.

We now establish the local uniqueness of global minimum solutions of M(z,a) at
all nondegenerate solutions of the NCP at which the active constraints have linearly

independent gradients.

2.3 Theorem Let # be a nondegenerate solution of NCP (1.1), that is  + F(z) > 0,
let F' be twice differentiable at #, and let {VF(z)jer, Ire k} be linearly independent,

where
(2.8) J:= {j|Fj(@) = 0}, K:= {k|zx = 0}.

Then M(Z,a) =0 and 7 is a locally unique global minimum solution of M(z,a) for

a € (1, oo).

Proof By Theorem 2.1, M(Z,a) = 0 and 7 is a global minimum solution of M(z, ) for
a € (1,00). We shall establish that Z is a strict local minimum solution by showing that
V2M(Z, o) is positive definite. Note that nondegeneracy (or strict complementarity) is

used only to enable us to evaluate the Hessian of M(z,«) at z. We first evaluate the
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gradient of M(z,a) at .

aVM(z,a) = a(F(z) + VF(@)8) + (~aVFE)T +I)(-aF(z) +1), - F
+ (—al + VF(E)T) (~az + F(z)) . — VF(2)"F(z)
= (~aVF(&)T +1) ((——aF(E) +3), - a:)

+ (—al + VF(z)T) ((—a:f +F(z)), F(f))

(2.9)

In order to evaluate the Hessian, Note the following as a consequence of nondegeneracy:

(2.100) V(-aF(z)+2), = —aVFéf) + IJZ‘
- Vomt Fo), = | ur orye

Utilizing (2.10) in differentiating (2.9) and noting that & = (—aF(z)+Z), and F(z) =
(—az + F(:E))+ for a > 0 we have,
aVEIM(Z,a) = (—aVE@)] +I7)(—aVF)(z) + 1) + aVF(E)T -1

+ (—al} + VFx(2)T) (—alk + VFg(3)) + aVF(Z) - VF(z)TVF(z)
= o?VF(Z)IVF(z) — aVF(@) 51— alTVF(2) + 1715 + aVF(@E)TT
— I+ a2ILIx — aILVF(z) — aVF(z) Ik + VFi ()T VFK(Z)
+ aIVF(z) — VF(z)TVF(z)
= (o = 1)(VF(z2)'VFs(z) + IkIK)

Hence
1 Fy(z
(2.11) VIM(%,0) = (a — -&) (VFs(z)T IE) (V [J (‘”))
Ig
Since @ > 1 and <VFIJ(x)> is nonsingular, it follows that VZM(Z,a) is positive
K
definite and Z is a strict local minimum solution of M(z, ). a

2.4 Remark Under the assumptions of Theorem 2.3, and if VF(z) is continuous in a

neighborhood of Z, then the Newton method:
(2.12) VM(z},a) + V2 M(2}, a)(a" —2') =0
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is well defined in a neighborhood of a nondegenerate solution # and converges super-

linearly to Z [18, Theorem 8.1.10].

We turn our attention now to other possible functions that may also have minima

or zeros at solution points of NCP.



3. Other Unconstrained Minimization Equivalents of NCP
We consider now the following functions that can also be related to NCP (1.1)

through unconstrained minimization or through their zeros:

(3.1) P(z,a):= zF(z) + % “(—F(:v), —$)+l|2
(3.2) E(z,0):= aF(z) + a|/(-F(z), —z), ||,
(3.3) Q(z,a):= (mF(:l:))2 +a ]I(—F(m), --a:)+||2

P(z,q) is an exterior penalty function [8] for MP (1.2) and as such will not have a
global minimum at solutions of the NCP, but its global minimum solutions will approach
NCP solutions as a tends to infinity. In fact, for & > 0 we can summarize the properties
of P(z,a) as follows:

(3.4a) T solves NCP == P(Z,a)=0

(3.4b) " 4= VP(z,a) =0

(3.4¢) " 4= T € arg zrg% P(z,a)

(3.4d) " 4= P(Z,a) =0

In view of the failed implications (3.4b) - (3.4d), P(z,a) does not appear as an attractive
unconstrained minimization reformulation of NCP. Some of these shortcomings can
be alleviated by considering the exact penalty function [9] E(z,a), which has global
minima of zero at solutions of NCP, provided F is monotone and a is sufficiently large

as can be seen from the following simple result.

3.1 Theorem Let F(z) be monotone on R™ and let # solve NCP (1.1). Then Z €
arg min E(z,a) for a 2 a:= ||z, F(z)| -
Proof For any z in R® and a 2 a:= ||z, F(z)|.-
E(z,a) = 2F(z) = —iF (%) (Since z solves NCP)
< zF(z) — iF(z) —zF(z)  (By monotonicity of F)
< oF(z) + 5(-F(@), + F@)(-o)r  (Since z < (2)4)
< zF(z) + ||z, F@@)|, - ||(-F(z), -=) ||,  (By Cauchy-Schwarz)
< E(z,a)



Note that the monotonicity of F' plays a key role in the above theorem, which is unlike
the situation with M(z,a) where no monotonicity is required. Furthermore, E(z,a)
is not differentiable. We summarize the properties of E(z,a) below:

(3.5a) i solves NCP = E(Z,a) =0

(3.5b) " = T € arg zrrelgﬁ E(z,a) for o 2 @, F: monotone

(3.5¢) " 4= E(z,a)=0.

Finally we consider an obvious function which minimizes the residuals of NCP (1.1),
that is Q(z,a). The motivation behind considering Q(z,a) is to obtain a function,
besides M(z,a), for which there is a one-to-one correspondence between its zeros and
solutions of NCP. In fact, Q(z,a) has many of the desirable properties of M (z,a),
except that it tends to grow faster than M(z,a) because of the somewhat artificial
squaring of the objective zF(z). To get a feel of the magnitude of difference between
Q(z,a) and M(z,a), as well as the other functions E(z,a) and P(z, a) we compared

them on the following simple one-dimensional nonmonotone problem.
3.2 Example F(z) = (z —1)2 20, z 2 0, z(z — 1)* = 0. Solution points: 0, 1.

Figures la to 1d depict M(z,2), P(z,10), E(z,2), and Q(z,2) respectively. The
penalty parameter a for P(z,a) was taken to be 10, large enough for P(z,a) to have
a local minimum close enough to zero and to have another zero value on the negative
z-axis close to zero. No essential changes in the other plots result in taking larger
values of a. Figure la depicts two zeros of the function M(z,2) at the two solution
points 0 and 1 of Example 3.2, while Figure 1b depicts all the failed implications of
(3.4): nonvanishing of the derivative at the solution point z = 0 of Example 3.2, the
solution point z = 0 of Example 3.2 not being even a local minimum point, and the
zero at = = —0.381966 not being a solution of Example 3.2. P(z,10), however, does
have zeros at both solution points 0 and 1 as asserted in implication (3.4a). Figure
1c shows similar shortcomings for E(z,2) as well as its nondifferentiability at « = 0.
Figure 1d depicts Q(z,2) which exhibits similar characteristics to M (z,2), however, it
grows more steeply over the same interval and thus appears considerably flatter than
M(z,2) over the interval [0,1]. What is probably most interesting to compare are the
two functions M(z,2) and Q(z,2) over a slightly larger interval. This is done in Figures

2a and 2d. Both functions appear flat over [0,1] because of the increase in the range of
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the functions, but what is most striking is the actual range of the two functions over the
interval [-10, 10]. The function M(z,2) = 100 on this interval whereas Q(z,2) exceeds
10% on the same interval. This is likely to cause computational difficulties if Q(z,a)
were minimized to solve the NCP (1.1). Figures 2b and 2c indicate that both P(z,10)
and E(z,2) tend to —o0 as z tends to —oo, which would again be computationally
unstable.

The purpose of these comparisons of the four functions on this very simple example
is not to make sweeping generalizations, but to point out the possible shortenings of some
of these functions. These comparisons together with the results contained in Section
2, regarding the implicit Lagrangian M (z,a), make this function a worthy candidate
for further study both in error bound analysis (as in [16, 17], for example) and the

computational algorithms for solving the nonlinear complementarity problem.
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4. A Dual to the Monotone Nonlinear Complementarity Problem

In this section we shall relate the monotone NCP (1.1) with differentiable F(z) to
the following Wolfe dual [20,13] of MP (1.2).
(4.1)

max {~uF(z) - 2VF(z) (¢ — u)|F(z) + VF(z)"(z —u) 20, w20}  (DP)

It is somewhat curious that the standard duality results [13] go through despite the
fact that neither the objective function zF(z) of MP (1.2) is convex in general under
the monotonicity assumption on F(z), nor is the feasible region of the same problem
necessarily convex. These duality results depend critically on the monotonicity of F' and
the structure of MP (1.2) and makes use of Cottle’s theorem [2, 4] which was referred
to in Section 1. We state below Cottle’s theorem in a slightly modified form and give

its simple proof for completeness.

4.1 Theorem (Cottle [2, Chapter IV, Theorem 4], Cottle-Dantzig [4, Theorem 1]) Let
F(z) be differentiable and monotone on some open set containing R7. If the point

(z,@,0) satisfies the Karush-Kuhn-Tucker conditions for MP (1.2)

(4.2) F(z) + VF(z)T(z —a)-0v=0,F(%)20,aF(z) = 0,1 >0,220,02=0,520
(KKT)

then Z solves the NCP (1.1). Conversely if Z solves the NCP (1.1), then (7, @ =

z, v = F(z)) satisfy KKT conditions (4.2).

Proof If (4.2) hold then premultiplying the first equality by (Z — @) and utilizing

aF(z) =0, 02 = 0 gives

0= (z—-0)F(z)+(z—0)VF(E) (z-8)—(z-a)v = ZF(2)+(T- @) VF(z)T(z —u)+uv

Since each of three terms in the last sum is nonnegative and add up to zero, it follows

that ZF(z) =0 and Z solves NCP (1.1). The converse is obvious. a

We establish Wolfe’s weak duality theorem [20, 13] for the generally nonconvex MP
(1.2) and its dual DP (4.1).

4.2 Weak Duality Theorem Let F' be differentiable and monotone on R". If z is
primal feasible, and (y,u) is dual feasible then

(4.3) 2F(z) Z —uF(y) - yVFE)T(y - v)
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Proof
zF(z) +uF(y) + yVF()  (y — u)
= oF(z) + u(F(y) + VF@) (y — w)) + (y = )VF) (v — v)
20
The last inequality follows from primal feasibility of z, dual feasibility of (y,u) and
monotonicity of F. 0
Wolfe’s strong duality now easily follows from Theorems 4.1 and 4.2.
4.3 Strong Duality Theorem Let F' be differentiable and monotone. If Z solves

NCP (1.1) then the point (z = &, u = Z) solves the dual problem DP (4.1) and the

dual maximum is zero.

Proof The point (z = Z, u = ) is dual feasible for (4.1), and since it achieves the
upper bound of zero obtained by the Weak Duality Theorem 4.2 using the primal feasible
point Z, the point (z = Z, u = Z) is dual optimal. O

We derive now a converse duality theorem [13] under a nonsingularity assumption

on the following Hessian matrix, for any local solution (z,@) of the dual problem DP

(4.1)

(4.4) H(z,a):= VF(z)+ VF(@E)T + Z (z — )i V2Fy()

4.4 Converse Duality Theorem Let F' be monotone and twice continuously differ-
entiable on R™. If (z,@) is a local solution of the dual problem DP (4.1) such that the
Hessian H(Z,%) (4.4) is nonsingular, then & solves the primal MP (1.2) with a zero

minimum value and hence also the NCP (1.1).

Proof Since (Z,) is a local solution of DP (4.1) it satisfies, with some ¥, the Fritz

John conditions [13, Theorem 11.2.3] for the equivalent maximization problem

(4.1a) max {L(z,u,v)|V:L(z,u,v) = 0, (u,v) Z 0} (DPa)
where the Lagrangian L(z,u,v) is that of MP (1.2) and is defined by

(4.5) L(z,u,v):= (z — u)F(z) — vz
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By the Fritz John conditions of (4.1a), (Z,%,?) and some (7o,7) € Ry x R™, such that
(7o,7) # 0, satisfy

Fo Ve L(Z,8,0) + FV o L(Z, 0,0

FoVuL(Z,1,0) + TV L(Z, @, 0

a( "
(4.6)
FoVoL(Z,T,0) + 7V o L(Z,T,D

)

)
( " )=

)

Since Vo L(Z,%,7) = H(Z,u), it follows from the last and first equalities of (4.6) and
the nonsingularity of H(Z,), that ¥ =0 and 7o > 0. The remaining conditions of
(4.6) degenerate to the KKT conditions (4.2) for MP (1.2) and hence by Theorem 4.1
% solves NCP (1.1) and MP (1.2) with minimum value zero. a

The following elementary properties of the dual problem are very simple to prove
and their proofs are omitted.
4.5 Dual Problem DP 4.1 Properties Let F' be differentiable and monotone on
R™.
(i) The dual objective is nonpositive on the dual feasible region.

(ii) If (z,a) is a solution of DP (4.1) such that the dual objective is zero and VF(Z)
is positive definite, then Z solves NCP (1.1).

(i) inf MP(1.2) 2 —supDP(4.1) 20 2 —inf MP(1.2)
(iv) inf MP(1.2) = supDP(4.1) if and only if NCP (1.1) is solvable.
We conclude this section with a simple bound on the complementarity error in an

interior point penalty solution to NCP (1.1).

4.6 Proposition Let F' be differentiable and monotone on R™, let @« >0 and

(4.7) z(a) € argmin {zF(z) — az log Fi(z)|F(z) >0, 2 0}
Then
(4.8) an 2 z(a)F(z(a)) 20
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Proof The last inequality of (4.8) follows from F(z(a)) >0 and z(a) 2 0. Since z(a)

satisfies the optimality conditions

F(z(a)) + VF(:c(a))T:c O‘Z VFF(SEES)) 20,

z(a)( " ) =0, z(a) 20,

(4.9)

«
it follows that the point (z = z(a), ui= >t =1,...,n is dual feasible for
( R )
DP (4.1) and by property 4.4(i) above

0= —an —z(a)VF( (m(a))T(fB(a) - O‘F(x(a))wl)
= —an + x(a)F(m(a)) By (4.9)

from which the first inequality of (4.8) follows. a
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5. Concluding Remarks

The nonlinear complementarity problem has been reformulated as an unconstrained
minimization of an implicit Lagrangian function in the same space as the original prob-
lem. The zero global minima of the implicit Lagrangian are in one-to-one correspon-
dence with the nonlinear complementarity problem solution points. The correspondence
is valid without any assumptions. When the nonlinear complementarity problem is dif-
ferentiable so is the implicit Lagrangian. Thus the implicit Lagrangian appears to be a
useful reformulation of the nonlinear complementarity problem that can be minimized to
obtain solutions of the latter. Computational experiments are planned to test the effec-
tiveness of this unconstrained minimization approach. Two interesting open questions

remain:

5.1 Question: Under what assumptions is every (strict or nonstrict) local minimum
solution of M(z,a) a global minimum solution of M (z,a)? Are monotonicity and

differentiability of F(z) sufficient?
5.2 Question: Under what assumption is M (z,a) convex or pseudoconvex on R™?

A Wolfe dual of a standard constrained minimization problem (associated with the
nonlinear complementarity problem) is shown to be related through essentially all the
standard duality results to the constrained minimization problem under monotonicity
and differentiability (twice continuous differentiability) assumptions on the nonlinear
complementarity problem. It would be interesting to investigate the computational
potential of this dual problem, as well as the potential of both the implicit Lagrangian
and the dual problem in generating residual bounds for the nonlinear complementarity

problem in the spirit of [16, 17, 15, 11, 12].
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The functions M(z,2), P(z,10), E(z,2) and Q(z,2) on the interval
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