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Abstract 

We design a fast ascent direction algorithm for the Lagrangian dual problem of the single-ma- 
chine scheduling problem of minimizing total weighted completion time subject to precedence 
constraints. We show that designing such an algorithm is relatively simple if a scheduling problem 
is formulated in terms of the job completion times rather than as an 0-1 linear program. Also, we 
show that upon termination of such an ascent direction algorithm we get a dual decomposition of 
the original problem, which can be exploited to develop approximative and enumerative ap- 
proaches for it. Computational results exhibit that in our application the ascent direction leads to 
good Lagrangian lower and upper bounds. 
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1. Introduct ion 

Lagrangian relaxation is already a conventional technique for lower bound computa- 

tion, dating back to the work by Held and Karp [17,18] on the traveling salesman 

problem. Since then, it has shown its merits for a gamut of  combinatorial optimization 
problems. Excellent introductions to Lagrangian relaxation theory are given by Geof- 

frion [12], Shapiro [33], and Fisher [8,9]. 

The underlying idea of  Lagrangian relaxation is to see an NP-hard problem as an 

'easy-to-solve'  problem complicated by a number of  'nas ty '  side constraints. These 

nasty constraints are removed from the set of  constraints, and put into the objective 

function, each weighted by a given Lagrangian multiplier. This manipulation gives the 

Lagrangian problem which is then an easy to solve problem and whose solution 

provides a lower bound for the original problem. 

For any application, there are several issues to take care of, including dealing with 

the Lagrangian dual problem. This is the problem of finding the Lagrangian multipliers 
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that give the best Lagrangian lower bound. The subgradient method is frequently used to 
solve this problem, since it is always easy to implement. The downside of this iterative 
method, however, is that is does not produce a series of monotonically increasing lower 
bounds. It is known for its zigzagging in the beginning and slow convergence at the end 
(see, e.g., [19]). 

So-called ascent direction methods do produce series of monotonically increasing 
lower bounds. These are iterative problem-specific approximation algorithms that exploit 
the structure of the problem and the formulation. An ascent direction algorithm is in 
general much laster than the subgradient method, but it cannot be guaranteed to produce 
lower bounds that are as good. Many success stories of Lagrangian relaxation are 
nonetheless attributed to ascent direction methods. They have shown to be successful for 
many combinatorial optimization problems, including plant location problems [3,6,14], 
the traveling salesman problem [2,4] the generalized assignment problem [10], and the 
set covering problem [11]. These applications indicate that the gain in speed over the 
subgradient method compensates the possible loss in lower quality more than suffi- 
ciently. 

In spite of the abundance of machine scheduling problems, ascent direction algo- 
rithms have been used for them only by Hariri and Potts [16] and Potts [26]. Machine 
scheduling problems concern the scheduling of n jobs on machines of limited capacity 
and availability, generally so as to minimize some objective function of the job 
completion times. Much more than in other areas, the type of mathematical formulafion 
employed is important for the design of ascent direction algorithms. The tricky issue is 
actually formulating the capacity constraints. There are essentially two ways to do this: 
either by means of 0-1  variables, which gives rise to an 0-1  linear program with many 
variables and constraints, or by 'logical' disjunctive constraints, which enables a 
compact formulation in terms of the job completion times Cj ( j  = 1 . . . . .  n). 

Integer linear programming formulations are predominantly cast in terms of linear 

ordering variables xy k that take the value 1 if job Jy ( j  = 1 . . . . .  n) completes before job 
Jk (k = 1 . . . . .  n, k ~ j), and the value 0 otherwise, or in terms of time-indexed variables 
xjt that take the value 1 if Jy ( j  = 1 . . . . .  n) completes at time t, and the value 0 
otherwise. Note that the second type of formulation requires a pseudopolynomial 
number of variables. As to the design of ascent direction algorithms, it seems that the 
first type of formulation is suitable for precedence-constrained scheduling problems only 
[16,26]. The second type of formulation does not seem to allow the kind of analysis 
required to develop fast ascent direction algorithms, the subgradient method is the only 
practical approach to deal with the Lagrangian dual problem. This gives generally very 
strong lower bounds, but the time needed to compute them is substantial [7]. For a 
specific single-machine scheduling problem, Dyer and Wolsey [5] show that Lagrangian 
bounds obtained from time-indexed formulations are stronger than those obtained from 
logical formulations in terms of the job completion times C 1 . . . .  , C n. In many applica- 
tions, however, logical formulations are easier to handle in that good Lagrangian lower 
bounds can quickly be obtained one way or the other, such as by elegant O(n) 
single-pass methods, as proposed by Hariri and Potts [15] and Potts and Van Wassen- 



S.L. ran de Velde / Mathematical Programming 69 (1995) 413-428 415 

hove [27,28], by ascent direction algorithms, as we will show in this paper, or by more 
opportunistic approaches, as applied in [36]. 

In this paper, we design an ascent direction algorithm for the single-machine problem 
of minimizing total weighted completion time subject to precedence constraints. Our 
contribution is twofold. On the one hand, we show that it is relatively simple to design a 
fast and effective ascent direction algorithm if a problem is formulated in terms of the 
job completion times. On the other hand, we analyze the conditions under which the 
ascent direction algorithm terminates; we believe we are the first ever to do so. We 
assert that the kind of approach applies to about any classical machine scheduling 
problem when formulated in terms of the job completion times; for more details, refer to 
Van de Velde [37]. 

The organization of this paper is as follows. In Section 2, we develop the ascent 
direction algorithm and investigate the conditions under which the ascent direction 
algorithm terminates. It appears that upon termination we get a decomposition of the 
jobs into subsets; we call this a dual decomposition. In Section 3, we show how such a 
dual decomposition can be employed to find approximate solutions for the primal 
problem. Computational results exhibit the high quality of both the upper and lower 
bounds. Also, the time to compute the lower bound is almost negligible. In Section 4, 
we verify to what extent the dual decomposition concurs with a correct, primal 
decomposition, and point out how the dual decomposition can be of use for the design of 
enumerative methods. Section 5 concludes the paper. 

Various lower bounds have been proposed for the machine scheduling problem under 
consideration. Potts [26] proceeds from a formulation in terms of linear ordering 
variables and presents an ascent direction algorithm to compute a Lagrangian bound; 
this algorithm is time-consuming, however, requiring ~'~(n 4) time per iteration. 
Queyranne and Wang [31] proceed from a logical formulation of the problem and obtain 
their bound by solving the problem as a linear program to which they add three types of 
facet-defining inequalities; see also Queyranne and Wang [30]. Hoogeveen and Van de 
Velde [20] present a general technique to improve Lagrangian lower bounds by use of 
slack variables. They present various applications, including the problem under consid- 
eration. As to the quality of the bounds, Queyranne and Wang [31] prove that 
Hoogeveen and Van de Velde's bound is no stronger than theirs. Also, Wolsey [38] and 
Queyranne and Schulz [29] show that the linear programming bound obtained from the 
linear ordering formulation, of which Potts's Lagrangian bound is an approximation 
from below, is no weaker than Queyranne and Wang's bound. As to the speed by which 
the bounds can be computed, we note that the linear programming bounds are time-con- 
suming; in contrast, our ascent direction algorithm is fast. 

2. Single-machine scheduling 

A single-machine job shop is described as follows. A set J =  {J1,'",Jn} of n 
independent jobs has to be scheduled on a single machine that can handle only one job 
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at a time. The machine is continuously available ffom time zero onwards. Each job Jj 
( j  = 1 , . . ,  n) requires processing during an uninterrupted period of a given positive 
length pj. In addition, each job Jj has a positive weight wj, expressing its urgency 
relative to other jobs. Without loss of generality, we assume that the processing times 
and weights are integral. A schedule is a specification of the job completion times, 
denoted by Cj ( j  = 1 . . . . .  n), such tbat the jobs do not overlap in their execution and 
such that C j - p j  >i 0 for each j. The objective is to find a feasible schedule that 
minimizes the total weighted completion time ~,7= lwjCj. 

This problem, hereafter referred to as problem (P), is formulated as follows. 
Determine job completion times that 

minimize ~ wjCj 
j=l  

subject to Cj ~> C« + pj, or Cj <~ C k - p h ,  

for j = l , . . . , n - 1 ,  k = j + l  . . . . .  n, (1) 
Cj>/pj, for j =  l , . . . , n .  (2) 

Conditions (1) ensure that the machine processes no more than one job at a time; 
conditions (2) reflect that the machine is available from time zero onwards. 

Theorem 1. Problem (P) is solved in O(n log n) time by Smith' s ratio rule [35], which 
schedules the jobs in order of nonincreasing ratios wj/Pi. 

This rule is easily validated through an interchange argument. 
Now, suppose there are precedence constraints between the jobs. The precedence 

constraints are represented by an acyclic directed graph G with vertex set  {J1 . . . . .  Jn} 
and arc set A, which equals its transitive reduction. A path in G ffom Jj to Jk implies 
that Jj has to be executed before Jk; Jj is a predecessor of Jk, and Jk is a successor 
of Jj. In case there is an arc (Jy, Jk) GA,  then Jj is said to be an immediate 
predecessor of Jk; Jk is then an immediate successor of Jj. We define ~ j  and S~j. as 
the set of immediate predecessors and immediate successors of Jj, respectively ( j  = 
1 , . . ,  n). Following the notation of Graham et al. [13], we refer to the problem of 
minimizing F~~=lwjC j subject to precedence constraints on a single machine as 
1 Iprec [EwjCj. 

For special classes of precedence constraints, the problem is still solvable in 
O(n log n) time; this is the case for tree-like precedence constraints [1,21,34] and for 
series-parallel precedence constraints [22]. For general precedence constraints the prob- 
lem is A~~-hard in the strong sense [22,24]. This justifies the development of 
approximative and enumerative algorithms. Morton and Dharan [25] propose several 
heuristics. Specifically, the so-called tree-optimal heuristic, which produces optimal 
solutions in case the precedence constraints take the form of a tree, generates high-qual- 
ity solutions. Potts [26] presents a branch-and-bound algorithm that solves instances up 
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to 100 jobs; he employs Lagrangian lower bounds obtained from a 0-1  linear program- 
ming formulation in terms of linear ordering variables. We formulate the precedence 
constraints in a concise manner as 

Ck >~ C j + p~ for each ( Jj, Jk ) ~ A . (3) 

The 1 Iprec I EwjCj problem can be regarded as an easy-to-solve problem complicated 
by conditions (3). Accordingly, we introduce a vector A c EA that contains a La- 
grangian multiplier Ay k >1 0 for each arc (Jj, J~) ~ A and put the constraints (3), each 
weighted by its multiplier, into the objective function. For a given vector A >~ 0, the 
Lagrangian relaxation problem, referred to as problem (Lx), is to find L(A), which is the 
minimum of 

j=  1 Jk~.c j J k ~ j  Jk E S~j 

subject to the machine capacity and availability conditions (1) and (2). 
For j = 1 . . . . .  n, let w~(A)= (% + Ejk~sjAj~- Ejk~ejAkj)/pj; we call w~(A) the 

relative weight of job Jj. Using Smith's ratio rule, we solve problem (L A) by sequencing 
the jobs in order of nonincreasing relative weights. From standard Lagrangian theory, 
we know that L(A) is a lower bound for the 1 Iprec IEwjCj problem for any A >~ 0. In 
this respect, we like to find the vector A* that induces the best Lagrangian lower bound. 
This is the Lagrangian dual problem of l lprec[EwiC j, referred to as problem (D): 

maximize L(A) 

subject to Ajk>~ 0 for each (Jj ,  J~) ~A.  

Theorem 2. Problem (D) is solvable in time polynomial in n through the ellipsoid 
method. 

For a proof, see [37]. 
In practice, the ellipsoid method is too slow to be of use. We develop a quick ascent 

direction algorithm to approximate the optimal solution of problem (D). The notion of 
directional derivative plays a central role in ascent direction algorithms. The directional 
derivative of the function L at A is defined as 

L(:~ + eu) - L ( A )  
Lu(A) --- lim 

E$0 

for any vector u ~ R A. Hence, A is optimal if and only if 

Lu(A).%<0, for a l l u v i a .  

If L~(A) > 0 for some fi ~ RA, then fi is called an ascent direction of L at A: we get an 
improved lower bound by moving some scalar step size A along ft. In general, it is 
difficult to compute directional derivatives. However, it is easy to compute them for the 
primitive vectors. A vector u is called primitive if ujk = 0 for all (Jj, Jk) but one. 
Hence, there are at most 2[ A[ different primitive directional derivatives at any A. 
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First, we derive expressions for the primitive directional derivatives. In an optimal 
solution for the Lagrangian problem, the position of Jj depends on its relative weight: 
the larger its relative weight, the smaller its completion time. If its weight is tied, then its 
position also depends on the way ties are settled. Let C+(A) denote the earliest possible 
completion time of Jj in an optimal schedule for problem (L,); let Cj-(A) denote the 
latest possible completion time of Jj in an optimal schedule for problem (L,). 
Increasing Ay k by a specific « > 0 will increase the relative weight of Jy from w~(A) to 
wj(A) + ¢/py; simultaneously, it will decrease the relative weight of Jk from w~(A) to 
w~(A) - E/p k. It is possible to choose é > 0 small enough to ensure that at least one 
optimal schedule for problem (L a) remains optimal (see [37]). In such an optimal 
schedule, Jj must be completed on time C+(A) and J« must be completed on time 
C~-(A). Increasing Ay k by such a small e affects the Lagrangian objective value by 
é [ C f ( A ) -  C~-(A)+Pk]- From this, we derive that the primitive directional derivative 
for increasing Ajk at A, denoted by I~(A), is 

I~(A) = C f ( A )  -Ck-(A)  +Pk for each (Jy, Jk) GA. 

If I~(A) > 0, then increasing Aik is an ascent direction: we get an improved objective 
value by moving along this direction. The sign of each I~(A) is determined in constant 
time. Note that for each arc (Jj, Jk) GA, we have 

c :  ( , )  > c ;  ( , )  + pk "* w~( , )  < w'~( , ) ,  

hence, I~(A) > 0 ¢~ w~(A) < w~(A). In a similar fashion, we find that I~(A), the 
primitive directional derivative for decreasing Ajk at each A with Ajk > 0, is 

I~(A) = C~-(A) - CT(A ) - p k  for each (Jj ,  Jk) GA. 

If I~(A) > 0, then decreasing Ajk is an ascent direction: we get an improved objective 
value by moving along this direction. 

Given an ascent direction, we invariably move by the step size that maximizes the 
increment to the objective value. If I~(A)> 0, then the increment is maximized by 
moving to the first point where increasing Aj~ is no longer an ascent direction. At this 
point, the relative weights of Jj and J« are equal. Hence, the required step size is the 
value A for which 

w~( A) + Alp j  = w'~( A) - A lpk ,  

it is determined in constant time. Consider now the case I~(A) > 0. To ensure that the 
Lagrangian vector remains nonnegative, we impose the condition that A ~< Ajk. If this 
condition is not restrictive, then we move to the first point where decreasing Ajk is no 
longer an ascent direction. If it is restrictive, then we take the step size as large as 
possible. Hence, the step size that maximizes the increment of the objective value is 
computed as the largest value A ~< Ay k for which 

w~( A) - A /p j  >~ w',( A) + A/p~.  

Eventually, termination occurs at some Ä at which no ascent direction exists any more. 
Later on, we will analyze the termination conditions. We first give a step-wise 
description of the ascent direction algorithm. 
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Aseent Direction Algorithm 
Step O. Set Ajk = 0 for each (Jj, Jk) GA, and compute the relative weights w~(A). 
Step 1. For each (Jp Jk) ~ A, do the following: 
(a) If w~(A) < w~(A), then compute the step size 

A = [ w~(A) - w}( A)] PjPk/(  Pj + Pk)" 

Put hjk ~ Ajk + A, and update w}(A) and w~(A). 
(b) If w}(A) > w~(A), then compute the step size 

A--min{*j~, [w~(X)-w'~(*)]pjp~/(p~ +p,)}. 
Put Ajk ~ Ajk -- A, and update w}(A) and w~(A). 

Step 2. If no multiplier adjustment has taken place, then compute L(A) and stop; 
otherwise, retum to Step 1. 

Let I be the number of times that Step I is executed. The ascent direction algorithm 
runs then in O(I] A] + n  log n) time. Since we cannot bound I by a polynomial in n 
and { A {, the ascent direction algorithm is presumably not a polynomial-time method. In 
practice, however, the algorithm is very fast and produces very good approximate 
solutions. 

Theorem 3. The ascent direction algorithm described above generates a series of  
monotonically increasing lower bounds for problem (P). 

Proof. Given an arbitrary A >~ 0, we first assume w~(A) < w~(A); hence, I~(A) = CT(A) 
- C ~ - ( A ) + p k > 0 ,  and increasing Arg is an ascent direction. We reindex the jobs 
according to nonincreasing relative weights, settling all ties arbitrarily except for Jj and 
Je: we give Jj the smallest index possible and J« the largest index possible. Let 
C 1 , . . ,  C n be the job completion times for the sequence (Ja . . . . .  Jn); note that Cj = 
Cj+(A) and C k = C~-(A). Hence, in more detail, the schedule under consideration is 
(J1 , ' . . , Jk -1 ,  Jk, J k + l , " . , J j - ~  Jj, Jj+l . . . . .  Jn). Let A be the step size as dictated, 
and let Ä denote the vector of Lagrangian multipliers after increase of Ajk by A. Since A 
and Ä differ only in one component, the relative weights for all jobs but Jj and J« 
remain the same. An optimal schedule for problem (L~) is then (J1 . . . .  ,Jk-1,  
J g + l , " . , J »  Jj, J»  Jt+l . . . . .  J j - l ,  J j+ l , ' " , Jù ) ,  for some J/ with k +  l <~l<~j-1;  
the job completion times for this schedule can conveniently be expressed in terms of 
C 1 , . . ,  Cn. We now demonstrate that L(Ä) > L(A); it is essentially a matter of writing 
out. For brevity, we let /z i = w i + E«, ~ «i Aih -- ~'J, ~ ~, Ahi for each i (i = 1 , . . ,  n). We 
have 

k-1  n l j - 1  
L(Ä) = E ~ic,+ E ~ici + E »,(C,-p«) + E ~~(Ci+p3 

i= l  i = +1 i=k+l  i= l+ l  

A):  l ] 
+ ( » ~ -  ,~) +pj + E 

i=k+ l pi  

~~ 1 +( /x j  + A) C ? ( A ) - p k -  Pi 
i=1+1 
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+ ~ ~-~ A ihph+AP k 
i= 1 J,~~~e i 

j -1  

=L(A)+ E (l"6iPj--ld'yPi)"[- 
i=l+1 

l 

E 
i=k+l 

( tzkPi - ~ i P k )  --k I~kPj -- txjPk 

I(~ i l ) (  ~ )] 
+ A  ( A ) - - P k - -  E pi - C k - ( A ) + p / +  E pi + A p k .  

i=1+1 i=k+l 

Since Jy and Jk are adjacent in the second schedule, we have that 

A ) - P k -  E pi - Ck- (A) . -bp j+  E pi = - p k .  
i=1+1 i=k+l  

This implies that 

j - 1  l 

L(Ä) =L(A) + E ( l~iPy--t'~jl)i) + E ( l'z,~Pi--l'6iPk) + lxkPj--txjPk 
i=l+1 i=k+l  

l j - 1  

= L ( A ) +  E ( txk/P~-- I~i/Pi) PiPk + E ( I~i/Pi-- I~j//Pj)PiPj 
i=k+l  i=l+1 

+ ( tzk/P~ - tz:/pj)pjp k 
t y-1 

= L ( A ) +  E [Wk(A)--W'i(A)]PiPk+ E [w:(A)-w~(A)]PiPj  
i=k+ l i=l+ l 

Since w~(A) > w~(A), w~(A) < w~(A) for each i (i = k + 1 . . . .  , l), and w~(A) > w~(A) for 
each i (i = l + 1 . . . .  , j - 1), we find that L(Ä) > L(A). 

The analysis for the case l~(A) > 0 proceeds in a similar fashion. [] 

Consider the 10-job example from Potts [26] for which the processing times, weights, 
and precedence graph are given in Table 1 and Fig. 1. 

If we put Ajk = 0 for all (Jj, Jk) ~ A, then an optimal schedule is (J3, Jlo, Ja, "/9, 
J7,  "]6, J2, Js ,  Js, Jl ) with total cost 1055. The same schedule and lower bound are 
obtained by disregarding the precedence constraints and solving 1 I1EwyCj. The schedule 
is not feasible for the original problem; for instance, J10 is executed before J6 although 
(-/6, Jlo) CA. Since w~(A)< W]o(A), increasing /~6,10 is an ascent direction. The 

Table 1 
Processing times and weights 

J1 "12 J3 "]4 "[5 J6 J7 J8 J9 J10 
pj 6 9 1 3 9 5 7 7 6 2 
wy 2 5 9 6 5 4 9 3 8 5 
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Fig .  1. P r e c e d e n c e  g r a p h .  

appropriate step size is A = ~Z, giving /~6 10 = 17 , ~-. We have that (J3, J4, J9, J7, J6, J10, 
"]2, Js, "]8, Jl) is an optimal schedule for the new Lagrangian problem with value 
L(A) = 1106. Proceeding along these lines, we get the value L(A)= 1526.69 upon 
termination. Potts' procedure, requiring ~~(n 4) time, proceduces the lower bound 1519; 
the upper bound generated by the tree-optimal heuristic is 1530. The duality gap is 
therefore no more than 3. 

In the remainder, we let Ä denote the vector of Lagrangian multipliers upon 
termination of the ascent direction method. Using the termination conditions that all 
primitive directional derivatives are nonpositive, we derive some properties for Ä and for 
the optimal solutions of problem (L~). These properties are important for the develop- 
ment of approximation and optimization algorithms for 1 [prec I~wyCy. 

D e f i n i t i o n  1. The job set 2 ~ ß  is called a block for a given A ~> 0 if 

w~(A) = c  foreach J j ~ ~ ,  

where c is some positive real constant. 

In any optimal schedule to problem (La), the jobs in a block are interchangeable 
without affecting the Lagrangian objective value L(A). For any given A >~ 0, the job set 
B is decomposed into B(A) blocks ~ 1 , . . ,  ~'n(x), indexed such that 

w~(A)=c  b foreach J i ~ ~ b ,  b = l  . . . . .  B(A), 

with C 1 > • • • > CB(A) > O, 

Theorem 4. Any vector A satisfying the termination conditions induces a decomposition 
of f into B(A) blocks ~q~l,..., ~ß(a) such that, if (Jj, Jk) GA and Jk ~~o ,  then 

] j  e . ~ ,  u . . .  u.~'~, 

and 
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Proof. If one of these claims were not true, then we could identify an ascent direction, 

contradicting the assumption that the termination conditions are satisfied. [] 

We call a decomposition induced by a vector that satisfies the termination conditions 
a dual decomposition. Both A* and Ä induce dual decompositions. For our example, the 

dual decomposition induced by Ä consists of three blocks: ~ l  = {J3}, "-~2 = {J2, J4 }, 
11 6 

and ~3  = {J1, Js, J6, JT, Js, J9, Jlo}, with c 1 = 9, c 2 = ~ ,  and c 3 = 7, respectively. 

3. Approximation 

We present an approximation algorithm that exploits the agreeable structure of the 
dual decomposition induced by A. For b = 1 . . . .  , BX, let ~r» be a feasible sequence for 

the jobs in ~'». From Theorem 4, we derive the following. 

Corollary 1. The sequence o-= (0-1, 0-2,-.., 0-8G)) is feasible for the original problem. 

If each 0-b is optimal for the 1 Iprec IE«j~ ~wjCy problem (b = 1 . . . . .  B(Ä)), then 
we have the best such o-. From a theoretical point of view, each 1 I prec I E«j ~ ~»wjC~ 
problem is as hard as the original problem; from a practical point of view, each problem 
is simpler, because it is of a smaller dimension. Dynamic programming in tandem with a 
compact labeling scheme [23,32] solves small instances quickly. If the size of a block is 
too large for the application of dynamic programming, then we resort to the tree-optimal 
heuristic to find an approximate solution. However, even if the dual decomposition is 
induced by h* and o- is composed of optimal subsequences, then we still have no 
guarantee that tr is an optimal sequence; all optimal sequences may have been excluded 

by the dual decomposition. 
For the example, the optimal sequences for the first two blocks are trivial: 0-1 = (J3), 

and 0-2 = (J2, Ja); using dynamic programming, we find 0- 3 = (J1, JT, Js, J9, J6, Js, 
J10); the tree-optimal heuristic gives the same sequence. We obtain o-= (J3, J2, J4, J1, 
J7, Js, J9, J6, Js,  Jlo ) with total cost 1530. 

We tested the approximation algorithm and the tree-optimal heuristic on problems 
with 20, 3 0 , . . ,  100 jobs. The processing times were drawn from the uniform distribu- 
tion [1, 100]; the weights were generated from the uniform distribution [1, 10]. The 
precedence graph was induced by the probability P with which each arc (Jj, Jk) with 
j < k was included. The graph obtained in this way was then stripped down to its 

transitive reduction. We generated problems for P = 0.01, 0.02, 0.04, 0.06, 0.08, 0.10, 
0.15, 0.20, 0.30, and 0.50. For each combination of n and P we generated live 
problems; hence, 45 problems were generated for each value P. This procedure parallels 
Potts' procedure to generate instances. Furthermore, we solved each subproblem to 
optimality if less than 15000 labels were needed; otherwise, we used the tree-optimal 

heuristic. 
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Table 2 
Experimental results; for each value of P and for either approximation algorithm, we present the average 
value (upper bound)/L(A) and the number of times out of 45 that the upper bound equaled the lower bound 

P Tree-optimal heuristic Dual decomposition 

UB/L(Ä) # opt UB/L(Ä) # opt 

0.01 1.00007 42 1.00007 42 
0.02 1.00074 15 1.00069 15 
0.04 1.00516 8 1.00248 10 
0.06 1.01122 2 1.00584 2 
0.08 1.01303 1 1.00934 1 
0.10 1.01731 2 1.01211 4 
0.15 1.01993 0 1.01765 0 
0.20 1.02050 0 1.01614 2 
0.30 1.02447 0 1.02075 2 
0.50 1.02831 2 1.02616 3 

Potts points out that the relative difficulty of an instance depends on I A I rather than 
on n. We have therefore classified the results according to the value P. For each P,  we 
present the average value (upper bound)/L(Ä) for both approaches (see Table 2). The 
columns " #  opt"  indicate for how many problems out of 45 the upper bound equaled 
the lower bound; this figure gives the number of times we found a provably optimal 
solution. On the average, the dual-decomposition algorithm outperforms the tree-optimal 
heuristic approach for any problem class. For the 450 instances altogether, the tree-opti- 
mal heuristic produced only 16 better solutions; moreover, each of these was only 
marginally better. 

We have coded both algorithms in the computer language C; all experiments were 
conducted on a Compaq-386/20 Personal Computer. The time to compute L ( Ä )  is 
virtuaUy negligible. The tree-optimal heuristic requires O(n] A 1) time and is sensitive to 
instances with many precedence constraints. The running time of the dual decomposition 
approximation algorithm mainly depends on the number of calls on the dynamic 
programming procedure and the maximum label number. For n <~ 40, the tree-optimal 

heuristic needed a few seconds at most. On the average, our approximation required 
only slightly more time, there were occasional peaks, however, due to high labels in the 
dynamic programming subroutine. For n ~> 60, the tree-optimal heuristic needs about 
twice or three times as much computation time as the dual decomposition algorithm 
although it needs never more than 1 minute; even the peaks of the dual decomposition 
algorithm remain then below the average of the tree-optimal heuristic. 

Potts also points out that small and large values of P generate relatively easy 
problems. For small P,  only few precedence constraints are involved; for large P,  most 

disjunctive constraints are settled. Our results support the claim for small P:  the duality 
gap is very small. Since the optimal-tree heuristic generates good approximate solutions 
for all values of P [26], there are two possible explanations for the growth of the gap 

between upper and lower bound for larger values of P. It may be that the ascent 
direction method produces worse approximate solutions in case P is large; it is more 
likely, however, that the duality gap is an increasing function of P. 
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4. Primal decomposition 

For b = 1 . . . . .  B, let o-ó* denote an optimal sequence for the problem 
11prec IE«~~/bwyCj, where f b  ~ J -  A decomposition of the job set f into B mutually 
disjoint subsets ~ . . . .  , ~ is said to be a primal decomposition if the sequence 
0-= o-1", . . . .  0"8* is optimal for the original l lprecrEwjC i problem. We already 
mentioned that a dual decomposition may exclude all optimal sequences; a dual 
decomposition only suggests a primal decomposition. In this section, we try to establish 
to what extent a dual decomposition coincides with a primal decomposition. 

If a dual decomposition excludes all optimal solutions, then there are at least two jobs 
belonging to different blocks with no path in A between them for which the processing 
order should be reversed. Suppose Jj ~ ~ b  and Jk ~~b+m (m > 0) are such jobs. In all 
feasible sequences obtained by the dual decomposition approach, Jj precedes J~; but in 
all optimal sequences, Jk precedes Jj. Hence, the arc (Jk, Jy) can be added to the arc set 
A with impunity. Let problem (L;~(k, j)) be the Lagrangian problem for the arc set 
A U (Jk, Jj), and let A(k, j )  >~ 0 be a vector of Lagrangian multipliers. Since the arc 
(Jk, Jj) does not exclude the optimal solution, L(A(k, j)) is still a lower bound on the 
optimal solution, for any A(k, j)  7> 0. 

This observation gives rise to the following result. Let ~ » . . . ,  2 B be the blocks of 
some dual decomposition, and let UB be an upper bound for the 1 IpreclET=iwjCj 
problem. 

Theorem 5. I f  there are two jobs Jj ~ ~ b  and Jk ~~b+,~ (b = 1 , . . ,  B - 1, m = 
1 . . . .  , B - b) with no path in A between them for which 

L(A(k,  j ) )  > U B - 1 ,  (4) 

then Jj precedes Jk in any optimal solution for the 1 [prec [EwjCj problem. 

If (4) holds for all such J1 and Je, then the decomposition is a primal decomposition; 
in fact, due to transitivity, it is sufficient that (4) holds for specific Jy and Jk only. 

Corollary 2. I f  for each pair of jobs Jj ~ ~ b  and Jk ~ ' ~ » + ,  (b = 1 . . . . .  B - 1, 
m = 1 , . . , B -  b) such that 

(1) there is no path in A from Jj to Jk, 
(2) Jj has no successors in d b U . . .  U~~q~ó+m_l, and 
(3) Jk has no predecessors in ~b+l  U . ' .  U~b+m, 

we have that L(A(k, j ))  > UB - 1 for some A(k, j )  >~ O, then the dual decomposition is 

a primal decomposition. 

Accordingly, if the dual decomposition induces a primal decomposition and if UB is 
associated with the sequence that is composed of optimal subsequences, then UB is the 
optimal solution value of the 1 Iprec IEwjCj problem. 
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Corollary 3. I f  for some block ~ b ,  each pair of  jobs J] ~ ~ b  and Jk ~~b+m 
( m = 1 . . . . .  B - b) such that 

(1) there is no path in A f-rom Jj to Jk, 

(2) Jj has no successors in ~ b  U • • • U~b+,ù_ 1, and 
(3) Jk has nopredecessors in ~'b+l U " '"  U~'b+ m, 

satisfies L(A(k, j)) > UB - 1 for some A(k, j )  >~ O, then the subsets ~ 1  U • . .  U ~  b 
and ~b+ 1 U • • • U ~  B constitute a primal decomposition of  J .  

In this case, we say that the dual decomposition partly concurs with a primal 
decomposition. Whether we succeed to establish that a dual decomposition partly or 
completely concurs with a primal decomposition depends on the quality of the lower 
bounds L(h(k, j)). From this point of view, we like to have available the vector of 
optimal Lagrangian multipliers for problem (La(k, j)); let A* (k, j)  denote this vector. 
Of course, A* (k, j)  is as difficult to find as the vector A*. However, an ascent direction 
method to approximate A* (k, j )  is readily available: we apply the direction method for 
problem (D), adjusted for the additional arc ( J »  Jy), using as initial vector h(k, j)(0) 
obtained as A(k, J1ihi'~(O)-~-Äih for each (Ji, Jh)~A and A(k, j)~°)=0. We note that 
L(A(k, j)(0))= L(A). At A(k, j)(m, all primitive directional derivatives are nonpositive 
but one: we have l~-j(A(k, j)(0))> 0; increasing A(k, J)kj is an ascent direction. If Jj 
and Jk belong to blocks that are rar apart from each other, then the Lagrangian lower 
bound corresponding with the point where the sign of this directional derivative changes 
may already exceed UB - 1. This Lagrangian lower bound is conveniently computed; 

this is stipulated in the next theorem, where P(~b) is defined as  P(,-~b)= ~Si~ ~bPi" 

Theorem 6. I f  there are two jobs Jj E~-~ b and Jk ~~b+m (b = 1 . . . .  , B ( Ä ) -  1, 
m = 1 , . . ,  B(Ä) - b) for which there is no path in A from Jj to Jk such that 

l 

L ( Ä )  +(Cb- -Cb+m)p jP t  + ~., (Cb- -Ci )p (3~ i )P j  
i = b + l  

b+m-1 

+ E ( C i -  C b + m ) P ( 2 i ) P k  (5)  
i=/+1 

exceeds UB - 1, where I is the largest index with c I >~ ( pjc » + pk C »+m) / ( pk +pj) ,  then 
J] precedes Jk in all optimal solutions for the 1 [prec IEwjCj problem. 

Proof. The validation of this proposition requires the same logic applied in the proof of 
Theorem 3. [] 

If' (5) does not hold, then we run the ascent direction algorithm until no ascent 
directions can be found any more; upon termination, we get the vector Ä(k, j). 

We now work out the effects of these propositions on our example. According to 
Corollary 3, we need consider only the pairs (J3, J•) and (J3,-/4) in order to 
decompose the jobs into ~q~l on the one hand and ~2  U~3  on the other hand. Including 

- ~ ) X l  ( .12,  3r3) in A, we get, using (5), that L(A* ) + (c 1 c2)p2P3 ----- 1526.69 + (9 - n 
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× 9 > 1529; we conclude that J3 precedes J2 in any schedule with cost less than 1530. 
Similarly, if we include (J~, Ja) in A, then, according to Theorem 6 (where we have 
l = 1), we taust verify if 

L(Ä) + ( c  1 - c3)p3P4 + ( c  2 - c 3 ) p ( , ~ 2 ) P 4  > UB - 1. 

This is so; hence, Ja taust precede J4, implying that we may decompose the job set into 
subsets ~'1 and "-~'2 U~-~3. We must consider the pairs (J4, J1), (J4, .Is), and (Ja, Js) to 
separate the blocks ,~'2 and ,~'3- More than one iteration in the ascent direction 
procedure is required. Since L(Ä(1, 4)), L(Ä(5, 4)), and L(Ä(8, 4)) exceed 1529, we 
conclude that the dual decomposition concurs with a prima1 decomposition. Further- 
more, the schedule with value 1530 is optimal, since it was obtained from the optimal 
sequences for the individual blocks. 

The theorems and corollaries presented in this section are applicable in a preprocess- 
ing phase in conjunction with any existing branch-and-bound algorithm. Their main 
purpose is to derive additional precedence constraints and to decompose the problem 
primally in order to reduce the size of the search tree. 

5. Conclusions 

We have developed a fast ascent direction algorithm for a scheduling problem 
formulated in terms of the job completion times. We also have shown that upon 
termination of the algorithm we get a dual decomposition of the original problem, which 
can be used for designing approximative and enumerative algorithms. 

We claim that about any scheduling problem for which the Lagrangian relaxation 
problem reduces to an analog of problem (P), that is, a problem solvable by Smith's 
ratio rule, can be dealt with in the same spirit. For more details, we refer to [37]. The 
strength of the lower bound and the effectiveness of the dual decomposition approach, 
however, depend on the structure of the problem and the nature of the dualized 
constraints. 
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