
Mathematical Programming 69 (1995) 413-428

Dual decomposition of a single-machine
scheduling problem

S.L. van de Velde

Department of Mechanical Engineering, University of Twente, P.O. Box 217, 7500 AE Enschede,
The Netherlands

Received 28 May 1990; revised manuscript received 22 September 1994

Abstract

We design a fast ascent direction algorithm for the Lagrangian dual problem of the single-ma-
chine scheduling problem of minimizing total weighted completion time subject to precedence
constraints. We show that designing such an algorithm is relatively simple if a scheduling problem
is formulated in terms of the job completion times rather than as an 0-1 linear program. Also, we
show that upon termination of such an ascent direction algorithm we get a dual decomposition of
the original problem, which can be exploited to develop approximative and enumerative ap-
proaches for it. Computational results exhibit that in our application the ascent direction leads to
good Lagrangian lower and upper bounds.

Keywords: Machine scheduling; Lagrangian relaxation; Ascent direction method; Dual decomposition

1. Introduct ion

Lagrangian relaxation is already a conventional technique for lower bound computa-

tion, dating back to the work by Held and Karp [17,18] on the traveling salesman

problem. Since then, it has shown its merits for a gamut of combinatorial optimization
problems. Excellent introductions to Lagrangian relaxation theory are given by Geof-

frion [12], Shapiro [33], and Fisher [8,9].

The underlying idea of Lagrangian relaxation is to see an NP-hard problem as an

'easy-to-solve' problem complicated by a number of 'nas ty ' side constraints. These

nasty constraints are removed from the set of constraints, and put into the objective

function, each weighted by a given Lagrangian multiplier. This manipulation gives the

Lagrangian problem which is then an easy to solve problem and whose solution

provides a lower bound for the original problem.

For any application, there are several issues to take care of, including dealing with

the Lagrangian dual problem. This is the problem of finding the Lagrangian multipliers

0025-5610 © 1995 - The Mathematical Programming Society, Inc. All rights reserved
SSDI 0025-5610(94)00085-9

414 S.L. ran de Velde / Mathematical Programming 69 (1995) 413-428

that give the best Lagrangian lower bound. The subgradient method is frequently used to
solve this problem, since it is always easy to implement. The downside of this iterative
method, however, is that is does not produce a series of monotonically increasing lower
bounds. It is known for its zigzagging in the beginning and slow convergence at the end
(see, e.g., [19]).

So-called ascent direction methods do produce series of monotonically increasing
lower bounds. These are iterative problem-specific approximation algorithms that exploit
the structure of the problem and the formulation. An ascent direction algorithm is in
general much laster than the subgradient method, but it cannot be guaranteed to produce
lower bounds that are as good. Many success stories of Lagrangian relaxation are
nonetheless attributed to ascent direction methods. They have shown to be successful for
many combinatorial optimization problems, including plant location problems [3,6,14],
the traveling salesman problem [2,4] the generalized assignment problem [10], and the
set covering problem [11]. These applications indicate that the gain in speed over the
subgradient method compensates the possible loss in lower quality more than suffi-
ciently.

In spite of the abundance of machine scheduling problems, ascent direction algo-
rithms have been used for them only by Hariri and Potts [16] and Potts [26]. Machine
scheduling problems concern the scheduling of n jobs on machines of limited capacity
and availability, generally so as to minimize some objective function of the job
completion times. Much more than in other areas, the type of mathematical formulafion
employed is important for the design of ascent direction algorithms. The tricky issue is
actually formulating the capacity constraints. There are essentially two ways to do this:
either by means of 0-1 variables, which gives rise to an 0-1 linear program with many
variables and constraints, or by 'logical' disjunctive constraints, which enables a
compact formulation in terms of the job completion times Cj (j = 1 n).

Integer linear programming formulations are predominantly cast in terms of linear

ordering variables xy k that take the value 1 if job Jy (j = 1 n) completes before job
Jk (k = 1 n, k ~ j), and the value 0 otherwise, or in terms of time-indexed variables
xjt that take the value 1 if Jy (j = 1 n) completes at time t, and the value 0
otherwise. Note that the second type of formulation requires a pseudopolynomial
number of variables. As to the design of ascent direction algorithms, it seems that the
first type of formulation is suitable for precedence-constrained scheduling problems only
[16,26]. The second type of formulation does not seem to allow the kind of analysis
required to develop fast ascent direction algorithms, the subgradient method is the only
practical approach to deal with the Lagrangian dual problem. This gives generally very
strong lower bounds, but the time needed to compute them is substantial [7]. For a
specific single-machine scheduling problem, Dyer and Wolsey [5] show that Lagrangian
bounds obtained from time-indexed formulations are stronger than those obtained from
logical formulations in terms of the job completion times C 1 , C n. In many applica-
tions, however, logical formulations are easier to handle in that good Lagrangian lower
bounds can quickly be obtained one way or the other, such as by elegant O(n)
single-pass methods, as proposed by Hariri and Potts [15] and Potts and Van Wassen-

S.L. ran de Velde / Mathematical Programming 69 (1995) 413-428 415

hove [27,28], by ascent direction algorithms, as we will show in this paper, or by more
opportunistic approaches, as applied in [36].

In this paper, we design an ascent direction algorithm for the single-machine problem
of minimizing total weighted completion time subject to precedence constraints. Our
contribution is twofold. On the one hand, we show that it is relatively simple to design a
fast and effective ascent direction algorithm if a problem is formulated in terms of the
job completion times. On the other hand, we analyze the conditions under which the
ascent direction algorithm terminates; we believe we are the first ever to do so. We
assert that the kind of approach applies to about any classical machine scheduling
problem when formulated in terms of the job completion times; for more details, refer to
Van de Velde [37].

The organization of this paper is as follows. In Section 2, we develop the ascent
direction algorithm and investigate the conditions under which the ascent direction
algorithm terminates. It appears that upon termination we get a decomposition of the
jobs into subsets; we call this a dual decomposition. In Section 3, we show how such a
dual decomposition can be employed to find approximate solutions for the primal
problem. Computational results exhibit the high quality of both the upper and lower
bounds. Also, the time to compute the lower bound is almost negligible. In Section 4,
we verify to what extent the dual decomposition concurs with a correct, primal
decomposition, and point out how the dual decomposition can be of use for the design of
enumerative methods. Section 5 concludes the paper.

Various lower bounds have been proposed for the machine scheduling problem under
consideration. Potts [26] proceeds from a formulation in terms of linear ordering
variables and presents an ascent direction algorithm to compute a Lagrangian bound;
this algorithm is time-consuming, however, requiring ~'~(n 4) time per iteration.
Queyranne and Wang [31] proceed from a logical formulation of the problem and obtain
their bound by solving the problem as a linear program to which they add three types of
facet-defining inequalities; see also Queyranne and Wang [30]. Hoogeveen and Van de
Velde [20] present a general technique to improve Lagrangian lower bounds by use of
slack variables. They present various applications, including the problem under consid-
eration. As to the quality of the bounds, Queyranne and Wang [31] prove that
Hoogeveen and Van de Velde's bound is no stronger than theirs. Also, Wolsey [38] and
Queyranne and Schulz [29] show that the linear programming bound obtained from the
linear ordering formulation, of which Potts's Lagrangian bound is an approximation
from below, is no weaker than Queyranne and Wang's bound. As to the speed by which
the bounds can be computed, we note that the linear programming bounds are time-con-
suming; in contrast, our ascent direction algorithm is fast.

2. Single-machine scheduling

A single-machine job shop is described as follows. A set J = {J1,'",Jn} of n
independent jobs has to be scheduled on a single machine that can handle only one job

416 S.L. ran de Velde / Mathematical Programming 69 (1995) 413-428

at a time. The machine is continuously available ffom time zero onwards. Each job Jj
(j = 1 , . . , n) requires processing during an uninterrupted period of a given positive
length pj. In addition, each job Jj has a positive weight wj, expressing its urgency
relative to other jobs. Without loss of generality, we assume that the processing times
and weights are integral. A schedule is a specification of the job completion times,
denoted by Cj (j = 1 n), such tbat the jobs do not overlap in their execution and
such that C j - p j >i 0 for each j. The objective is to find a feasible schedule that
minimizes the total weighted completion time ~,7= lwjCj.

This problem, hereafter referred to as problem (P), is formulated as follows.
Determine job completion times that

minimize ~ wjCj
j=l

subject to Cj ~> C« + pj, or Cj <~ C k - p h ,

for j = l , . . . , n - 1 , k = j + l n, (1)
Cj>/pj, for j = l , . . . , n . (2)

Conditions (1) ensure that the machine processes no more than one job at a time;
conditions (2) reflect that the machine is available from time zero onwards.

Theorem 1. Problem (P) is solved in O(n log n) time by Smith' s ratio rule [35], which
schedules the jobs in order of nonincreasing ratios wj/Pi.

This rule is easily validated through an interchange argument.
Now, suppose there are precedence constraints between the jobs. The precedence

constraints are represented by an acyclic directed graph G with vertex set {J1 Jn}
and arc set A, which equals its transitive reduction. A path in G ffom Jj to Jk implies
that Jj has to be executed before Jk; Jj is a predecessor of Jk, and Jk is a successor
of Jj. In case there is an arc (Jy, Jk) GA, then Jj is said to be an immediate
predecessor of Jk; Jk is then an immediate successor of Jj. We define ~ j and S~j. as
the set of immediate predecessors and immediate successors of Jj, respectively (j =
1 , . . , n). Following the notation of Graham et al. [13], we refer to the problem of
minimizing F~~=lwjC j subject to precedence constraints on a single machine as
1 Iprec [EwjCj.

For special classes of precedence constraints, the problem is still solvable in
O(n log n) time; this is the case for tree-like precedence constraints [1,21,34] and for
series-parallel precedence constraints [22]. For general precedence constraints the prob-
lem is A~~-hard in the strong sense [22,24]. This justifies the development of
approximative and enumerative algorithms. Morton and Dharan [25] propose several
heuristics. Specifically, the so-called tree-optimal heuristic, which produces optimal
solutions in case the precedence constraints take the form of a tree, generates high-qual-
ity solutions. Potts [26] presents a branch-and-bound algorithm that solves instances up

S.L. van de Velde / Mathematical Programming 69 (1995) 413-428 417

to 100 jobs; he employs Lagrangian lower bounds obtained from a 0-1 linear program-
ming formulation in terms of linear ordering variables. We formulate the precedence
constraints in a concise manner as

Ck >~ C j + p~ for each (Jj, Jk) ~ A . (3)

The 1 Iprec I EwjCj problem can be regarded as an easy-to-solve problem complicated
by conditions (3). Accordingly, we introduce a vector A c EA that contains a La-
grangian multiplier Ay k >1 0 for each arc (Jj, J~) ~ A and put the constraints (3), each
weighted by its multiplier, into the objective function. For a given vector A >~ 0, the
Lagrangian relaxation problem, referred to as problem (Lx), is to find L(A), which is the
minimum of

j= 1 Jk~.c j J k ~ j Jk E S~j

subject to the machine capacity and availability conditions (1) and (2).
For j = 1 n, let w~(A)= (% + Ejk~sjAj~- Ejk~ejAkj)/pj; we call w~(A) the

relative weight of job Jj. Using Smith's ratio rule, we solve problem (L A) by sequencing
the jobs in order of nonincreasing relative weights. From standard Lagrangian theory,
we know that L(A) is a lower bound for the 1 Iprec IEwjCj problem for any A >~ 0. In
this respect, we like to find the vector A* that induces the best Lagrangian lower bound.
This is the Lagrangian dual problem of l lprec[EwiC j, referred to as problem (D):

maximize L(A)

subject to Ajk>~ 0 for each (Jj , J~) ~A.

Theorem 2. Problem (D) is solvable in time polynomial in n through the ellipsoid
method.

For a proof, see [37].
In practice, the ellipsoid method is too slow to be of use. We develop a quick ascent

direction algorithm to approximate the optimal solution of problem (D). The notion of
directional derivative plays a central role in ascent direction algorithms. The directional
derivative of the function L at A is defined as

L(:~ + eu) - L (A)
Lu(A) --- lim

E$0

for any vector u ~ R A. Hence, A is optimal if and only if

Lu(A).%<0, for a l l u v i a .

If L~(A) > 0 for some fi ~ RA, then fi is called an ascent direction of L at A: we get an
improved lower bound by moving some scalar step size A along ft. In general, it is
difficult to compute directional derivatives. However, it is easy to compute them for the
primitive vectors. A vector u is called primitive if ujk = 0 for all (Jj, Jk) but one.
Hence, there are at most 2[A[different primitive directional derivatives at any A.

418 S.L. ran de Velde /Mathematical Programming 69 (1995) 413-428

First, we derive expressions for the primitive directional derivatives. In an optimal
solution for the Lagrangian problem, the position of Jj depends on its relative weight:
the larger its relative weight, the smaller its completion time. If its weight is tied, then its
position also depends on the way ties are settled. Let C+(A) denote the earliest possible
completion time of Jj in an optimal schedule for problem (L,); let Cj-(A) denote the
latest possible completion time of Jj in an optimal schedule for problem (L,).
Increasing Ay k by a specific « > 0 will increase the relative weight of Jy from w~(A) to
wj(A) + ¢/py; simultaneously, it will decrease the relative weight of Jk from w~(A) to
w~(A) - E/p k. It is possible to choose é > 0 small enough to ensure that at least one
optimal schedule for problem (L a) remains optimal (see [37]). In such an optimal
schedule, Jj must be completed on time C+(A) and J« must be completed on time
C~-(A). Increasing Ay k by such a small e affects the Lagrangian objective value by
é [C f (A) - C~-(A)+Pk]- From this, we derive that the primitive directional derivative
for increasing Ajk at A, denoted by I~(A), is

I~(A) = C f (A) -Ck-(A) +Pk for each (Jy, Jk) GA.

If I~(A) > 0, then increasing Aik is an ascent direction: we get an improved objective
value by moving along this direction. The sign of each I~(A) is determined in constant
time. Note that for each arc (Jj, Jk) GA, we have

c : (,) > c ; (,) + pk "* w~(,) < w'~(,) ,

hence, I~(A) > 0 ¢~ w~(A) < w~(A). In a similar fashion, we find that I~(A), the
primitive directional derivative for decreasing Ajk at each A with Ajk > 0, is

I~(A) = C~-(A) - CT(A) - p k for each (Jj , Jk) GA.

If I~(A) > 0, then decreasing Ajk is an ascent direction: we get an improved objective
value by moving along this direction.

Given an ascent direction, we invariably move by the step size that maximizes the
increment to the objective value. If I~(A)> 0, then the increment is maximized by
moving to the first point where increasing Aj~ is no longer an ascent direction. At this
point, the relative weights of Jj and J« are equal. Hence, the required step size is the
value A for which

w~(A) + Alp j = w'~(A) - A lpk ,

it is determined in constant time. Consider now the case I~(A) > 0. To ensure that the
Lagrangian vector remains nonnegative, we impose the condition that A ~< Ajk. If this
condition is not restrictive, then we move to the first point where decreasing Ajk is no
longer an ascent direction. If it is restrictive, then we take the step size as large as
possible. Hence, the step size that maximizes the increment of the objective value is
computed as the largest value A ~< Ay k for which

w~(A) - A /p j >~ w',(A) + A/p~.

Eventually, termination occurs at some Ä at which no ascent direction exists any more.
Later on, we will analyze the termination conditions. We first give a step-wise
description of the ascent direction algorithm.

S.L. ran de Velde / Mathematical Programming 69 (1995) 413-428 419

Aseent Direction Algorithm
Step O. Set Ajk = 0 for each (Jj, Jk) GA, and compute the relative weights w~(A).
Step 1. For each (Jp Jk) ~ A, do the following:
(a) If w~(A) < w~(A), then compute the step size

A = [w~(A) - w}(A)] PjPk/(Pj + Pk)"

Put hjk ~ Ajk + A, and update w}(A) and w~(A).
(b) If w}(A) > w~(A), then compute the step size

A--min{*j~, [w~(X)-w'~(*)]pjp~/(p~ +p,)}.
Put Ajk ~ Ajk -- A, and update w}(A) and w~(A).

Step 2. If no multiplier adjustment has taken place, then compute L(A) and stop;
otherwise, retum to Step 1.

Let I be the number of times that Step I is executed. The ascent direction algorithm
runs then in O(I] A] + n log n) time. Since we cannot bound I by a polynomial in n
and { A {, the ascent direction algorithm is presumably not a polynomial-time method. In
practice, however, the algorithm is very fast and produces very good approximate
solutions.

Theorem 3. The ascent direction algorithm described above generates a series of
monotonically increasing lower bounds for problem (P).

Proof. Given an arbitrary A >~ 0, we first assume w~(A) < w~(A); hence, I~(A) = CT(A)
- C ~ - (A) + p k > 0 , and increasing Arg is an ascent direction. We reindex the jobs
according to nonincreasing relative weights, settling all ties arbitrarily except for Jj and
Je: we give Jj the smallest index possible and J« the largest index possible. Let
C 1 , . . , C n be the job completion times for the sequence (Ja Jn); note that Cj =
Cj+(A) and C k = C~-(A). Hence, in more detail, the schedule under consideration is
(J1 , ' . . , Jk -1 , Jk, J k + l , " . , J j - ~ Jj, Jj+l Jn). Let A be the step size as dictated,
and let Ä denote the vector of Lagrangian multipliers after increase of Ajk by A. Since A
and Ä differ only in one component, the relative weights for all jobs but Jj and J«
remain the same. An optimal schedule for problem (L~) is then (J1 ,Jk-1,
J g + l , " . , J » Jj, J» Jt+l J j - l , J j+ l , ' " , Jù) , for some J/ with k + l <~l<~j-1;
the job completion times for this schedule can conveniently be expressed in terms of
C 1 , . . , Cn. We now demonstrate that L(Ä) > L(A); it is essentially a matter of writing
out. For brevity, we let /z i = w i + E«, ~ «i Aih -- ~'J, ~ ~, Ahi for each i (i = 1 , . . , n). We
have

k-1 n l j - 1
L(Ä) = E ~ic,+ E ~ici + E »,(C,-p«) + E ~~(Ci+p3

i= l i = +1 i=k+l i= l+ l

A): l]
+ (» ~ - ,~) +pj + E

i=k+ l pi

~~ 1 +(/x j + A) C ? (A) - p k - Pi
i=1+1

420 S.L. ran de Velde / Mathematical Programming 69 (1995) 413-428

+ ~ ~-~ A ihph+AP k
i= 1 J,~~~e i

j -1

=L(A)+ E (l"6iPj--ld'yPi)"[-
i=l+1

l

E
i=k+l

(tzkPi - ~ i P k) --k I~kPj -- txjPk

I(~ i l) (~)]
+ A (A) - - P k - - E pi - C k - (A) + p / + E pi + A p k .

i=1+1 i=k+l

Since Jy and Jk are adjacent in the second schedule, we have that

A) - P k - E pi - Ck- (A) . -bp j+ E pi = - p k .
i=1+1 i=k+l

This implies that

j - 1 l

L(Ä) =L(A) + E (l~iPy--t'~jl)i) + E (l'z,~Pi--l'6iPk) + lxkPj--txjPk
i=l+1 i=k+l

l j - 1

= L (A) + E (txk/P~-- I~i/Pi) PiPk + E (I~i/Pi-- I~j//Pj)PiPj
i=k+l i=l+1

+ (tzk/P~ - tz:/pj)pjp k
t y-1

= L (A) + E [Wk(A)--W'i(A)]PiPk+ E [w:(A)-w~(A)]PiPj
i=k+ l i=l+ l

Since w~(A) > w~(A), w~(A) < w~(A) for each i (i = k + 1 , l), and w~(A) > w~(A) for
each i (i = l + 1 , j - 1), we find that L(Ä) > L(A).

The analysis for the case l~(A) > 0 proceeds in a similar fashion. []

Consider the 10-job example from Potts [26] for which the processing times, weights,
and precedence graph are given in Table 1 and Fig. 1.

If we put Ajk = 0 for all (Jj, Jk) ~ A, then an optimal schedule is (J3, Jlo, Ja, "/9,
J7, "]6, J2, Js , Js, Jl) with total cost 1055. The same schedule and lower bound are
obtained by disregarding the precedence constraints and solving 1 I1EwyCj. The schedule
is not feasible for the original problem; for instance, J10 is executed before J6 although
(-/6, Jlo) CA. Since w~(A)< W]o(A), increasing /~6,10 is an ascent direction. The

Table 1
Processing times and weights

J1 "12 J3 "]4 "[5 J6 J7 J8 J9 J10
pj 6 9 1 3 9 5 7 7 6 2
wy 2 5 9 6 5 4 9 3 8 5

S.L. ran de Velde / Mathematical Programming 69 (1995) 413-428 4 2 1

Fig . 1. P r e c e d e n c e g r a p h .

appropriate step size is A = ~Z, giving /~6 10 = 17 , ~-. We have that (J3, J4, J9, J7, J6, J10,
"]2, Js, "]8, Jl) is an optimal schedule for the new Lagrangian problem with value
L(A) = 1106. Proceeding along these lines, we get the value L(A)= 1526.69 upon
termination. Potts' procedure, requiring ~~(n 4) time, proceduces the lower bound 1519;
the upper bound generated by the tree-optimal heuristic is 1530. The duality gap is
therefore no more than 3.

In the remainder, we let Ä denote the vector of Lagrangian multipliers upon
termination of the ascent direction method. Using the termination conditions that all
primitive directional derivatives are nonpositive, we derive some properties for Ä and for
the optimal solutions of problem (L~). These properties are important for the develop-
ment of approximation and optimization algorithms for 1 [prec I~wyCy.

D e f i n i t i o n 1. The job set 2 ~ ß is called a block for a given A ~> 0 if

w~(A) = c foreach J j ~ ~ ,

where c is some positive real constant.

In any optimal schedule to problem (La), the jobs in a block are interchangeable
without affecting the Lagrangian objective value L(A). For any given A >~ 0, the job set
B is decomposed into B(A) blocks ~ 1 , . . , ~'n(x), indexed such that

w~(A)=c b foreach J i ~ ~ b , b = l B(A),

with C 1 > • • • > CB(A) > O,

Theorem 4. Any vector A satisfying the termination conditions induces a decomposition
of f into B(A) blocks ~q~l,..., ~ß(a) such that, if (Jj, Jk) GA and Jk ~~o , then

] j e . ~ , u . . . u.~'~,

and

422 S.L. ran de Velde / Mathematical Programming 69 (1995) 413-428

Proof. If one of these claims were not true, then we could identify an ascent direction,

contradicting the assumption that the termination conditions are satisfied. []

We call a decomposition induced by a vector that satisfies the termination conditions
a dual decomposition. Both A* and Ä induce dual decompositions. For our example, the

dual decomposition induced by Ä consists of three blocks: ~ l = {J3}, "-~2 = {J2, J4 },
11 6

and ~3 = {J1, Js, J6, JT, Js, J9, Jlo}, with c 1 = 9, c 2 = ~ , and c 3 = 7, respectively.

3. Approximation

We present an approximation algorithm that exploits the agreeable structure of the
dual decomposition induced by A. For b = 1 , BX, let ~r» be a feasible sequence for

the jobs in ~'». From Theorem 4, we derive the following.

Corollary 1. The sequence o-= (0-1, 0-2,-.., 0-8G)) is feasible for the original problem.

If each 0-b is optimal for the 1 Iprec IE«j~ ~wjCy problem (b = 1 B(Ä)), then
we have the best such o-. From a theoretical point of view, each 1 I prec I E«j ~ ~»wjC~
problem is as hard as the original problem; from a practical point of view, each problem
is simpler, because it is of a smaller dimension. Dynamic programming in tandem with a
compact labeling scheme [23,32] solves small instances quickly. If the size of a block is
too large for the application of dynamic programming, then we resort to the tree-optimal
heuristic to find an approximate solution. However, even if the dual decomposition is
induced by h* and o- is composed of optimal subsequences, then we still have no
guarantee that tr is an optimal sequence; all optimal sequences may have been excluded

by the dual decomposition.
For the example, the optimal sequences for the first two blocks are trivial: 0-1 = (J3),

and 0-2 = (J2, Ja); using dynamic programming, we find 0- 3 = (J1, JT, Js, J9, J6, Js,
J10); the tree-optimal heuristic gives the same sequence. We obtain o-= (J3, J2, J4, J1,
J7, Js, J9, J6, Js, Jlo) with total cost 1530.

We tested the approximation algorithm and the tree-optimal heuristic on problems
with 20, 3 0 , . . , 100 jobs. The processing times were drawn from the uniform distribu-
tion [1, 100]; the weights were generated from the uniform distribution [1, 10]. The
precedence graph was induced by the probability P with which each arc (Jj, Jk) with
j < k was included. The graph obtained in this way was then stripped down to its

transitive reduction. We generated problems for P = 0.01, 0.02, 0.04, 0.06, 0.08, 0.10,
0.15, 0.20, 0.30, and 0.50. For each combination of n and P we generated live
problems; hence, 45 problems were generated for each value P. This procedure parallels
Potts' procedure to generate instances. Furthermore, we solved each subproblem to
optimality if less than 15000 labels were needed; otherwise, we used the tree-optimal

heuristic.

S.L. ran de Velde / Mathematical Programming 69 (1995) 413-428 423

Table 2
Experimental results; for each value of P and for either approximation algorithm, we present the average
value (upper bound)/L(A) and the number of times out of 45 that the upper bound equaled the lower bound

P Tree-optimal heuristic Dual decomposition

UB/L(Ä) # opt UB/L(Ä) # opt

0.01 1.00007 42 1.00007 42
0.02 1.00074 15 1.00069 15
0.04 1.00516 8 1.00248 10
0.06 1.01122 2 1.00584 2
0.08 1.01303 1 1.00934 1
0.10 1.01731 2 1.01211 4
0.15 1.01993 0 1.01765 0
0.20 1.02050 0 1.01614 2
0.30 1.02447 0 1.02075 2
0.50 1.02831 2 1.02616 3

Potts points out that the relative difficulty of an instance depends on I A I rather than
on n. We have therefore classified the results according to the value P. For each P, we
present the average value (upper bound)/L(Ä) for both approaches (see Table 2). The
columns " # opt" indicate for how many problems out of 45 the upper bound equaled
the lower bound; this figure gives the number of times we found a provably optimal
solution. On the average, the dual-decomposition algorithm outperforms the tree-optimal
heuristic approach for any problem class. For the 450 instances altogether, the tree-opti-
mal heuristic produced only 16 better solutions; moreover, each of these was only
marginally better.

We have coded both algorithms in the computer language C; all experiments were
conducted on a Compaq-386/20 Personal Computer. The time to compute L (Ä) is
virtuaUy negligible. The tree-optimal heuristic requires O(n] A 1) time and is sensitive to
instances with many precedence constraints. The running time of the dual decomposition
approximation algorithm mainly depends on the number of calls on the dynamic
programming procedure and the maximum label number. For n <~ 40, the tree-optimal

heuristic needed a few seconds at most. On the average, our approximation required
only slightly more time, there were occasional peaks, however, due to high labels in the
dynamic programming subroutine. For n ~> 60, the tree-optimal heuristic needs about
twice or three times as much computation time as the dual decomposition algorithm
although it needs never more than 1 minute; even the peaks of the dual decomposition
algorithm remain then below the average of the tree-optimal heuristic.

Potts also points out that small and large values of P generate relatively easy
problems. For small P, only few precedence constraints are involved; for large P, most

disjunctive constraints are settled. Our results support the claim for small P: the duality
gap is very small. Since the optimal-tree heuristic generates good approximate solutions
for all values of P [26], there are two possible explanations for the growth of the gap

between upper and lower bound for larger values of P. It may be that the ascent
direction method produces worse approximate solutions in case P is large; it is more
likely, however, that the duality gap is an increasing function of P.

424 S.L. ran de Velde / Mathematical Programming 69 (1995) 413-428

4. Primal decomposition

For b = 1 B, let o-ó* denote an optimal sequence for the problem
11prec IE«~~/bwyCj, where f b ~ J - A decomposition of the job set f into B mutually
disjoint subsets ~ , ~ is said to be a primal decomposition if the sequence
0-= o-1", 0"8* is optimal for the original l lprecrEwjC i problem. We already
mentioned that a dual decomposition may exclude all optimal sequences; a dual
decomposition only suggests a primal decomposition. In this section, we try to establish
to what extent a dual decomposition coincides with a primal decomposition.

If a dual decomposition excludes all optimal solutions, then there are at least two jobs
belonging to different blocks with no path in A between them for which the processing
order should be reversed. Suppose Jj ~ ~ b and Jk ~~b+m (m > 0) are such jobs. In all
feasible sequences obtained by the dual decomposition approach, Jj precedes J~; but in
all optimal sequences, Jk precedes Jj. Hence, the arc (Jk, Jy) can be added to the arc set
A with impunity. Let problem (L;~(k, j)) be the Lagrangian problem for the arc set
A U (Jk, Jj), and let A(k, j) >~ 0 be a vector of Lagrangian multipliers. Since the arc
(Jk, Jj) does not exclude the optimal solution, L(A(k, j)) is still a lower bound on the
optimal solution, for any A(k, j) 7> 0.

This observation gives rise to the following result. Let ~ » . . . , 2 B be the blocks of
some dual decomposition, and let UB be an upper bound for the 1 IpreclET=iwjCj
problem.

Theorem 5. I f there are two jobs Jj ~ ~ b and Jk ~~b+,~ (b = 1 , . . , B - 1, m =
1 , B - b) with no path in A between them for which

L(A(k, j)) > U B - 1 , (4)

then Jj precedes Jk in any optimal solution for the 1 [prec [EwjCj problem.

If (4) holds for all such J1 and Je, then the decomposition is a primal decomposition;
in fact, due to transitivity, it is sufficient that (4) holds for specific Jy and Jk only.

Corollary 2. I f for each pair of jobs Jj ~ ~ b and Jk ~ ' ~ » + , (b = 1 B - 1,
m = 1 , . . , B - b) such that

(1) there is no path in A from Jj to Jk,
(2) Jj has no successors in d b U . . . U~~q~ó+m_l, and
(3) Jk has no predecessors in ~b+l U . ' . U~b+m,

we have that L(A(k, j)) > UB - 1 for some A(k, j) >~ O, then the dual decomposition is

a primal decomposition.

Accordingly, if the dual decomposition induces a primal decomposition and if UB is
associated with the sequence that is composed of optimal subsequences, then UB is the
optimal solution value of the 1 Iprec IEwjCj problem.

S.L. ran de Velde / Mathematical Programming 69 (1995) 413-428 425

Corollary 3. I f for some block ~ b , each pair of jobs J] ~ ~ b and Jk ~~b+m
(m = 1 B - b) such that

(1) there is no path in A f-rom Jj to Jk,

(2) Jj has no successors in ~ b U • • • U~b+,ù_ 1, and
(3) Jk has nopredecessors in ~'b+l U " '" U~'b+ m,

satisfies L(A(k, j)) > UB - 1 for some A(k, j) >~ O, then the subsets ~ 1 U • . . U ~ b
and ~b+ 1 U • • • U ~ B constitute a primal decomposition of J .

In this case, we say that the dual decomposition partly concurs with a primal
decomposition. Whether we succeed to establish that a dual decomposition partly or
completely concurs with a primal decomposition depends on the quality of the lower
bounds L(h(k, j)). From this point of view, we like to have available the vector of
optimal Lagrangian multipliers for problem (La(k, j)); let A* (k, j) denote this vector.
Of course, A* (k, j) is as difficult to find as the vector A*. However, an ascent direction
method to approximate A* (k, j) is readily available: we apply the direction method for
problem (D), adjusted for the additional arc (J » Jy), using as initial vector h(k, j)(0)
obtained as A(k, J1ihi'~(O)-~-Äih for each (Ji, Jh)~A and A(k, j)~°)=0. We note that
L(A(k, j)(0))= L(A). At A(k, j)(m, all primitive directional derivatives are nonpositive
but one: we have l~-j(A(k, j)(0))> 0; increasing A(k, J)kj is an ascent direction. If Jj
and Jk belong to blocks that are rar apart from each other, then the Lagrangian lower
bound corresponding with the point where the sign of this directional derivative changes
may already exceed UB - 1. This Lagrangian lower bound is conveniently computed;

this is stipulated in the next theorem, where P(~b) is defined as P(,-~b)= ~Si~ ~bPi"

Theorem 6. I f there are two jobs Jj E~-~ b and Jk ~~b+m (b = 1 , B (Ä) - 1,
m = 1 , . . , B(Ä) - b) for which there is no path in A from Jj to Jk such that

l

L (Ä) +(Cb- -Cb+m)p jP t + ~., (Cb- -Ci)p (3~ i)P j
i = b + l

b+m-1

+ E (C i - C b + m) P (2 i) P k (5)
i=/+1

exceeds UB - 1, where I is the largest index with c I >~ (pjc » + pk C »+m) / (pk +pj) , then
J] precedes Jk in all optimal solutions for the 1 [prec IEwjCj problem.

Proof. The validation of this proposition requires the same logic applied in the proof of
Theorem 3. []

If' (5) does not hold, then we run the ascent direction algorithm until no ascent
directions can be found any more; upon termination, we get the vector Ä(k, j).

We now work out the effects of these propositions on our example. According to
Corollary 3, we need consider only the pairs (J3, J•) and (J3,-/4) in order to
decompose the jobs into ~q~l on the one hand and ~2 U~3 on the other hand. Including

- ~) X l (.12, 3r3) in A, we get, using (5), that L(A*) + (c 1 c2)p2P3 ----- 1526.69 + (9 - n

426 S.L. ran de Velde /Mathematical Programming 69 (1995) 413-428

× 9 > 1529; we conclude that J3 precedes J2 in any schedule with cost less than 1530.
Similarly, if we include (J~, Ja) in A, then, according to Theorem 6 (where we have
l = 1), we taust verify if

L(Ä) + (c 1 - c3)p3P4 + (c 2 - c 3) p (, ~ 2) P 4 > UB - 1.

This is so; hence, Ja taust precede J4, implying that we may decompose the job set into
subsets ~'1 and "-~'2 U~-~3. We must consider the pairs (J4, J1), (J4, .Is), and (Ja, Js) to
separate the blocks ,~'2 and ,~'3- More than one iteration in the ascent direction
procedure is required. Since L(Ä(1, 4)), L(Ä(5, 4)), and L(Ä(8, 4)) exceed 1529, we
conclude that the dual decomposition concurs with a prima1 decomposition. Further-
more, the schedule with value 1530 is optimal, since it was obtained from the optimal
sequences for the individual blocks.

The theorems and corollaries presented in this section are applicable in a preprocess-
ing phase in conjunction with any existing branch-and-bound algorithm. Their main
purpose is to derive additional precedence constraints and to decompose the problem
primally in order to reduce the size of the search tree.

5. Conclusions

We have developed a fast ascent direction algorithm for a scheduling problem
formulated in terms of the job completion times. We also have shown that upon
termination of the algorithm we get a dual decomposition of the original problem, which
can be used for designing approximative and enumerative algorithms.

We claim that about any scheduling problem for which the Lagrangian relaxation
problem reduces to an analog of problem (P), that is, a problem solvable by Smith's
ratio rule, can be dealt with in the same spirit. For more details, we refer to [37]. The
strength of the lower bound and the effectiveness of the dual decomposition approach,
however, depend on the structure of the problem and the nature of the dualized
constraints.

Acknowledgements

The author likes to thank Bert Gerards, Han Hoogeveen and Jan Karel Lenstra for
their helpful suggestions.

References

[1] D. Adolphson and T.C. Hu, "Optimal linear ordering," SIAMJournal of AppliedMathematics 25 (1973)
403 -423.

[2] E. Balas and N. Christofides, " A restricted Lagrangean approach to the traveling salesman problem,"
Mathematical Programming 21 (1981) 19-46.

S.L. van de Velde / Mathematical Programming 69 (1995) 413-428 427

[3] O. Bilde and S. Krarup, "Sharp lower bounds and efficient algorithms for the simple plant location
problem," Annals of Discrete Mathematics 1 (1977) 79-88.

[4] N. Christofides, "The shortest hamiltonian chain of a graph," SIAM Journal of Applied Mathematics 19
(1970) 689-696.

[5] M.E. Dyer and L.A. Wolsey, "Formulating the single-machine sequencing problem with release dates as
a mixed integer program," Discrete Applied Mathematics 26 (1990) 255-270.

[6] D. Erlenkotter, " A dual-based procedure for uncapacitated facility location," Operations Research 21
(1978) 1114-1127.

[7] M.L. Fisher, "A dual algorithm for the one-machine scheduling problem," Mathematical Programming
11 (1976) 229-251.

[8] M.L. Fisher, "The Lagrangian relaxation method for solving integer programming problems," Manage-
ment Science 27 (1981) 1-18.

[9] M.L. Fisher, "An application oriented guide to Lagrangian relaxation," Interfaces 15 (1985) 10-21.
[10] M.L. Fisher, R. Jaikumar and L.N. van Wassenhove, "A multiplier adjustment method for the

generalized assignment problem," Management Science 32 (1986) 1098-1103.
[11] M.L. Fisher and P. Kedia, "Optimal solution of set covering/partitioning problems using dual heuristics,"

Management Science 36 (1990) 674-688.
[12] A.M. Geoffrion, "Lagrangian relaxation and its uses in integer programming," Mathematical Program-

ming Study 2 (1974) 82-114.
[13] R.L. Graham, E.L. Lawler, J.K. Lenstra and A.H.G. Rinnooy Kan, "Optimization and approximation in

deterministic sequencing and scheduling: a survey," Annals of Discrete Mathematics 5 (1979) 287-326.
[14] M. Guignard and K. Spielberg, " A direct dual method of the mixed plant location problem with some

side constraints," Mathematical Programming 17 (1979) 198-228.
[15] A.M.A. Hariri and C.N. Potts, "An algorithm for single-machine sequencihg with release dates to

minimize total weighted completion time," Discrete Applied Mathematics 5 (1983) 99-109.
[16] A.M.A. Hariri and C.N. Potts, "Algorithms for two-machine flow-shop sequencing with precedence

constraints," European Journal of Operational Research 17 (1984) 238-248.
[17] M. Held and R.M. Karp, "The traveling salesman problem and minimum spanning trees," Operations

Research 18 (1970) 1138-1162.
[18] M. Held and R.M. Karp, "The traveling salesman problem and minimum spanning trees: Part II,"

Mathematical Programming 1 (1971) 6-25.
[19] M. Held, P. Wolfe and H. Crowder, "Validation of subgradient optimization," Mathematical Program-

ming 6 (1974) 62-88.
[20] J.A. Hoogeveen and S.L. van de Velde, "Stronger Lagrangian bounds by use of slack variables:

applications to machine scheduling problems," Mathematical Programming 70 (1995), to appear.
[21] W.A. Horn, "Single-machine job sequencing with treelike precedence ordering and linear delay

penalties," SIAM Journal of Applied Mathematics 23 (1972) 189-202.
[22] E.L. Lawler, "Sequencing jobs to minimize total weighted completion time subject to precedence

constraints," Annals of Discrete Mathematics 2 (1978) 75-90.
[23] E.L. Lawler, "Efficient implementation of dynamic programming algorithms for sequencing problems,"

Report BW 106, Centre for Mathematics and Computer Science (Amsterdam, 1979).
[24] J.K. Lenstra and A.H.G. Rinnooy Kan, "Complexity of scheduling under precedence constraints,"

Operations Research 26 (1978) 22-35.
[25] T.E. Morton and B.G. Dharan, "Algoristics for single-machine sequencing with precedence constraints,"

Management Science 24 (1978) 1011-1020.
[26] C.N. Ports, "A Lagrangean based branch-and-bound algorithm for single machine sequencing with

precedence constraints to minimize total weighted completion time," Management Science 31 (1985)
1300-1311.

[27] C.N. Potts and L.N. van Wassenhove, "An algorithm for single-machine sequencing with deadlines to
minimize total weighted completion time," European Journal of Operational Research 33 (1983)
363-377.

[28] C.N. Potts and L.N. van Wassenhove, "A branch and bound algorithm for the total weighted tardiness
problem," Operations Research 33 (1985) 363-377.

[29] M. Queyranne and A.S. Schulz, "Polyhedral approaches to machine scheduling," Working paper,
Technische Universit~it Berlin (Berlin, 1994).

428 S.L. ran de Velde / Mathematical Programming 69 (1995) 413-428

[30] M. Queyranne and Y. Wang, "Single-machine scheduling polyhedra with precedence constraints,"
Mathematics of Operations Research 16 (1991) 1-20.

[31] M. Queyranne and Y. Wang, "A cutting plane procedure for precedence constrained single-machine
scheduling," Working paper, University of British Columbia (Vancouver, 1991).

[32] L. Schrage and K.R. Baker, "Dynamic programming solution of sequencing problems with precedence
constraints," Operations Research 26 (1978) 444-449.

[33] J.F. Shapiro, "A survey of Lagrangian techniques for discrete optimization," Annals of Discrete
Mathematics 5 (1974) 113-138.

[34] J.B. Sidney, "Decomposition algorithms for single-machine sequeneing with predecence relations and
deferral costs," Operations Research 23 (1975) 283-298.

[35] W.E. Smith, "Various optimizers for single-stage production," Naval Research Logistics Quarterly 3
(1956) 59-66.

[36] S.L. van de Velde, "Minimizing the sum of the job completion times in the two-machine flow shop by
Lagrangian relaxation," Annals of Operations Research 26 (1990) 257-268.

[37] S.L. van de Velde, "Machine scheduling and Lagrangian relaxation," Ph.D. Thesis, CWI (Amsterdam,
1991).

[38] L.A. Wolsey, "Formulating single-machine scheduling polyhedra with precedence constraints," in: J.
Gabszewicsz, J.-F. Richard and L.A. Wolsey, eds., Economic Decision-Making: Garnes, Econometrics
and Optimization (North-Holland, Amsterdam, 1990).

