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ABSTRACT

For a solvable monotone complementarity problem we show that each
feasible point which is not a solution of the problem provides simple
numerical bounds for some or all components of all solution vectors.
Consequently for a solvable differentiable convex program each primal-dual
feasible point which is not optimal provides simple numerical bounds for
some or all components of all primal-dual solution vectors. We also give an
existence result and simple bounds for solutions of monotone complementarity
problems satisfying a new, distributed constraint qualification. This
result carries over to a simple existence and boundedness result for dif-

ferentiable convex programs satisfying a similar constraint qualification.
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SIMPLE BOUNDS FOR SOLUTIONS OF MONOTONE
COMPLEMENTARITY PROBLEMS AND CONVEX PROGRAMS

0. L. Mangasarian, L. McLinden

1. The Monotone Complementarity Problem

This work is based on an extremely simple, but apparently unnoticed,
property of the monotone complementarity problem [2,5,8,11,12] of finding

a (z,w) in the 2k-dimensional Euclidean space R2k such that

(1.1) w=F(z)>0,2z2>0, zw =0

k k k

Here F: D -~ R" is a monotone function on D where R+ <D < R”, that is

(2= 2 (Fz8) - F(2') 2 0 forall 2, 22D

The property is the following:

1.1 Theorem Let (z,w) be some feasible point of a solvable monotone
complementarity problem (1.1), that is w = F(z) > 0, z > 0. Any solution

(z,w) of (1.1) is bounded as follows:

(a) “EIH]:= 2 z, < zw/min W, 17 zw/min W, (T#¢)
jel ! Te jel |

(b) i lly < 2w /min z; 4 (0#¢)

(c) HEI, WJ”]:i aﬂ/nﬁn {z; 5 wiel} (Iud#9)

where I = {i|w,>0} and J = {i]z; > 0}.
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Proof For any solution (z,w) of (1.1) we have by the monotonicity of

F and zw = 0 that
W > Zw + zw

Hence by the nonnegativity of (z,w) and (zZ,w) we have

(a) W > 2w, > z;lly min wy g
(b) zw > zguy > |lwylly min z;
(c) ZW 2 Zpwp tZgWg > Iz}, WJH] = min {z, 5. w; ¢} 0

Theorem 1.1 is a partial extension to the monotone complementarity
problem of a corresponding result, Theorem 2.2 of [71, for the positive
semidefinite linear complementarity problem. Note that, unlike the linear
case, feasibility for the nonlinear monotone complementarity problem does
not imply solvability as shown by the simple example of [10].

Theorem 1.1 shows that any feasible point (z,w) of a solvable
monotone complementarity problem (1.1) which is not a solution of the
problem (so that both I and J are nonempty) provides some
jnformation about the magnitude of the solution set. In certain
cases, such as when w > 0, we get a bound on all components of all
solution vectors Zz.

With the bounds given by Theorem 1.1 it is possible to obtain bounds
for optimal solutions and multipliers of solvable differentiable convex
programs once they are cast as monotone complementarity problems. (See
Section 2.) But before doing that we show how the bounds of Theorem 1.1
can be extended to approximate solutions of monotone complementarity

problems which may not even be solvable. Let




(1.2) a:= inf {zw|w=F(z)>0, z>0} > 0,

and for € >0 Tlet (z(e), w(e)) be an e-solution of the optimization

problem of (1.2), that is

(1.3) w(e) = F(z(e)) >0, z(e) 20, a + € > z(e)w(e) > a

Note that for any e > 0, an e-solution always exists provided problem

(1.2) has at least one feasible point. A O-solution exists provided the
infimum of (1.2) is attained, that is the infimum is a minimum. Furthermore
if o =0, then an e-solution of (1.2) is an "approximate" solution of the
complementarity problem (1.1) which is an exact solution if e = 0. With
these concepts in mind it follows from (1.2), (1.3) and the monotonicity of

F that, for any feasible (z,w) and e > 0,
(1.4) 2zw + € > zw + o + e > zw + z(e)w(e) > zw(e) + z(e)w

Consequently a generalization of Theorem 1.1 is possible if, instead of

one feasible point (z,w), we consider p the feasible points
(zj,wj), j=1,2,...,p, of the optimization problem of (1.2) and correspond-
. p .
ing weights A > 0, j=1,...,p, such that } A = 1. Then by (1.4) we
j=1
have that

P . .. P .. . S N P, . P . .
(1.5) 27 MW se> ¥ Wzdwd vare> T Ad2wd +2(e)ite) > | AIzTu(e) + § AIJz(ew?
j=1 j=1 j=1 3=l =1

Then, arguing as in Theorem 1.1 we obtain the following bounds.

1.2 Theorem let F be monotone on RE and let (29, w’), j=1,2,...,p, be

feasible points of the optimization problem of (1.2), that is, w = F(zj) >0,



. . P
A5 0, §=1,2,....p. Let A 20, =1,2,...,p, ] A =1 and let e > 0. Any
j=1
e-solution (Z(g), w(e)) of (1.2) defined by (1.3) is bounded as follows:

P, P
(a) lz; () Il g:%Z]AJszJ+a+E)/nﬁn Wi g §=(QZTAJZJWJ+E: fmin @,
- 0,4, n 3 J
(b) HWJ(&?HHé(.Z Mzowlrare) fmin 2, o< 22 W zwdae ) [min 2.,
- b i3 5 ~ N B in{% W
(c) [[z{(e)s wy(e)lly 2 JZ]A 2wl +are /m1n{zi€J,wi€I}§=U%§]x z7w +§)/m1n{zied,wiél}
where 1 = {i|d; >0}, J = {i[2;>0}, 2 ‘ZAJ‘] and w—ZAJJ
j=1 j=1

We note that the first inequality of each of (a), (b) and (c) of Theo-
rem 1.2 remains valid even if we do not require that w? > 0 and zj > 0, but

merely that 20 ¢ D, where RE cDc Rk,

F s monotone on D and Z >0
and W > 0. This remark will be employed in Theorem 1.3.

The bounds established by Theorem 1.2(a) provide motivation for the
proof of the following existence result, which employs a new "distributed”

constraint qualification.

1.3 Theorem (Existence and boundedness of solutions of monotone complemen-

tarity problems under a distributed constraint qualification) Let

F: D~ Rk be monotone and continuous on D such that R& c D c Rk, Tet
. : . R p ..
73 ¢ D, w o= F(29) e Rk, j=1,2,...,p, be such that z:= ) Ad Y > 0,
j=1
LN I i 4
w:= ) A“w’ > 0 for some A > 0, j=1,2,...p> } xj =1. Then the complemen-
j=1 i=

tarity problem (1.1) is solvable. Any solution (z,w) is bounded as follows:

J . oA
(1.6) 21l < z ebd) fin




Proof The bound (1.6) follows from Theorem 1.2(a) with o =€ =0 and the
remark following it, once we have established the existence of a solution to

the complementarity problem (1.1), which we proceed to do now by means of the

Brouwer fixed point theorem [1,14]. Let

C:= {z]z>0, Wz<WZ+¥1,

(1.7) y > max {1,-@2+ J AJzdwd} > 1

The set C 1is nonempty, compact and convex and the single-valued mapping [4]

defined by the 2-norm projection of z - F(z) on C:

z »argmin ||y -z +F(z)]],
yeC

defines a continuous function from C dinto itself. Hence by Brouwer's
theorem this function must have a fixed point zeC. Such a point satisfies

the minimum principle optimality condition [6]
(1.8) 2eC, F(Z)(y-2) >0 WyeC

If @z < @2 +y then Zz solves (1.1). Indeed z + éei, i=1,2,...,k, 1is
in C for & sufficiently small and positive and e; the ith unit coordi-

nate vector, and hence by (1.8) it follows that F(z) >0, z > 0, and

zZF(z) < 0 by taking y =0 in (1.8). We now show that the case
(1.9) Wz = WZ + vy
cannot occur. For if it did, then from the monotonicity of F we have

zF(z) > - wJ + sz + sz j=1,2,...,p



where w:= F(z). Multiplying by A and summing over j gives
F(z) > Z PPN R R 1

> %w = 2F(z) (By (1.9) and (1.7))

Hence F(Z)(Z-2) < 0 which contradicts (1.8). So (1.9) cannot occur and

Z solves (1.1). 0

We note that the existence part of the above theorem for the ordinary
constraint qualification, that is p =1, was obtained by Moré
[12, Theorem 3.2] and by one of the authors in [8, Theorem 1] for the case
of multivalued monotone mappings.

It is interesting to note that the complementarity problem of Megiddo
[10] which has no solution does not satisfy the distributed constraint
qdalification of Theorem 1.4 and hence ihdicateswfﬁémgﬁé;ﬁﬁéégwa%AfhafvV’
condition. On the other hand Theorem 1.2(a) can be used to give an exact
upper bound on the bounded component of the solution of problem (1.2) for
Megiddo's example.

We also note the distributed constraint qualification of
Theorem 1.3 is implied by the ordinary constraint qualification if

k

we take p = 1. The converse is true if D =R; and F is concave on Rk

+
However F 1is not concave in general, and in fact is merely monotone when

it is derived from a differentiable convex program. (See Section 2.) How-

ever for the general case of a monotone F and D = RE,

it can be shown
[9, Theorem 4] that the two constraint qualifications are equivalent.

Nevertheless the distributed qualification may be easier to verify.




2. Bounds for Solutions of Convex Programs

We consider now the solvable differentiable convex program
(2.1) min f(x) s.t.y=-g(x) >0, x20
X
where f: R" + R, g: R" + R™ are convex and differentiable functions,
together with its dual [6]

(2.2) max L{x,u) - xVxL(x,u) s.t.
XU

<
i

vV L{x,u) >0, u>0
where L(x,u) is the standard Lagrangian
L(x,u) = f(x) + ug(x)

and VX denotes the gradient vector with respect to x. We note that the

Karush-Kuhn-Tucker conditions

<
i
| v
S
3
i
o

VXL(x,u) = Vf(x) + uvg(x) > 0, x >
(2.3)

<
"

-V L{x,u) = -g(x) >0, u>0,uy=0

hold if and only if (x,y,u,v) solves the dual programs (2.1)-(2.2) with
equal extrema [6]. If the constraints of (2.1) satisfy the Slater constraint
qualification, that is g(x) < 0 for some x > 0, then for each solution of
(2.1) the Karush-Kuhn-Tucker conditions (2.3) are satisfiable [6]. If we

make the definitions

-~ e
(2.4) z:= , Wi , F(z):=
u y -V, L(x,u)

then the Karush-Kuhn-Tucker conditions take on the equivalent complementarity

problem formulation [2]
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(2.5) w=F(z)>0,22>0, zw=10

Note that the monotonicity of the "twisted" derivative involved in the
definition of F(z) has also been used in [3,13,5,8]. For completeness

we include a proof of this fact.

2.1 Lemma Let f ’and g be differentiable and convex on R" and let F(z)
be defined as in (2.4). Then F(z) is monotone and continuous for all

z e R" xRY.
Proof By the convexity of g and u >0, u>0 we have that

u (g(x)-g(k)) 2 uvg(x)(x-Xx)

v

~u(-g(x) +g(x)) > -uvg(x)(-x +x)

v

Addition of these two inequalities gives

(2.6) - (u-0)(g(x) - g(x)) 2 (Uvg(x) - uvg(x))(x - X)

v

Hence

(x - X u-1u) VXL(x,u)- VXL(R,E)

(z- 2)(F(z) - F(2))
- (g(x) - g(x))

(x-X) (VF(x)-F(X)) (By (2.6))

v

>0 (By convexity of f)

The continuity of F follows from the fact that a differentiable convex

function on R" is continuously differentiable. O

We can now apply Theorem 1.1 to the monotone function F(z) of (2.4)

to obtain bounds for optimal solutions and multipliers of (2.1).

2.2 Theorem Let f and g be differentiable and convex on R". Fach

primal-dual feasible point of (2.1)-(2.2), that is (x,y,u,v) satisfying




y=-g(x)>0, x>0, v = VXL(x,u) >0, u>0,

bounds any point (X,y,Uu,v) which solves the primal-dual programs (2.1)-(2.2)
with equal extrema, or equivalently, which satisfies the Karush-Kuhn-Tucker

conditions (2.3) for (2.1) as follows:

(a) 2o X kgl < (xv+uy) fmin v, .
TeI] 1 1
(b) ”9J2”1 < (xv+uy) /min u1§J2
(c) ”512”1 < (xv+uy)/min yw.€12
(d) ”VJ]”1 < (xv+uy)/min XieJ]
where
Iy = {ilvy > 01 Jp = {ifuy> 03, 1, = {ily; > 01, dy = {i[x;> 0}
Proof Immediate from Theorem 1.1, Lemma 2.1 and definition (2.4). 0

Theorem 2.2 is a partial extension of Theorem 3.1 of [7] where bounds
for solutions of linear programs were given.

A11 the other theorems of Section 1 apply in a straightforward manner
to the convex program (2.1) via the complementarity formulation (2.4)-(2.5).

We state below the counterpart of Theorem 1.3 for the convex program (2.1).

2.3 Theorem (Existence and boundedness of solutions of differ-
entiable convex programs under a distributed constraint qualification)

Let f and g be differentiable and convex on R", et

y o= g(xd) BT xR, vl = v e ud) e, 0 20, 5oz, 0p
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be such that for some AJ.> 0, 3=1,2,....,p, J A; = 1:

P
x:=2)\‘]‘]>0yZAJ‘]>OV*ZAJJ>O
j=1 j=1 j=1

Then there exists (X,y,u,v) which solves the dual programs (2.1)-(2.2) with

equal extrema. Any such solution (Xx,¥,u,v) is bounded as follows:

vy 4 Jrdyd
I%.a]l, < (1 A (xv +uly ))/mm V., ¥}
j=1 1<i<n
1:&2@
Note that the requirement u’ > 0 in Theorem 2.3 is made because the mono-
tonicity of F of Lemma 2.1 is estab11shed only on R" ><R and not on R"><Rm.
We g1ve now a simple example 111ustrat1ng the bounds of Theorem 2.2. This

example shows that by a judicious parametrization of the point satisfying the

required constraint qualification, tight hounds may be possible.

2.4 Example min x; + X, s.t.y=x,-¢ 2 0, X35 %9 >0
The dual problem is

X1
max — X; + X, - u(x2- e ') - vx

X

s.t vy = 1 +ue >0
v2 =71 - U 20
u > 0

The primal-dual solution is R] =0, x, = T, y=0,u=1l, V} =2, vz = 0.

(a) To get a bound on [|X|[; we need v > 0, so take u = 0 and hence

Vg = Vo T 1. Take Xy =a 20, x5 = e” + 8, 8 >0 and hence

y=8,xv+uy=a+eu+6 and
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1= [I%]l; < inf fa+e®+8} =1
oc;O,B;O
(b) To get a bound on [|§H], take x; = a >0, x, = e and u = 1. Hence

y =0, vy = 1+ e%, v, = 0, xv +uy = a(l +e*) and
0= [|7]l; < inf a1 +e%) =0
a>0

(c) To get a bound on [la]l,; we need y>0. So take x;=1>0, x,=a+e, a>0

and u=v>0. Hence y=u,v1=1+ye,v2=1-y;0,xv+uy=1+e+u and

1= Jla]l] < inf 222y
a>0
(d) To get a bound on HV]I], take x; = a >0, x, = e and u-=1.

Hence y = 0, vy = 1 + &%, Vo = 0, xv +uy = a(1+e%), and

N
1]
<
—
A
—
=
—h
{
N

We conclude by remarking that extensions of the results in this paper
can also be established for the more general case in which the continuous
monotone function F 1is replaced by a maximal monotone multifunction.

Such extensions allow us to handle problem (2.1) with f and g nondiffer-
entiable, convex and possibly taking the value of +w, Further extensions
can also be proved in which Rk is replaced, for example, by any reflexive
Banach space and RE is replaced by a closed convex cone satisfying certain
interiority/linearity properties [9, Corollary 1A]. We note also that the
distributed constraint qualification of Theorems 1.2(a) and 1.3 which is
sufficient for the boundedness result, can also be shown to be necessary in
the linear case [7, Theorem 2.2] and even in the more general multivalued

monotone case [9, Theorem 4].
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