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1. INTRODUCTION.

This paper was born with the realization that a theorem of Smale can be applied to
unify the polynomial—time bound proofs of several of the recent LP interior methods. For
the sake of completeness, we deduce the version of the theorem that we use from the
Kantorovich theory.

Let % and ¥ denote Banach spaces, where the norm on % is Il Il For an
operator M: 2 % let ||M|| denote the usual operator norm
M| := sup{HM(u(l),...,u(k))H; Hu(l)n =1, Vi}. Assume that f: Z- Z is an analytic

map, i.e., the Frechet derivatives Dkf(x): ﬂak - Yexistforall xe & k2>1 andif y isin

a sufficiently small open neighborhood of x, then f(y) = llET Dkf(x)(y - x)k. It Df !

-
| 8
[ene]

exists at x, define

B(x) := |DIx) " 1(x)|
1
_ ey
() = sup Iy DG D )<

Note that A(x) is the step length at x when Newton’s method is applied to approximate a

zero of f.

TrEOREM (Smale [17]). If A(£)~(€) < -51; , then the Newton sequence 0 = £,
K0F1) - ) Df(x(i))"lf(x(i)) is well—defined (i.e., the inverses exist), converges to zero

of f, and satisfies

1+ — i) ¢ 2(§>2inx(” — (0. o



The particular ease with which this theorem can be applied derives from the fact that
it depends only on data at the initial point ¢ as opposed to typical theorems in the
Kantorovich theory requiring bounds on data at all points in a sufficiently large
neighborhood of £.

For our goals, a slight variation of the above theorem allows the most expedient
application. The algorithms we consider are of the following general form. Assume that

F: R™ x R 4 R. Let X(O) be given. Recursively define

1) = 1) _p p(xD), (D)1 0) (1)

for some t(i) | 0. We will be interested in finding specific ¢, § > 0 such that if

1 — @) ¢ ¢, where F(eW, 1y = 0, and it 10D — 4@} 50 ¢ 5, then

Hx(Hl) - 5(i+1)]l < € for some §(i+1) satisfying F(f(i+1), t(i+1)) = 0. (The norms we
consider will actually depend on §(i), but we ignore this at present.)

One way to approach finding ¢ and § is simply as follows. Find €, § > 0,
independent of t, such thatif F(¢,t) =0, |[E— €] <€ |t/ —t]/t <6, f(x):=F(x,t'),
then A() and 4(£) are sufficiently small so that the above theorem implies || — ¢ < e,
where & =¢— Df(E)"lf(E) and f(¢’) = 0. However, because for the maps we consider
the values ((¢) and (¢) are easier to compute than A(€) and +(€), the following
theorem provides an even quicker approach.

Let B(x, 1) = {; ly —xI| < 1}.

THEOREM. Assume that f: %- J is analytic, where % is an open subset of % Assume
that §:= f(£), 7:=1(¢), and §2 0 satisfy f<56¢ -4%7, and B(¢,46)C % If

|€ — £|| < 6, then the Newton sequence 0 .= £, L+1) . ) _ Df(x(i))—lf(x(i)) is
well—defined and converges to a zero ¢’ of f in B(¢, % (), this being the only zero of f in
B(¢, 468). Moreover,



1@ — e < T %5 :

We remark that the power series of f at ¢ converges for all x € B(&, 1/7) by the
root test, and hence for naturally defined f the required containment B(¢, 46) C % follows
from the other assumptions. In particular, for rational functions f: R™ - R™ (i-e., quotients
of polynomials) the containment need not be checked when applying the theorem.

We prove the theorem in Appendix A by showing that it is a consequence of a
Kantorovich theorem as presented in Deuflhard and Heindl [5]. We first proved this result
using Smale’s [17] arguments, but felt the Kantorovich arguments would be more accessible
to the optimization community. The constant % in Smale’s theorem cannot be replaced
with %—, as he showed. The requirements [ < % 6< zﬁl)—,—y and B(¢, 46) C % in the latter
theorem can certainly be made better, but probably at the price of a longer proof.

We apply the theorem to prove O(ymL) iteration bounds for several of the recent
LP and QP interior algorithms. Here, m refers to the number of linear inequalities,
assumed to exceed the number of variables, and L is the number of bits required to specify
the problem to be solved.

We first apply the theorem, in section 2, to the barrier method. Here the application
is particularly simple. One is tempted to say that the barrier method was made for the
theorem. Gonzaga [7] obtained an O(ymL) iteration bound for the barrier method. Daya
and Shetty [3] have also studied this algorithm.

In section 3, we briefly discuss the slight modifications in the LP argument required
to prove an O(ymL) iteration bound for the barrier method applied to convex QP.
Goldfarb and Liu [6] and Ye [21] proved this bound. Daya and Shetty [4] have also obtained
this bound.



In section 4, the theorem is applied to the primal algorithm studied by Renegar [14].
Sonnevend [19] proposed a similar algorithm, but gave no complexity analysis. Vaidya [20]
also considered a closely related algorithm.

In section 5, we consider the primal—dual algorithm studied by Kojima, Mizuno, and
Yoshise [9], and Monteiro and Adler [13]. This algorithm has roots in the work of
Megiddo [11]. Monteiro and Adler obtained an O(ymL) iteration bound for this algorithm.
Their analysis is simple and direct, but from a different vantage point than ours.

In section 6, we briefly consider the primal—dual algorithm applied to convex QP.
Kojima, Mizuno, and Yoshise [10] and Monteiro and Adler [13] obtained an O(ymL)
iteration bound for this algorithm.

All of the above algorithms follow the "central trajectory," as studied by Bayer and
Lagarias [1] and Megiddo and Shub [12].

Our focus is on iteration bounds as opposed to overall arithmetic complexity.
However, only a moderate amount of additional work is required to obtain the record
O(n2mL) arithmetic operation bound for LP proven independently by Gonzaga [7] and
Vaidya [20]. In Appendix B we display this for the barrier method. Minor modifications of
the arguments yield the same bound for convex QP, a bound that was first proven by
Kojima, Mizuno, and Yoshise [10] and, shortly thereafter, by Monteiro and Adler [13].

We do not discuss bit operation bounds. Of course that is what is really required to
prove polynomial—time bounds.

Smale [17] motivated several papers. Royden [16] derived both the Kantorovich
theory and Smale’s theorem from a single theorem. He also slightly improved Smale’s
requisite bound on By . Rheinboldt [15] has given a direct derivation of Smale’s theorem
from the Kantorovich theory. In Appendix A we follow Rheinboldt’s approach.

Curry [2] extended Smale’s theorem to higher order methods in the case of univariate
polynomials. Independently of both Smale and Curry, Kim [8] proved similar results for

univariate polynomials.



Of related interest is Smale [18], especially section 4, where a similar theorem for a
path—following algorithm is discussed.

Beware that we aim at giving short proofs. Little motivation for some of the ideas in
the proofs is given, in particular, for the choice of norms that make everything work out so
nicely. Some motivation can be found by reading, for example, sections 2 and 3 of Renegar
[14].

Now we fix some notation. Throughout we consider problems of the form min ch,
s.t. Ax > b, although application of the theorem is also easy for the linear equalities,
non—negative variables format. (Most of the aforementioned LP papers assume the latter

h row of A.

format.) We use o to denote the it

We assume {x; Ax > b} to be non—empty and bounded and we assume known a
"good" starting point for the algorithms. Although we may make these assumptions without
loss of generality, we avoid the arguments as to why. For the puzzled reader we remark that
almost every paper in the area discusses this. Because all of the algorithms follow the
central trajectory, good starting points for one algorithm are generally easily translated into
good starting points for another. Furthermore, many papers in the area discuss how to
obtain an optimal solution from a feasible point X where Tx is sufficiently close to the
optimal objective value — sufficiently close is of the form o~O(L) (e.g. see [14], lemma 8.1).

We use e to denote the vector of all ones, and || ||, to denote the usual Euclidean
norm.

Finally, note that the conclusions of the theorem imply that the Newton iterates are
in %. In particular, if as in some of our applications the natural domain % is the interior

of the feasible region, then the iterates are feasible.

We appreciate the careful consideration and comments given by the referees.



2. THE LP BARRIER METHOD.
In this section we consider the LP barrier method that was first analyzed by
Gonzaga [7].

Let Int = {x; Ax > b}, and let h:Int x R, -+ R denote the map

+

h(x, t) = cix —t & Ze(agx —b,).

For fixed t, the map x - h(x, t) is strictly convex, having a unique minimum. The
sequence of minima as t | 0 converges to the optimal solution of the LP. The algorithm

simply computes a Newton sequence x(o), x(l), ... , where

1) 1 ) _ g2 D), (D) g 3, (0) (i)

and t(i) 1 0.
We claim that for appropriately chosen x(o), we may always take

t(i-i-l) =(1- 1 )t(i) and each x(i) will then be a "good" approximation to the
41ym

minimum of the map x - h(x, t(i)). Now we prove this claim.
Let A(x) be the diagonal matrix with ith diagonal entry ax —b,.
Assume t > 0 fixed. Let ¢ be the minimum of x - h(x, t), i.e,,
c—tATA(f)_le = 0. Define |x|| := “A(E)—IAXH2~ For t/ > 0, define ¢’ and || ||’ in
the obvious way.

Assume that ||£ — &|| < %U ,i.e., & is a "good" approximation to £ Assume that

(1——L )t <4 < t. Define f(x):=c —t'ATA(x)"le. Let & := & —DI(&) (). To
41/m
1

prove our claim, we show that ||&/ — &/’ € 57 -

First note that



g := IDE(E) (D)
== ace AT a2 artaTac e,
B el

1
Sm)

where the first inequality follows from the fact that the eliminated matrix is a projection
matrix.

Next we compute a bound on

1
7:= sup | DEC& D) IF .
k>2

Observe that the operator Dkf(f): (an)k ~R" sends the tuple (u(l), s u(k)) € ([Rn)k to

(—l)kt’k!ATA(f)—lw where w € R™ is the vector with w, =11 ng) and
. . . . J .
W@ = A A, since wD), = [[alD)], it asily follows that [|wly < 1 if @) < 1

for all j. Consequently,

& DI D (&)
<la@taaTae2artaTa ™,
=1,

the equality because the eliminated matrix is a projection matrix. Hence, < 1.

. . =, , 7 1 , 3 .
The theorem now implies that ||’ —¢’|| < g - 57 and [[§—¢ | < g5 - Since

a.&—Db,
0< i i_ 1 < 1 SSO
GEE AT ey T

&6~ By




we have for all v that

IVl = 1A(E) " Av]y < IAE Y A@llvI < 33 VI

In particular, ||/ —¢’]|” € %2 , concluding the proof of the claim.
The principal remaining ingredient for proving an O(ymL) iteration bound is an

inequality of the form
¢TE —k* < 2tm,

where k™ is the optimal objective value. In proving this inequality, first note that since

c— tATA(f)”1 = 0, we have

cT(E—¢) = teT A() TA(E - ©)
< tllelly 1A TAE - O,
= yamt||E — ¢l
(it
= 20

Hence, assuming that x is an optimal solution,

TE—k* = cT(E- 8+ (e-x)
b,
cm o Tie—x )+tzif—§—:~5%
1 1
Y m (6 —x) e —1ATA (]

t‘/_4—tm+(§ *7To .



In Appendix B we present an argument for modifying the preceding O(n2m1'5L)
arithmetic operation algorithm into one requiring only O(nsz) operations. The latter
operation count was first established for LP by Gonzaga [7] and Vaidya [20], but with

much longer proofs.

3. THE QP BARRIER METHOD.

In this section we briefly consider the barrier method applied to convex quadratic
programming. The notation and definitions remain exactly the same as in the previous
section, except that the objective ch is replaced throughout by %XTQX + ch where Q

is symmetric and positive semi—definite, and hence h: Int x R 4 R is defined by
hix, t) = %XTQX +elx—t3 sn(ox —b,).

The crucial fact here is that if M is an mxn matrix of rank n, m > n, then
IM(Q + MTM)™ M|, < 1. We will prove this inequality momentarily.

Proceeding exactly as in the preceding section for computing B and <, except that
now D)L = [t/ ATA(e)2A] ™ is replaced by Df(¢) ™" = [Q + t'ATA(¢&)2A] ™Y, and

using the above inequality shows that we may again take t(i+1) =(1- ——1-——)t(i) .
41ym

Now to prove the inequality. Let S denote an mxm orthogonal matrix moving the
range of M onto R" x {0}, and let M be the nxn invertible matrix defined by

M = PSM, where P is projection onto R™. Then

IM(Q + My M
= Jism1(Q + [snm T sy Hsmp (by othogonality of S)
= [I[PsMI(Q + [PsM] T [Psy) [PsM) T
= |I51(Q + M TN I,



where the third, fourth and fifth expressions are with respect to the Euclidean norm on [Rn,

and where the final inequality is because M_TQM"l is positive semi—definite.

4. A PRIMAL LP ALGORITHM.

In this section we consider the algorithm studied in Renegar [14]. (Also see
Sonnevend [17] and Vaidya [20].)

Assume that k(o) is a known strict upper bound on the optimal objective value.
Assume that Ax(o) > b, ch(O) < k(o). The sequence x(i), i=1,2, .., is defined
recursively as follows. Let x(i+1) be obtained by applying one iteration of Newton’s

method, beginning at x(i), in attempting to maximize
. m
X-m éz(k(H—l) - ch) + X (ox—Dy),
i=1

where (+1) 5c (1) +(1-— 6)k(i) and 0 < § <1 is some prespecified value. (The

function is strictly concave on {x; Ax > b, ¢Tx < k(i“"1 )}.)
We claim that if x(o) is chosen appropriately and 0 < § ¢ 1 , then for all i,
42/m

x(i) is a "good" approximation to the actual maximum it is meant to approximate. We
now prove this claim.

Let A denote the 2mxn matrix with ith oW @ if i<{m, —cT if i > m.

Assume that k is a strict upper bound for the optimal objective value. Let A(x) be
the 2mx2m diagonal matrix with ith diagonal entry ox —b, if i<m, k- Tx if

T

i>m. Let ¢ bethe unique zeroin {x; Ax >b, ¢ x <k} of the function

10



x =+ ATAE) e (= V m (k- cTx) + 3 z(ax —b))).

Assume that £ satisfies ”A(f)"lﬁ('f — &y < %T ,i.e., & isa"good"

approximation to £. Let k'’ := 6CTE + (1 — 8)k, where 0< 6¢ —-—f/—: Define A’(x) and
42y/m

¢’ in the obvious way. Let f(x):= ATA’(x)-le, and let & :=¢— Df(E)"lf(E). To prove
our claim we show that HA’({’)—IA(Z’ =&y < %—1- .
Let §=(k—k')/(k—c ¢). Then

. T
056=6(1+QJ£JTQ)

k-c¢

<H1+ IAETTAE -9y
<1
40\/5

Defining f(¢) := A TA’(&)—le, note that
f(¢) = AT[a (&) - A e = 5ATAr ()7,

where & =0 if i<m, & =1 if i >m. Thus, defining Iv]] :== |[A’(§)*1Av[|2 for all

VE [Rn, we have that

B:= |DEe) " 1(¢)]
= 5o AT A (g 2R AT A (o) el
Bllall,

1
m:

[Ty

{7

the first inequality following from the fact that the eliminated matrix is a projection matrix.

Moreover, by exactly the same argument as in section 2 we have that

11



1
7= sup | DEETIDREIFT < 1.
k>2

Since

IE =&l < 17 (&) Al Il A T AE - O,

L.

1-
1

N
b9y =
..—l

<

ol

0 H

the theorem implies that ||[&/ —&’|| < % . %—6 and ||€—¢'| ¢ %G Hence,

1A (&Y TR — €)lp < 1A (€AY (Ol — &I
1B - ¢
S_______..__._....
1- |l - ¢

<

b}

t\?ll—-‘
|

concluding the proof of the claim.
The principal remaining ingredient for proving an O(ymL) iteration bound is an

inequality of the form
K-k < (1 -k —K)

where k* is the optimal objective value. In proving this inequality, assume that x* is an

optimal solution. Then

12



However,

—om + (x* —&)TATA(H) e

—om + (x* — &) 0.
Hence, k — ch > :,12- (k — k"), and thus

k' —k* = (k—k") - (k—k’)
= (k—K*) = Bk—cTg)
CL-Hr-1),

Since

T -
25:5(1+°—k§7f?)

> 81— |68 HEE-9)Ily)
>3

it now follows that
K/ — X% < (1= )k — k)
- 3 M

5. THE PRIMAL-DUAL LP ALGORITHM.

In this section we consider the primal—dual LP algorithm studied by Kojima,
Mizuno, and Yoshise [9], and Monteiro and Adler [13]. This algorithm has roots in the work
of Megiddo [11].

13



As in section 2, define Int = {x; Ax > b} andlet h:Int xR 4o R be given by
h(x, t) = ¢Tx — 13 J/z(aix —b;). The unique minimum of x-h(x,t) isthe point satisfying
c— tATA(x)“le = 0 where A(x) is the mxm diagonal matrix with jth diagonal entry
X — bi . Equivalently, it is determined by the equations
ZA(x)e—te =0
c— ATZ =0

where Z is the diagonal matrix with ith diagonal entry z,. Letting w := (x, z) € RAT
and letting H(w, t) = 0 denote the above system of equations, the algorithm simply

computes a Newton sequence w(o), w(l), ..., where

WD) = _p_ gy Dy, () (D),

and t(l) lo.
We claim that for appropriately chosen W(O), we may always take

t(1+1) =(1-— ———-1——)t(i) and each w(i) will then be a "good" approximation to the zero of
404/m

w - H(w, t(i)) satisfying x € Int. Now we prove this claim.

Fix # = (0, 3) satisying ¢ — A% = 0.

Let = {(x,2)¢€ RO, AT, = 0}. We assume that wl® satisfies
c— AT, (0 — 0. Then W(i) —we Zforall i

In what follows, w = (x, z) always refers to points in 2.

Assume t > 0 fixed. Let ¢ = (p, w) € % be the unique zero of w - H(w + W, t)
satisfying p € Int. Let Q denote the mxm diagonal matrix with ith diagonal entry W -
Then (Q + Z)A(p)e —te = 0.

14



For w = (x, z) € %, define

lwll := T 11(2 + Z)Ax + ZA(p)ell,
=L@ + Daxi? + 1zageld) 2,

where the equality is because (ZA(p)e)T(Q + Z)Ax = t27 Ax = 0.
For t/ > 0, define ¢’ = (p’, w’), @’ and || ||’ in the obvious way.
Assume that €€ % ||E—¢| ¢ %ﬁ ,i.e., € isa good approximation to £ . Assume

that (1 ———1——)t <t/ <t. Define f: Z-R™ by f(w):=(Z + 7Z)A(x)e —t’e. Let
40/m

& =f— Df('f)”lf('f). To prove our claim we show that ||[&" —¢&]]” < i%ﬁ .
Observe that for w € %, ||w|| = 1 [DE(&w],. Hence

= |Ip1(&) ()]

t -1/
=71 ”8”2
1
10

Let wm (x H []), i =1, 2, denote two arbitrary vectorsin Z. Note that
D%(¢) maps (wltl, H) to the vector Z1Ax( + 2PIAxY] Since |lw]l = L [DEE)wll,,
it follows that Df({)“lsz(f) maps (w[ ], wm) to a vector of || || —length at most

152 g1

Hizlax, + 4

Iy
Now,

1z ax, = LyzHag)a + 2axl),
< Lizlagel i + 2axl),

< w2,

Il

15



The same inequality holds for HZ[2]AX[1]H2. Since DXtz 0 for k> 2, it follows that

1
7:= sup |l D&y D (F
k>2

The theorem now implies that ||&'— €&’]| < % . %ﬁ and ||é—¢/]| < %O‘

Note that by the non—negativity of the entries in the diagonal matrices,

180" ) A oy € 1+ (A A =)l
=1+ L](Q + A0 -,
<14+ 2(Q + DA — pell,
<1+ 18 =&l

Similarly, (@ + Z)(Q + Z) M|y < 1+ [[€ — ¢l|. Hence, forall w e &

vl < & (@ +2)(@ + 23l + 2)Axi3
+ 1868 HZIZA el D)2
<1+ le =~ eiwl

In particular, it now follows that [[£’ — é/||” < 20 , concluding the proof of the claim.
Assuming ¢ = (p, w), the primal feasibility of p follows from w, + z; >0 (for all
i) and

L2 IE= ¢l 2 I@ + 2)AG - ),
= 2 11(2 + 2)A(p) — tell -

Similarly for the dual feasibility of @ + 2.

16



The principal remaining ingredient for proving an O(ymL) iteration bound is a

duality gap bound of the form

ch - bT(c'u + z) < 2tm.

This is implied by combining
Tp—(w+5) b = (w+ 2)TAp—eT[(Q + Z)(A(p) + b) —te] = tm

with

15— o) = 172 + D)AG — )| < Vi [1E— €] < ¥
and similarly, |bT(@—w)| < Y.

6. THE PRIMAL-DUAL QP ALGORITHM.
In this section we briefly consider the primal—dual algorithm applied to convex
quadratic programming, as has been analyzed by Kojima, Mizuno, and Yoshise [10] and

Monteiro and Adler [13]. Replacing the objective by %—XTQX + T

x where Q is positive
semi—definite, the same motivation as in the preceeding section leads us to consider the

system of equations

ZA(x) —te=0
QX—ATZ+C=0,

which again we denote by H(w) = 0. The algorithm is defined analogously to the LP case.

Following are the changes in the analysis that need to be made.

17



Now fix w = (%, z) satisfying Qx — ATitc=0. Also, assume that the initial
iterate w(o) satisfies this equation.

Let %:={(x,z)¢€ R, Qx — ATz = 0}.

Let ¢ = (p, w) € % be the unique zero of w - H(w + W, t) satisfying p + % € Int.
Define ¢’ similarly.

Beginning with the paragraph "Assume t > 0 fixed ...." onward, replace every
A(x) by A(x + %), e.g., replace A(p) by A(p + X).

For w € %, define

vl := 1 11(2 + 2)Ax + 2A(0 + Rell,
> L@ + 2)Ax2 + 1280 + Del D2,

the inequality following from the fact that 2T Ax = xTQx > 0. Define || || similarly.

Leaving the arguments otherwise unchanged, again we find that we may take

(D) Z g 10
40ym

18



APPENDIX A
In this appendix we prove the theorem.
We begin by noting it is not difficult to verify that the following thoerem is implied
by theorem 2 of Deuflhard and Heindl [5].

Let B(x, 1) = {y; Ix—yll <1}

THEOREM. Let .2 be an open convex subset of a Banach space with norm || ||, and assume
that f: B~ ¥ is a twice continuously Frechet—differentiable mapping into a Banach space
%. Assume that Df is invertible at x(o) € Z. Furthermore, assume that 8, w >0

satisfy

IOy el <
DOy D2 ¢ w forall ye 2
ﬂwsé
8,25 c 2.

Then Df(x)_'1 exists for all x € B(x(o), %,8). Moreover, the Newton sequence

x(o), x(l), ..., i8 contained in B(x(o), %ﬂ), converges to the unique zero x* of f in

2N B(x(o), %), and satisfies

llx(i) —x*|| ¢ 2(%—)2i,6 for i> 1. o

Now to prove our theorem.

We first obtain the bound on ||¢ — ¢’||. For y € B:= B(¢, 46) note that

19



GEE]

= Ipte™ 3 oM - o

< 7200 +2)(0 + 1)y — ¢l

< 2y
1-3°
< 47. (A.1)

Letting X(O) := ¢, our assumed bounds and the previous theorem imply that there exists a
zero ¢’ of f in B(¢, -g- B) and this is the unique zero of f in B(¢, 46). (The uniqueness
will imply that the Newton sequence initiated at £ converges to the same zero.)

Now we turn attention to «0) .= € . Begin by noting that

ID1(&) " [D1(8) — DE(E)]|

= ||pe(e) El Lo+l E - o))

sé i+ D0E - 0
«— 1 1
(1- 12
_39
361

® : .
In particular, using the identity Bl= 3 (—l)l(A—l[B - A])IA_1 (assuming
i=0

IA™L[B — A]|| < 1), we have that for any v € .%,

IDE(&) vl < 3 IDEE I - (A-2)

20



Consequently,

B = [DIE L) < 3 IDKE D)

=g o™ 3 HoieE- o
<3 (p+NE-¢l jio[vn‘s — &)

S+ —p
1—
0

Moreover, for y € B(¢, % . % 6) (and hence y € B(¢, 46)), we have using (A.1) and (A.2)

that

Hence

Since §< —2—(1)—,), , we have that B w<

gives our theorem.

ID£(8) T ID%4(y)|l < § IDE(&) D3y

9
$57-

w = sup {||DIE) T D3(y)|; y € B(E,% - 27; 6)} € % 7

. The previous theorem applied with £, B, @ now

©f i

O

21



APPENDIX B
In this appendix, we obtain an O(nsz) arithmetic operation bound for the
following modified barrier method.
Let x(o) be a feasible point, t(o) > 0, A(O) = A(x(o)), and
M(® = ATAEO24. Define 101 .= (1 - Ly,
41y/m

L+ - 6) oy (HDAT Ay ).

Define A(H'l) to be the mxm diagonal matrix with jth diagonal entry

<

5(.1) if |1- 5(.i)/(a.x(i+1)——b.)1 < 1
i+ | 3 y't =50
o ;
ajx(1+1) - bj otherwise,

and let M+l .- AT[A(i'*"l)]"ZA.
The Sherman—Morrison—Woodbury formula can be applied to compute M(i+1)

from M(i) in O(n2N(i)) arithmetic operations, where N(i) = #{j 6§i+1) # (Sgi)}. The

-1 .
number of arithmetic operations required by the algorithm is then O(n2 R N(l)) where 1

1=0
is the number of iterations required to guarantee that K* — chm is sufficiently small to

determine an optimal solution x* (implicitly assuming the iteration costs to dominate the
cost of determining x* from xm, as is the case with our bounds).

‘ Let §(i) be the unique zero of x - ¢ — t(i)ATA(x)"le in {x; Ax > b}. We claim

that if [|AGED) AR = O, <35, then 1Ay 1A — ey < 2 forall i
It then follows that I = O(ymL).
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Retaining the notation and assumptions of section 2,let A be an mxm diagonal
with jth diagonal entry 6j satisfying |1 — 6j/(aj3——bj)| < %U for all j. Let
M:=t/ATAT2A. Since, as we have shown, ||& —¢/||’ < 12-5 , to prove our claim it suffices

to show that

I~ DI OB < 355

because then [|(€ — M £(8)) — &'l ¢ 5.
Assume that [|[v]| = 1, that is, [JA(6) TAv]|, = 1. Then

IDE(E) (M — DI(E))v]
= 1acetaaTa@ A aTa@ ™ (a2a@®? ~ Da@ AV,
<A@ a@lIa@ AN A@ AT AT AR T 1a72A@® - Dll,livi
= A a@l, - 1A72A@% 1),
<+ lE-e -2,

1 (21)*
< 57 -
Hence,
I — o i@
= Hél(—l)i(Df(E)”llM — D(E)])'DIE) " 1(3)|
< S IDAE)THE) - (B.1)
Since
IDEE) @) = IE— | <IE—¢l + lle— &/ + 1 — €'l < &5 (B.2)
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and, as we have seen, ||v|]|’ < g(,% [lv|| for all v, our claim is proven.

I—1 (1)
Now we obtain a boundon ¥ N

i=0
Defining & := £~ M_L(g), (B.1) and (B.2) imply that ||¢ — || <I;. Hence,

1A@ A = Bl < 1A@ A IE - E
1€ - &
{———
1- &= ¢

<

O]

In particular, since for any v € R™ satisfying Ivlly <1,
B (L + vy)| <V [Ivily/ (1 = vlly)
J

it follows that

ax(1+1) b.
% | (-4
j aJx(l)—b

J

o5

| <

[
g

Now if 5§i+1) # égi), then }éz(égi'*'l)ﬁgi))l > »(1+ %G) Hence,

sli+1)

T 1 3 3|4
20 -z;zrr‘;“_‘ (‘érr”

However, assuming for fixed j that é§i+1) # 6§i) precisely when i=1i,...,i;, (and

defining i; = 1)
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I—1
It follows that ¥
i=0

si+1) heq i1 o<t
DRNRZ i )= % | % n( J (1) J)l
i= \ k=0 i=i a.x -b.
J ko J
-1 a.xTY g,
<3 | (- ) b .
i=0 o.x - b

N = oym).
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