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Pure adaptive seach iteratively constructs a sequence of interior points uniformly distributed within the 
corresponding sequence of nested improving regions of the feasible space. Tbat is, at any iteration, the 
hext point in the sequence is uniformly distributed over the region of feasible space containing all points 
that are strictly superior in value to the previous points in the sequence. The complexity of this algorithm 
is measured by the expected number of iterations required to achieve a given accuracy of solution. We 
show that for global mathematical programs satisfying the Lipschitz condition, its complexity increases 
at most linearly in the dimension of the problem. 
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I. Introduction 

In  this paper ,  we p rov ide  a theore t ica l  analysis  o f  pure  adap t ive  search for  genera l  

g loba l  op t imiza t ion  (see [19, 20, 21] for a survey of  the field).  The  a lgor i thm p roceeds  

by  genera t ing  a sequence  of  po in ts  un i fo rmly  d i s t r ibu ted  in a sequence o f  nes ted  

regions  o f  the feas ible  space.  At  any i tera t ion,  the next  p o i n t  in the sequence  is 

un i fo rmly  d i s t r ibu ted  over  the region  of  feas ible  space  con ta in ing  all po in ts  tha t  

are strictly be t te r  in value  to the prev ious  poin ts  in the sequence .  It has been  shown 

[ 17] that  for  convex p rograms ,  the expec ted  n u m b e r  of  i te ra t ions  requ i red  to achieve  

a given accuracy  o f  so lu t ion  increases  at most  l inear ly  in the d imens ion  o f  the  

p rob lem.  In this paper ,  we ex tend  this l inear  complex i ty  resul t  for  non -convex  or  

global op t imiza t ion  p rob l ems  sat isfying the Lipschi tz  condi t ion .  We do this by  

mode l ing  the sequence  o f  values  for  po in ts  ob t a ined  by  pure  adap t ive  search as a 

n o n h o m o g e n e o u s  Poisson process .  A b o u n d  on the rate  o f  this  process  is used  to 

ob ta in  an u p p e r  b o u n d  on the expec ted  n u m b e r  o f  i te ra t ions ,  which  is a l inea r  

func t ion  of  the d imens ion  o f  the p rob lem.  

Al though  at this t ime there  is no known  efficient i m p l e m e n t a t i o n  o f  the pure  

adap t ive  search a lgor i thm,  the theore t ica l  resul t  o f  l inear  t ime complex i ty  for  g loba l  
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optimization is interesting in itself. Pure adaptive search is not practical because 
the principal computational effort of  the algorithm lies in generating a point uni- 
formly distributed in the improving region. At present, this is a challenging problem 
with no satisfactory solution. However, the linearity result suggests there is hope 
for an efficient random search method for global optimization. In fact, several 
random search algorithms have reported linearity in dimension [24, 25, 27], although 
only for convex programs. Pure adaptive search is analogous to a randomized 
method of centers [13], which itself is not very practical, but has been the precursor 
to a class of extremely efficient projective and affine scaling methods [9, 11, 14, 18] 
for linear programming. Our hope is that pure adaptive search can similarly inspire 
better random search methods for global programming. 

2. Pure adaptive search 

Consider the following global mathematical program, 

(P) min f ( x )  
x~s 

where x is an n-dimensional vector, S is a convex, compact subset of ~n, and f is 
a real-valued continuous function defined over S. We will assume that f satisfies 
the Lipschitz condition with Lipschitz constant kt, i.e., 

I f (x)  - f (Y)I  <~ kl l] x - y II 

for all x and y c S, where Il" Il is the Euclidean norm on N n. Let the optimal solution 
to (P) be denoted by (x , ,  y , ) ,  where 

x ,  = arg min f ( x )  
x ~ S  

and 

y , = f ( x , )  = m i n f ( x ) .  
x~S 

It will also be convenient to define 

y* = max f ( x ) .  
xGS 

Note that we do not require that a unique minimum exists at x , .  If there are multiple 
minima, let x ,  be an arbitrary fixed minimum. 

The pure adaptive search (PAS) procedure for solving (P) begins by generating 
a point X~ uniformly distributed within the feasible region S. The associated objective 
function value is labeled W~ = f (X l ) .  The next point is generated from a uniform 
distribution over the region formed by the intersection of the feasible region with 
the open level set ofpoints with objective function values less than W1. The procedure 
proceeds iteratively in this fashion until a stopping criterion is satisfied. 
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More formally, 

Pure Adaptive Search (PAS). 
Step O. Set k = 0, and So = S. 
Step 1. Generate X~+I uniformly distributed in Sk, and set Wk+l = f ( X k + 0 .  
Step 2. I f  a stopping criterion is met, stop. Otherwise, let Sk+l = {x: x c S and 

f ( x )  < Wk+l}, increment k, and return to Step 1. 

The difficulties of  implementing pure adaptive search are discussed in Patel, Smith 
and Zabinsky [17]. In this paper,  however, we are interested in its computat ional  
complexity as a model for other possible algorithms that share some of the same 
features as pure adaptive search. For example, if another algorithm can generate 
random points (uniform or not) with associated objective function values stochasti- 
cally less than those of uniformly distributed points, then the performance of the 
new algorithm will be bounded by the performance of pure adaptive search. Thus 
a theoretical result of linear time complexity for PAS supports research in other 
random search algorithms for global optimization. 

An important feature of  the algorithm is that the iterates are strictly improving. 
If  the consecutive points are allowed to have equal objective function values, instead 
of strictly improving, it is easy to exhibit a problem where the expected number  of  
iterations is exponential in dimension [1]. For example, let S be a unit hypersphere, 

and let f (x)  be a constant of 1 on S apart from a depression on a hypersphere of 
radius e, Se, where the function drops to a value of 0 at the center of  the e-ball. 
Since volume(S~)/volume(S) = e ", the probability that a randomly chosen element 
of S is in Sc is en. Thus the expected number  of  iterations allowing equal objective 

function values is exponential in dimension. However, if the iterations are forced 
to be strictly improving, we will show that the expected number  of  iterations is linear 
in dimension. 

3. A eomparison with pure random search 

It is instructive to compare pure adaptive search with pure random search [5, 7, 8]. 
Pure random search (PRS) generates a sequence of independent,  uniformly dis- 
tributed points in the feasible region. When a stopping criterion is met, the best 
point of  the sequence generated thus far is used as an approximation to the optimal 
solution. For the global optimization problem (P), consider the stochastic process 
{ Wk, k = 0, 1, 2 , . . }  of objective function values generated by PAS, and let { Yk, 
k -= 0, 1, 2 , . . . }  be the corresponding sequence of values for the points generated by 
PRS so that Yk = f ( X k ) ,  k =  1, 2 . . . .  , where X~, X 2 , . .  are independent and uni- 
formly distributed over S. For convenience, define Wo = Yo = Y*- 
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Let p(y) be the probability that a point in the sequence generated by PRS has 
an objective function value less than or equal to y, that is, 

p(y) = P( rk <~ y) 

for k =  1, 2 , . .  and y.<~y<~y*. Note that p(y) is the same for all k, since PRS 
generates identically distributed points. Also, due to the uniform distribution 
employed in PRS, we have 

p(y) = u( S(y) )/ u( S) 

where S(y )=  {x: x c S and f (x)<~y} and v(. ) denotes Lebesgue measure. Inciden- 
tally, although a uniform distribution is used in both the PRS and PAS algorithms, 
much of the subsequent analysis holds for nonuniform absolutely continuous distri- 
butions. We have for pure adaptive search that 

P( Wk+l ~ Y l W~ = z) = ~,(S(y))/u(S(z))  = p (y ) /p ( z )  

for any k, where y ,  ~< y ~< z <~ y*. 
We now establish a fundamental relationship between the iterates of PAS and 

PRS. The lemma below states that the record values of pure random search are 
equal in distribution to the values generated by pure adaptive search. 

Definition. Epoch i is said to be a record of the sequence { Yk, k = 0, 1, 2 , . . }  if 
B <min(Yo,  Y 1 , . . ,  Yi-i) for i =  1, 2 , . . .  Define epoch 0 to be the zeroth record. 
The corresponding value Y~ is called a record value. 

Lemma 3.1. For the global optimization problem (P), the stochastic process { Wk, 
k = O, 1, 2 , . . }  is equal in distribution to the process { YR(k), k = O, 1, 2 , . . }  where 
R(k )  is the kth record of the sequence { Yk, k = 0 ,  1, 2 , . . } ,  i.e. 

{Wk, k = 0 ,  1 ,2 , . . }~{YR(k) ,  k = 0 ,  1 , 2 , . . } .  

In particular, 

P(Wk <~y)=P(YR(k) <~y) f o rk=O,  1,2, .. andy.<~y<~y *. 

For the proof  see the Appendix. 

An intuitive understanding of the previous lemma follows from the property that 
a point X uniformly distributed over a region S is conditionally uniform over the 
region S' _~ S when given that X is in S'. It follows that a simple acceptance-rejection 
approach to generating { Wk} would be to generate { Yk} and select the record values 
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Theorem 3.2. Ler k and R ( k ) be respectively the number of  PAS and PRS iterations 
needed to attain an objective function value of  y or better, for y.<~ y<~ y*. Then 

R ( k )  = e k+°(k) with probability 1, 

where limk~oo o ( k ) / k  = 0 with probability 1. 

Proof. We have by definition that 

However,  by the previous lemma, this holds for a given k with the same probabili ty 

that 

YR(k-~) > Y >~ YR(k~ 

holds. From [10, p. 298], the records R(k )  of a sequence of continuous independent 
and identically distributed random variables satisfy 

In R(k )  
l i m - - -  1 with probability 1. 
k~co k 

This implies that 

In R( k )  = k + o ( k )  with probability 1 

and thus, 

R(k )  = e k + ° ( k )  with probabili ty 1. [] 

The result in Theorem 3.2 states that the number  of  PRS iterations needed to 
reach the kth minimum R(k )  is exponentially growing in the number  of  iterations 
of  PAS, k, needed to reach an equivalent minimum. Thus the complexity of PRS 
is exponentially greater than that of PAS. Of  course, each iteration of PAS may be 
more difficult than an iteration of PRS since the search region changes with each 
iteration. It is, nonetheless, interesting that the simple device of forcing monotone 
value improvement  on PRS achieves an exponential improvement  in iterations 
required. 

4. The distribution of improvement 

We turn now to establishing the distribution of the values { Wg, k = O, 1, 2 , . . }  
obtained by pure adaptive search. 

Lemma 4.1. Let Z1, Z2, • • • denote a sequence of independent and identically distributed 
nonnegative continuous random variables, whose hazard rate function is given by )t ( z), 
)t(z) = f ( z ) / ( 1  - F ( z ) ) ,  where f and F are, respectively, the density and cumulative 
distribution function of Z. Ler M ( z )  denote the number of  record values (maximum) 
of  {Zi, i = 1, 2 , . . }  less than or equal to z. 
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Then, {M(z),  z ~ 0} is a nonhomogeneous Poisson process with intensity function 
A(z) and mean value function m(z) =Só A(s) ds. 

Proof. See [23, p. 47]. [] 

Applying the lemma above, let Zk be the relative improvement obtained on the 

kth iteration of PRS, where Z« = ( y * - Y k ) / ( Y k - - y , ) .  Then, the assumptions of  

Lemma 4.1 are satisfied, since Zo = 0 and {Zk, k = 1, 2 , . . .}  are independent identi- 

cally distributed nonnegative continuous random variables. The cumulative distribu- 
tion function F of Zk, k =  1, 2, . . . ,  can be written in terms o fp (y ) ,  as follows. For 

Z~0,  

F(z) : P(Z~, <~ z) 

= P( Yk I> (y*+ zy,)/(1 + z)) 

={01 i rz<0,  
- p ( ( y * + z y , ) / ( l + z ) )  ir 0<~ z<oc .  

Since M(z) counts the number of records of {Zk, k = 0, 1, 2 , . . }  with values less 
than or equal to z, M(z)  by Lemma 3.1 is equal in distribution to the number N(z)  
of PAS iterations achieving a relative improvement of z or less. 

Theorem 4.2. Let N(z)  equal the number of PAS iterations achieving a relative 
improvement at most z for z >i O. Then {N(z),  z ~> 0} is a nonhomogeneous Poisson 
process with mean value function 

m(z) = ln(1/p((y* + zy.)/(1 + z))) 

for 0<~ z<oo.  

Proof. By definition, 

ra(z)= A(s) ds 

where A ( s ) = f ( s ) / ( 1 -  F(s)). Making the substitution t = 1 -  F(s) yields 

f l--F(z) 
ra(z) = - ( l / t )  d t =  - I n  tl[ -r~~~ = - ln(1 - F ( z ) )  

for z t> O. Now, 

1 - F ( z )  = p ( ( y *  + z y , ) / ( 1  + z ) )  

and hence, 

m(z)=ln(1 /p ( (y*+zy , ) / ( l+z ) ) )  for 0~< z<oO. [] 
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It is now an easy matter to obtain the distribution of the objective function values 

obtained through pure adaptive search. In particular, since 

W k < y  i f a n d o n l y i f  N ( ( y * - y ) / ( y - y , ) ) < k  

and W~ is a continuous random variable, 

P( Wk <~ y) = P(N( (y*  - y ) / ( y  - y , ) )  < k) 

where by Theorem 4.2, N ( z )  is a Poisson distributed random variable with mean 
m(z) = ln(1/p((y*+ zy, ) / (1  + z))). We therefore have: 

Theorem 4.3. 

P( Wk <~Y) = k-l~ p(y)( ln(1/p(y)))  for k= 1,2, . .. and y,<~ y<~ y *. 
i=0 

For the proof  see the Appendix. 

There are several problem classes in the literature where the asymptotic distribu- 
tion for large sample sizes of PRS and PAS have been obtained (see, for example, 
[2, 6, 12, 16, 17]). The result in Theorem 4.3 is particularly striking, in that it provides 
the exact distribution of values generated by PAS for all sample sizes and all global 

optimization problems. 

5. Performanee bounds 

A simple measure of the performance of pure adaptive search is the number  of  
iterations N*(y)  required to achieve a value of y or better. Since an objective 
function value of y corresponds to a relative improvement  of z - - ( y * - y ) / ( y -  y , ) ,  
we have that 

N*(y)  = N((y*  - y ) / ( y  - y , ) )  + 1. 

The distribution of N*(y)  then follows from Theorem 4.2. 

Corollary 5.1. The cumulative distribution funetion of N*(y) ,  the number of iterations 
of PAS needed to achieve a value of y or better, is given by 

k 1 p(y)(ln(1/p(y))~ 
P(N*(y )  <~ k) = E 

i-o i! 

for k=  l ,2 ,  .. and y,<~ y<~ y*. 
The expected value of N*(y)  is given by 

E (N *( y ) )  -= 1 +ln(1/p(y)) ,  

and the variance of N*(y)  is 

Var(N*(y) )  = ln(1/p(y))  

for y* <~ y<~ y , .  
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Proof. The cumulative distribution follows immediately from the relationship, 

N*(y)  = N ( z )  + 1, 

where z = (y* - y ) / ( y  - y , )  for all y* ~< y ~ y , .  Because N ( z )  is a Poisson distributed 

random variable with mean ra(z) and variance ra(z), we have 

and 

and 

P ( N * ( y )  <~ k) = P ( N ( z )  <~ k - 1) = E 
i o  i! 

Var(N*(y))  = Var(N(z))  = ra(z), 

where m(z) =ln(1/p(y) ) .  [] 

As seen in Theorem 4.2 and Corollary 5.1, performance measures of PAS depend 
on the function p(y)  for y ,  ~ y <~ y*, where p(y)  is the probability of obtaining an 

objective function value between y and y ,  when selecting a feasible point at random 

according to a uniform distribution. We now derive a bound on p(y) for the class 

of global optimization problems with objective functions that satisfy the Lipschitz 

condition over a convex feasible region. The bound is a function of the dimension 

n of the problem; the Lipschitz constant, kl of the objective function; and the 

maximum diameter, ds of the feasible region, where ds = max{llw- vl[, w, v c S}. 

Lemma 5.2. For the global optimization problem (P) over a convex feasible region S 
in n dimensions with diameter ds and Lipschitz constant ks for objective function f 

p ( y ) > ~ ( ( y -  y , ) / k fds )"  for y ,  ~ y<~ y *. 

For the proof  see the Appendix. 

From the above lemma, together with Corollary 5.1, we get the main result of 

this paper. 

Theorem B.3. For all global optimization problems (P) over a convex feaible region in 
n dimensions with diameter at most d, and with Lipschitz constant at most k, 

E ( N * ( y ) )  <~ 1 + [ ln(kd / (y  - y , ) ) ] n  

and 

Var(N*(y))  ~< [ ln(kd/ (y  - y , ) ) ] n  

for y,<~ y<~ y *. 

Proof. This follows immediately from Lemma 5.2, where 

p ( y )  >1 ( (y  - y , ) /  k d )  n 

E(N*O,) )  = E ( N ( z ) ) +  1 = 1 + m(z) 
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implies that 

1Ip(y) <~ (kd/(y  - y,))",  

and from Corollary 5.1, 

E(N*(y))  = 1 + ln(1/p(y)) <~ 1 + [ln(kd/(y - y , ) ) ] n  

and 

Var(N*(y))  = ln(1/p(y)) <~ [ln(kd/(y - y , ) ) ]n .  [] 
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From the above theorem, we conclude that the expected number of PAS iterations 
grows linearly in dimension for a class of problems with finite Lipschitz constant 
k and feasible region diameter d. This is in dramatic contrast to PRS where from 
Theorem 3.2 we know that the expected number of iterations will be an exponential 
function of dimension n. The logarithmic term kd/(y  - y . )  can be viewed as a bound 
on the "length" of the graph o f f  expressed in units of the specified error from the 
optimal. Clearly, an exponential increase in the Lipschitz constant or the diameter 
gives rise to a linear increase in the corresponding number of iterations of PAS 
required to achieve the same value error. 

The theorem states that the variance for the expected number of PAS iterations 
is also bounded by a linear function in dimension. This should encourage the search 
for practical PAS algorithms, since the coefficient of variation of the number of 
iterations required approaches zero as n gets large. In particular, the actual number 
of iterations required to yield a solution close to optimal is highly likely, for large 
dimensional problems, to be the expected number of iterations given in Theorem 
5.3, i.e. linear in the dimension of the problem. 

Although several researchers have empirically reported linear behavior in 
dimension for a variety of other random search algorithms including Schumer and 
Steiglitz [25], Schrack and Borowski [24] and Solis and Wets [27], PAS is a difficult 
algorithm to implement. The principal reason is that there is no known efficient 
procedure for generating a point uniformly distributed in a general region. Although 
the problem of efficiently generating many points uniformly distributed within a 
single bounded region bas met with some success [3, 4, 22, 26], the problem of 
efficiently generating a single point uniformly distributed in each of many bounded 
regions is still unresolved. 

An alternative is to design an improving algorithm that generates points that in 
value stochasically dominate the uniform distribution. That is, if an algorithm 
generates random points (uniform or not) with associated objective function values 
stochastically bettet than those of uniformly distributed points, then the same linear 
bound on performance will apply. Natural candidates include interior point methods 
that have displayed similar dimensional linearity for linear programming problems, 
such as Karmarkar's projective scaling algorithm [ 14] and its affine scaling variants 
[9, 11, 18]. Several of these algorithms [18] are similar in spirit to the method of 
centers due to Huard [13]. PAS can in fact be viewed as a randomized method of 
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centers. Just as the method of centers has given rise to a class of extremely practical 
interior point methods for linear programming, perhaps PAS can be similarly 
employed to inspire a class of practical methods for global programming. 

Appendix 

Proof  of  Lemma 3.1. First, we show that the conditional distributions are equal. Let 
k be any iteration, k =  1 , 2 , . . ,  and x, y be such that y,~<y~<x~<y *. Now, 

P(YR(k+l)<yl YR(k~= x ) =  P( YR~k)+I<~ Yl YR(k)= X) 

+ P(Y~~~~+2<y, YR<~~+l>~XJ Y~<~)= x)+. •., 

and since the Yk are independent and R(k )  is a stopping time for all k, 

= P( Ymkt+l <~ y) 

+ P( YR(k~+~ < Y)" P( Y,~~~~+, >1 x) +" • ", 

and since the Yk are identically distributed, i.e., Y~ ~ Y1 for k ~> 1, 

=P(Y ,<~y)  ~ P(Y,>~x)  ~ 
i o 

P(YI~<y) 

1 -  P(Y,>~ x) 

= ~ ( S ( y ) ) / ~ ( S ( x ) ) ,  

which is the conditional distribution of improvement for pure adaptive search, 

= P(Wk+l < yl Wk=x) .  

Thus, we have 

P(YR~k+,) <~ Y l Ymk) = X) = P( Wk+l <~ y[ Wk = X). 

Next, induction is used to show that the unconditional distributions are equal. By 
definition, R(O)=0  and Yo = W o - y * ,  thus YR(O) = Wo. Now for k= 1, 

P( YR(I~ <~ Y) = P( YR~,~ <~ y l Yo = y*) 

= P ( W ,  < yl  w o = y  *) 

=P(W~<~y) for a l l y . ~ < y < y * ,  

and hence, 

YR(I~-- W,. 

Let k be an integer greater than 1, and suppose YR(~~ ~ W~ for i = 1, 2 , . . . ,  k. Then, 

P( Ymk+,~<~ Y) = E[ P( Ymk+1~ <~ Y [ Ymk)) ] 

= ]x P(YR(k+~~<~Yl YR(k~ =X) dFv~(~~(x) 
J 0  
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and using the equality of the conditional distributions and the induction hypothesis 

I; = P(Wk+l<~ylWk=x)  dFw~(X) 
) 

= E[P( W~+,<~ yl w~)] 
=P(Wk+I~<y) for a l ly ,<~y~<y*.  

Therefore, 

YR(k+l~- Wk+l 

and by induction the two sequences are equal in marginal distribution. Finally, by 
the equality of conditional and marginal distributions, the two sequences are equal 
in joint distribution. [~ 

Proof of Theorem 4.3. As noted in the text, 

P( Wk <~ y) = P ( N ( ( y *  - y ) / ( y  - y , ) )  < k) 

k-1  

= ~ P ( N ( ( y * - y ) / ( y - y , ) )  = i) 
i = 0  

and because N ( z )  has a Poisson distribution with mean ra(z) (Theorem 4.2), 
k 1 

= }~ e "((Y*-Y~/(Y-v*)~m((y*-y) /(y-y , )) i / i ! ,  
i--O 

and since algebraically m((y* - y ) / ( y  - y , ) )  = ln(1/p(y))  for y ,  <~ y <~ y*, we have 
k l 

= ~ e-lml/P(Y))(ln(1/p(y)))i/i! 
i o 

k 1 

= y, p(y) ( ln(1 /p(y) ) ) i / i ! .  [] 
i--O 

Proof of Lemma 5.2. To obtain a lower bound on p (y), we construct two intermediate 
bounds. Let 

r = ( y * - y , ) / k ,  

Br = n-dimensional hypersphere centered at x ,  with radius r, 

Bd = n-dimensional hypersphere centered at x ,  with radius d, 

g ( x ) = l k l l x - x ,  ll+y, if x c B r ,  
tY* otherwise, 

= ~inf[y: (x, y) c convex hull of ( x , ,  y , )  and (Br, y*)] if x ~ Br, 

I.y* otherwise, 

G(y)  = {x: x ~ S and g(x)  <~ y}, 

S r - - B r ~ S  , 

~inf[y: (x, y) c convex hull of ( x , ,  y , )  and (St, y*)] if x c St, 
h(x) 

[ y*  otherwise, 

H ( y ) =  {x: x c S and h(x)  <~ y}. 
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For  a geometr ical  in terpreta t ion of  these, refer  to Figure 1. Notice that  two 
expressions are given for  g(x).  These expressions are equivalent  in defining g(x) ,  
which can be easily verified by compar ing  the ratio I] x - x ,  []/r to the ratio y~ (y* - y , ) .  
The sets G(y)  and H(y )  are the level sets o f  the funct ions g(x)  and h(x),  respectively.  

We first show that  the level sets are nested, 

H(y )  c G(y)  ~ S(y)  

for  any y ,  ~< y <~ y*. We begin by consider ing any x c H ( y )  for any y ,  ~< y ~< y*. By 
definition of  H(y) ,  x c  S and h(x)<~y. There  are two cases, either x e  Sr or x ~  Sr. 

I f  x c St, then 

h(x)  = inf [y :  (x, y) c convex hull o f  ( x , ,  y , )  and (S,., y*)].  

Since Sr = Br ~ S, x ~ Br, so 

g(x)  = in f [ jc  (x, y) ~ convex hull o f  ( x , ,  y , )  and (Br, y*)].  

Also, Sr c Br implies that  h(x)  >1 g(x) ,  thus x c G(y) .  Now,  because f ( x )  satisfies 
the Lipschitz condit ion,  we have 

I f(x)  - f ( x , )  I <~ k IIx - x ,  Il 

, • 

f(x) 

. . . . . .  ~~x~ , ~ . / . ~  

' ~  S 

I 
X, 

' ~  B r 

' ~  S r ~  

v I 

Fig. 1. A geomet r i c  in te rp re ta t ion  in one  d i m e n s i o n  (n = 1). 
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for  any x c S, or equivalently 

f ( x )  <~ kllx - x , I  I + y ,  

which equals g(x)  using the first expression for defining g(x).  Thus f ( x )  <~ g(x)  and 
x c S(y). 

I f  x ~ St, then 

h(x)  = y * .  

Also, because x c S, we have x ~ Br, and thus 

g(x)  = y * .  

And  f ( x )  <~ y*, so again, x ~ H(y) ,  x c G(y) ,  and x c S(y).  Combining  both  cases 
gives us 

H(y)  ~_ G(y)  c_ S(y).  

N o w ,  using this result yields, 

p(y)  = ~,(S(y))/~,(S) 

t , (G(y) ) /~(S)  

~ ' (H(y) ) /v (S)  

= (~,(H(y))/u(Sr))(~'(Sr)/~'(S)),  

and due to the similarity of  the convex conical sets, 

= ( ( y - y , ) / ( y * - y , ) ) ' ( ~ , ( S r ) / ~ , ( S ) ) .  

Thus the first intermediate b o u n d  is 

p(y)  >1 ((y - y , ) / ( y *  - y , ) )" (u(Sr) /  ~,(S)). (1) 

It remains to develop a lower bound  on u(Sr)/~(S) .  Before we continue,  notice 

that for some mathematical  programs,  the set Sr equals the set S, and thus the b o u n d  
simplifies to 

p(y)  >i ((y - y , ) / ( y *  - y , ) ) " .  

For  example, l e t f ( x )  = Ixl, with S = [ - 2 ,  2]. In this simple example,  k = 1, y* - y ,  = 2, 
and r = 2. Thus we have an example with Br = S = S~, and the bound  is tight. In 

fact, the b o u n d  in equat ion 1 is tight for the class o f  convex programs,  even though  

Sr is not necessarily equal to S for all convex programs.  A p roof  is given in Patel, 

Smith and Zabinsky [17]. 

We now show that  v(Sr) /u(S)  >I ~,(B~)/P(Bd ). In order  to cont inue the proof ,  we 

need to in t roduce a similarity t ransformation.  Let )t (x) : N" ~ Nn be the affine funct ion 
defined by 

r (y* - y , )  
A ( x ) = x , + c ( x - x , )  f o r a n y x c S w i t h C - d -  k ~ '  



336 Z.B. Zabinsky, R.L. Smith / Pure adaptive search 

which takes a point  x in S and moves it towards x ,  by a factor  of  c. Also, let 

b~ ={~: ,2=A(x),xcBd} 

and similarly, 

~={~: ~=A(x), xe  S}. 

The first step is to establish that 

/~d : B ,  (2) 

This follows directly f rom applying the similarity t ransformation,  A, to Bd, which 
shrinks a ball o f  radius d centered at x ,  by a factor  o f  c = r/d. This yields a ball 

of  radius r centered at x , ,  or Br. 
The second step is to establish that 

S_~ St. (3) 

To prove this, consider  any )~ c S. We show that )~ c S, and ~ ~ Br. Now, ~ c S because 

= A ( x )  f o r s o m e  x c S  

= x , + c ( x - x , )  

= c x + ( 1  - c ) x ,  

and since x, x ,  ~ S and 0 ~< c ~< 1, and S is convex, we conclude  

£ c S .  

Also, £ ~ Br because 

] l £ - x , [ l = H A ( x ) - x , [ ]  f o r s o m e x ~ S  

= II x ,  + « ( x  - x , )  - x ,  II 

= II«(x-xgll 

and by the definition o f  c = r/d, 

=( r /d ) ] ] ( x -x , ) [ I  

and because x c S and d is the diameter  o f  S, 

<~ ( r / d ) d  

<~r, 

hence, 

~ c  Br. 

Therefore,  £ c St, since Sr = S c~ Br. 
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Now, using equation (3) yields, 

~(&)/~(s) >1 ~(~)/~(s) 

= u(Ba) /u(Ba)  

because the ratio of the contents of sets is preserved under the similarity transforma- 
tion, and 

= v(Br) /v (Ba)  

from equation (2). Therefore, 

v ( & ) / u ( S )  >~ v(Br)/~'(Bd). 

Substituting the above inequality into equation (1) yields the second intermediate 
bound: 

p (y  ) >~ ( (y - y , ) /  (y* - y , )  )" ( P( Br)/ V( Bd )). (4) 

But the ratio of the volumes of two n-dimensional hyperspheres of radii a and b 
is (a /b )"  [15], thus 

v( B~)/ V( Bd) = ( r /d )"  = ( (y* - y , ) /  kd)". 

Hence, the final bound on p(y )  is 

p(y )  > ( (y - y , ) /  kd)" (5) 

and the proof is concluded. [] 
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