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We propose a dual descent method for the problem of minimizing a convex, possibly nondifferenti- 
able, separable cost subject to linear constraints. The method has properties reminiscent of the 
Gauss-Seidel method in numerical analysis and uses the e-complementary slackness mechanism 
introduced in Bertsekas, Hosein and Tseng (1987) to ensure finite convergence to near optimality. 
As special cases we obtain the methods in Bertsekas, Hosein and Tseng (1987) for network flow 
programs and the methods in Tseng and Bertsekas (1987) for linear programs. 
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1. Introduction 

C o n s i d e r  an n x m real matr ix  g whose co lumns  are n u m b e r e d  from 1 to m and 

whose  rows are n u m b e r e d  from 1 to n. Each co lumn j has assoc ia ted  with it a convex 

cost funct ion  ~ : [~--> ( - o c ,  + ~ ] .  We cons ide r  the p rob l e m 

m 

(P) Minimize f ( x )  = Y~ .~(x/) 
j = 1 

subject  to x c C, (1) 

where  x is the vector  in N"  with componen t s  xa, j - 1 , 2 , . . . ,  m, and  C is the subspace  

c = {x ] E x  - 0}. (2) 

Note  t h a t f  is a s sumed  to be ex tended  real va lued  s o l  can imply  interval  const ra in ts  

o f  the form !i <~ Xi <~ ci- In [15], (P) is ca l led  a monotropic programming  problem. We 

have a s sumed  that  C is a subspace  in o rde r  to come unde r  the s t anda rd  f r amework  

for  m o n o t r o p i c  p rog ramming ,  but  our  a lgor i thm and results  can be ex t ended  to the 

case of  a l inear  man i fo ld  cons t ra in t  of  the form C - {x I E x  - b}, where  b is a given 

vec tor  in ~n. We make  the fo l lowing s tand ing  a s sumpt ions  on .~. 
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Assumption A. Eachfj  is lower semicontinuous, and there exists at least one feasible 
solution for (P), i.e. the effective domain o f f ,  

d o m ( f )  = {x[f(x)  < +o0} 

and C have a nonempty intersection. 

Assumption B. The conjugate function [13, p. 104] o f f j  defined by 

gj(tj) = sup{ tjxj - f j (xj)}  (3) 
x~ 

is real valued, i.e. -o0 < gj(tj) < +o0 for all t jc R. 

Assumption B implies that f~(xj)> -oe  for all xj. It follows that the set of  points 

where fj is real valued, denoted dom(fj) ,  is a nonempty interval with right and left 
endpoints (possibly +oc or -oe)  denoted by cj and lj, respectively, i.e. 

lj = inf{sc ] fj(~:) < ~},  c~-- sup{¢ l£ (¢ )  < ~}. 

It is easily seen that Assumptions A and B imply that for every tj there is some 
xj ~ dom(fj)  attaining the supremum in (3), and furthermore 

lim fj(xj) = + ~ .  

It follows that the cost function of (P) has bounded level sets, and therefore (using 
also the lower semicontinuity o f f )  there exists at least one optimal solution to (P). 

Rockafellar [15] develops in detail a duality theory, based on Fenchel's duality 
theorem, involving the dual problem 

Minimize g(t) = ~ gj(tj) 
j-a (4) 

subject to t c C  ±, 

where t is the vector with coordinates tj, j c {1, 2 , . . . ,  m}, and C 1 is the orthogonal 

complement  of  C, 

C ±={t l t=ETp  for some p}, (5) 

where E T denotes the transpose of  the matrix E. We will borrow the terminology 

in [15] for network programming and call an element of C ± the tension vector. From 
(5) we have that t is a tension vector if and only if there exists a vector p in ~n 
such that 

t = EVp. (6) 

We will call Pi, the ith coordinate of  p, i t { l ,  2 , . . . ,  n}, the price of row i of E and 
we will call p the price vector. Then the dual problem (4) can be written as 

(D) Minimize q(p) 

subject to no constraint on p, 

where q is the dual functional 

q(p) = g( EVp). (7) 
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Any price vector  that  at tains the min imum in (D) is called an optimal price vector. 
As shown in [15, Chap te r  l l D ] ,  Assumpt ion  A guarantees  that  there is no duali ty 

gap in the sense that  the pr imal  and dual  opt imal  costs are negatives of  each other. 
For  each pa i r  xj and tj in R, we say that  xj and  tJ satisfy complementary slackness, 

CS for  short,  if  

ff(xa) <~ tj <~fT(xj), 
where fa(xj) and f f (x j )  denote  respect ively the left and right derivat ive o f ~  at xj 
(see Figure 1). 

L T 5_ graph°" 
slope fj(xj) : ~ | 

~ ~ ~ _  s,ope f/(x,) 

1 ',j " ' "  ,, 

Fig. 1. The  left and right derivat ives of./} at x r 

These derivatives are defined in the usual way for xj in the interior o f  dom(.~).  
When - e c  < !J < c) we define 

When I i < c j < + ~  we define 

J/(ci) lim f)  (se), f+(c)) = +oo. 
" ~ ? c j  " 

O0 + .+ Finally, w h e n / j = q w e d e f i n e f i ( 6  ) - , f i (ci)  +°o. Wedefinegf(ti) andgi(ti) 
in an ana logous  manner .  Note  from the proper t ies  of  conjugate  funct ions [13] that  

g f ( r l ) = m i n { s ~ ] j } ( s ~ ) > r / }  and g / ( r l )=max{s~] f j ( se )<~r /} ,  (8a) 

which implies that  

lim gf(rl) c) and lim g7( n)= 6. (Sb) 
r / ~ c o  r ? ~  oc 

For each x and  z in W', we denote  the direct ional  derivative o f f  at x in the direct ion 
z by 

f ( x  + ~z) - f ( x )  
f ' (x;  z) = lira 

~ o  /.t 

Similarly, for  each p and u in W', we denote  

q(p+Au) -q (p )  
q'(p; u) = lim 

a~o A 
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We will make the following standing assumption in addition to Assumptions A 
and B. 

Assumption C. f,~(!i) > -co  for a l l j  such that 6 > -oo, f/(lj) < +oo, and f ~ ( c j )  < +oo 

for all j such that cj < +o% fJ(cJ) < +oe. 

In the terminology of [15, Chapter  11], Assumption C implies that every feasible 
primal solution is regularly feasible, and guarantees (together with Assumption A) 
that the dual problem has an optimal solution [15, Chapter  11]. 

In this paper  we propose a new method for (P) and (D) that in a sense unifies 
the relaxation methods of [1, 18, 20] which apply to linear programs, linearly 
constrained strictly convex cost programs, and convex cost network flow programs, 
respectively. Our method, which we also call relaxation method, employs the 
e-complementary slackness mechanism introduced in [1] and is finitely convergent 
to within O(e)  of the optimal cost for any positive e. We show that this method 
works with both linear and nonlinear (convex) costs, and contains as special cases 
the methods in [18] and Section 3 of [1]. If  the costs are strictly convex, this method 

can also work with e = 0 [1, Section 2; 20], in which case it is essentially a dual 
coordinate descent method. To the best of our knowledge, the only other method 
for linearly constrained problems with both linear and nonlinear, possibly non- 
differentiable and not real valued, costs is Rockafellar 's fortified descent method 
[15, Chapter  11I]. Our method relates in roughly the same way to our linear 
programming relaxation method [18], as Rockafellar 's relates to the classical primal 

dual method. I f f  is real valued (not necessarily separable), the active set methods 
of [9, 11] can also be applied. These methods are fundamentally different than ours. 
Furthermore, to establish convergence, [l l]  requires the active constraints to be 
linearly independent at all times and [9] requires the feasible set to be bounded. 

The development of  this paper  proceeds as follows: in Section 2 we introduce 
the notion of e-complementary slackness and discuss its relation to dual descent; 
in Section 3 we review the notion of Tucker tableaus and the painted index algorithm 
as described in [15, Chapter  10]; in Section 4 we describe the modified version of 
the painted index algorithm that is used to generate dual descent directions for our 

method; in Section 5 we present the relaxation method for (P) and (D); in Section 
6 we prove finite termination of the method for any positive e; in Section 7 we 
show that the cost of the solution generated by the relaxation method is within O(e)  
of  the optimal cost and we also show that the dual solution provides useful 
information about the optimal primal solution. 

2. Dual descent and e-complementary slackness 

We first introduce some terminology. We will say that a point b in dora(f/) is a 
breakpoint  off./ if f / ( b ) < f + ( b ) .  Note that the dual functional q, as given by (7), is 
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piecewise either l inear or strictly convex.  Roughly  speaking,  each l inear piece 
(breakpoin t )  o f  the pr imal  cost funct ion fj cor responds  to a b reakpo in t  ( l inear piece) 
of  the dual  cost funct ion gj (see Figure 2). 

For  a given e/> 0, we say that  x c R m and p e R n satisfy e -complemen tary  slackness,  

e-CS for  short,  if  

f j ( x j )  -- e "~ tj <~f+(xj )  + e for  j = 1, 2 , . . . ,  m, (9) 

where  t = ETp. For  a given p, (9) defines uppe r  and lower  bounds ,  called e-bounds,  

on the pr imal  variables:  

If = min{~:] f~(~:)/> tj - e}, 

c ] = m a x { ( [ f j ( ~ ) < ~ t j + e } ,  for  j =  1 , 2 , . . . ,  m. (10) 

Then the e-CS condi t ion (9) is equivalent  to 

x j c [ l f , c f ]  for  j =  1 , 2 , . . . ,  m, (11) 

where  t ~ EVp. For  each x within the e -bounds ,  we define the deficit  of  row i by 

m 

d, = Z euxi. (12) 
j 1 

The vector  d whose ith coordinate  is d; (in vector  form d - E x )  is called the deficit 

vector. Intui t ion suggests that  if (x, p) satisfies e-CS and x has zero deficit vector  
(so x is feasible for (P)), then x and p should be near  opt imal .  For a given b, we 
can obtain  !~ and c~ f rom the characterist ic  curve o f ~  graphical ly  (see Figures 3 

fj(xj) 

\ 
slope ~ 

gj(tj)' 

lb 

tj 

Fig. 2. Correspondence between the breakpoints of./) and the linear pieces of gi. 

f 'xJ' l L 
\ 

Graph o{ fj 

xj  

Fig. 3. Graph of j). 
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/ 
. - -  tj / 

. . . . . . . .  I 

I) ~ cj ~ 
xj 

Fig. 4. Graph of 0fj and e-bounds corresponding to tJ" 

and 4). The  not ion of  e -CS and e -bounds  for  nonl inear  cost has been used in [1] 
in the context  of  ne twork  flow problems.  We app ly  the same mechan i sm here to 
treat  the general  case where  the constraint  matr ix  is not necessari ly the node-a rc  

incidence matr ix  of  a directed graph. The definit ion of  e -CS is related to the 
e -subgrad ien t  idea used in nondifferent iable  opt imizat ion  [2] as well as to the 
fortified dual  descent  me thod  of  Rockafe l la r  [15, Chap te r  11I], which implements  
the e -subgrad ien t  me thod  of  [2]. 

It turns out that  the e -bounds  can be used to est imate the rate of  dual descent.  
For  each tension vector  t and  vector  v in R "  define 

C~(v, t)~- }~ 1;vj+ 2 c;vi. (13a) 
vi<O vj>O 

For  each p c ~"  and u c N", the direct ional  derivative of  q at p along u is (cf. (4) 
and (7)), 

q'(p; u ) =  2 gf(t j)vj+ S gf(tj)V;, (13b) 
t~i<0 vj>O 

where t = ETp and v = EVu. From (10) and  [15, Section 8El we have g ; ( t j )  = 1 ° and 
gT(tj ) o = cj, so it follows f rom (13a) that  

q ' (p ;u )=  }~ l°v;+ 2 c°vj=C°( v ,t).  
1)j<O l)]~'O 

The fol lowing result provides  the mot iva t ion  for  using a direct ion v with C ' ( v ,  t) < 0. 

It  shows that  such a v leads to descent  for  all stepsizes not exceeding e/llv[I, where 
I1" II denotes  the sup norm.  

Proposition 1. For each price vectorp and u, if C~(v, t ) < 0  then q ' (p+Au;  u ) < 0  
for all A c [0, e ' ] ,  where t =- EXp, v = ETu and 

e'= e/llvll. (14) 

Proof.  We first note f rom (10) that  l °~  > l•, c°<~ c; for all j, so we have 

S I%+E o = cjvj<~ ~ /jt~;+ ~ c~vj=C~(v, t) .  
vi<0 t~j>O vj<O vj>O 

(15) 
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Since q'(p; u) = C°(v, t) we obtain q'(p; u ) < 0  so that u is a direction o f  dual 

descent at p. We will now show that q'(p + e'u; u ) <  0. Consider  (p ' ,  t') given by 

p '=p+e 'u ,  t '=t+e 'v ,  
so that 

t j=tj+e'vj  for j =  1 , 2 , . . . ,  m. (16) 

Then we have (cf. (8a), (10), (14) and (16)), 

lf <~ min{( [ f f  ( () >>- tj + ev j  ll v[]} 

= m i n { ( [ f + ( ~ = ) ~  > t~}=gj(t~) for a l l j  with v j < 0 ,  

cf ~> max{~]f j - ( ( )  ~< tj + evj/llvll} 

=max{~ : l f j (~ : )~  < t~}=g):(t~) for a l l j  with vj>O.  

It follows that  

q ' (p+e 'u ;u )=  5~ g/(t~)vj+ y g[(t~)vj~C~(v,t) ,  
t!i < 0 •i -" 0 

and therefore q'(p+e'u; u ) < 0 .  Since q'(p; u ) < 0  and q is convex we obtain that 

q ' (p+Au;u )<Ofora l l  Ac[O,e']. [] 

3. Tucker tableaus and the painted index algorithm 

In Section 2 we saw (cf. Proposi t ion 1) that if u is such that C'~(v, t ) < 0 ,  then u is 

a dual descent direction along which the line minimizat ion stepsize is "sufficiently 

large". To generate such u we will use two results f rom monot rop ic  p rogramming  

theory:  Tucker tableaus and the painted index algorithm [15, Chapter  10]. We will 

first give a brief  overview of  Tucker  tableaus and then describe the painted index 

algorithm, which generates, via pivoting, a finite sequence o f  Tucker  tableaus the 

last o f  which possesses a special sign pattern. 
Consider  the linear homogeneous  system 

Tx O, 

where T is a matrix o f  full row rank. Let each column of  T have a unique index. 

We denote  the set o f  indexes for the columns of  T by J. Since T has full row rank, 

we can part i t ion the columns of  T into [ TF~ TN], where T~ is an invertible matrix. 

Then the equat ion Tx = 0 can be expressed as 

x~ = ( -  T~'TN)XN , 

where x = (x~, XN). This way of  expressing Tx = 0 is a Tucker representation of S, 
where the subspace S is given by S = {x I Tx = 0}. Similarly, 

tN = (T~ITN)Tt. ,  
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where t = (tB, tN), is a Tucker representation of  S ~, the or thogonal  complement  of  

S given by S ~ =  { t i t =  TTp for some p}. The matrix -T~ITr~ is a Tucker tableau. 
The columns of  - T ~ I T N  are indexed by the indexes o f  the columns of  TN. The 

rows of  -Ta~TN are indexed by the indexes o f  the columns of  TB (see Figure 5). 

With respect to a given tableau,  an index is basic if its corresponding variable is a 

row variable and nonbasic otherwise. Clearly the number  o f  distinct tableaus is finite. 

A nonzero  vector x in S is said to be an elementary vector of  S [15, Chapte r  10; 
12] if there does not exist another  nonzero  vector x'  in S such that {j I X~ = 0} strictly 

contains {jlxj  = 0} (an elementary vector of  S ± is defined analogously) .  A funda-  

mental relationship exists between the Tucker  representations and the elementary 

vectors o f  S and S±: each column of  a Tucker  tableau yields in a certain way an 

elementary vector of  S, and conversely, each elementary vector  of  S is obtainable 

f rom some column of  some Tucker  tableau. In a similar way, rows of  Tucker  tableaus 

cor respond to elementary vectors of  the dual  subspace S ~-. The following is a 
restatement o f  the General  Basis Theorem [15, p. 457] but  using a slightly different 

normalizat ion.  

Proposition 2. For a given Tucker tableau, let atj denote the entry of  the tableau in 
the row indexed by basic index i and the column indexed by nonbasic index j. The 
elementary vector z of  S corresponding to the column indexed by nonbasic j* of  the 
given tableau (normalized so zj. = 1) is 

{ )jj if j = j * ,  

z = ( . . . ,  zj . . . .  )j~j, where Zi = • i f j  is basic, (17a) 

else. 

The elementary vector v of  S ± corresponding to the row indexed by basic i* of  the 
given tableau (normalized so v~, = 1) is 

{ ~ i f j = i * ,  
v = ( . . . ,  vj, . .  ")i~J, where vj = - i*~ i f j  is nonbasic, [] (17b) 

else. 

By a painting of  the index set J we mean  a parti t ioning of  J into four  subsets 

(some possibly empty),  whose elements will be called "green" ,  "whi te" ,  "b lack" ,  

and " red" ,  respectively. 

[ 
Xg ~ r o w  l 

variables 

x N = column variables 

- T~I TN 

Fig. 5. Tucker tableau corresponding to a partition of Tx-0 into T~xn+ TNx N = O. 
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g w b r 

0 0 0 
0 ~<0 />0 
0 I>0 ~<0 inc 

arb arb arb 

r 

b 

w 

g 

arb = arbitrary 

inc = incompatible 

Fig. 6. Column compatibility for Tucker tableau. 

w b r 

0 0 arb 

1>0 <~0 arb 

~<0 />0 arb 

inc 

arb = arbitrary 

inc = incompatible 

Fig. 7. Row compatibility for Tucker tableau. 

For a given tableau,  a column,  indexed by say s, of  the tableau is said to be 

column compat ible  if the colour  of s and  the pattern of signs occurr ing in that co lumn 

satisfies the requirements  shown in Figure 6. Note that a co lumn whose index is 

red is never  compatible.  The requirements  for a compat ible  row are ana logous ly  

shown in Figure 7. 

The pa in ted  index algori thm takes any pa in t ing  of the index set J and  any initial 

Tucker  tableau and performs a sequence of pivot ing steps to arrive at a final tableau 

that contains  either a compat ib le  co lumn or a compat ible  row. More explicitly, for 

any given index s that is black or white, the algori thm produces a final tableau 

having either a compat ible  co lumn using s or a compat ible  row using s (we say 

that a co lumn (row) uses s if  s is either the index of the co lumn (row) or the index 

of some row (column)  whose entry in that co lumn (row) is nonzero) .  We describe 

the algori thm below. 

Painted index algorithm [ 15, Chapter  10]. 

Start with any Tucker  tableau.  The given white or black index s may correspond 

to either a row or a co lumn (s is called the lever index).  

If s corresponds to a row, check whether  this row is compatible .  If yes, we 

terminate  the algorithm. Otherwise there is an entry in the s row that fails the 

compat ibi l i ty  test. Let j be the index of any co lumn conta in ing  such an entry, and  

check whether  this co lumn is compatible .  If yes, we terminate  the algorithm. 

Otherwise, there is an entry in co lumn j that fails the compat ibi l i ty  test. Let k be 

the index of any row conta in ing  such an entry. Pivot on (k, j )  (i.e. make j basic 

and k nonbas ic )  and return to the beg inn ing  of the procedure.  

If  s corresponds to a column,  we act ana logous ly  to the above, with the word 

" c o l u m n "  and  "row" interchanged.  
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The Tucker  tableau can be recursively upda ted  after each pivot in a manner  

similar to that in the simplex method.  When  the algori thm terminates, either a 

compat ible  row using s is found  or a compat ible  co lumn using s is found.  The 

number  o f  distinct Tucker  tableaus is finite, thus implying that the number  o f  distinct 

compat ible  columns or  rows is also finite. To ensure finite terminat ion o f  the 

algorithm, Bland's priority rule is suggested: assign priorities to the elements o f  J 

arbitrarily and whenever  there is more than one index that can be selected as j or  
k, select the one whose priority is highest. We will assume f rom hereon that this 

rule is used always. 

4. Generating dual descent directions 

Consider  the extended subspace 

~Q = { ( -d ,  x) ld -= Ex} (18) 

and its or thogonal  complement  

a ± = {(p, t) lt = EXp}. (19) 

We will describe a part icular  way to apply the painted index algori thm to determine 

if a price vector  p is approximate ly  dual optimal,  and if p is not  dual optimal,  to 
either (a) generate an elementary vector (u, v) o f  ~ l  for which u is a dual descent 
direction o f  q at p, or (b) change the primal vector x so as to reduce the total deficit 

as measured by 

Id, I, 
i=1 

while maintaining e-CS with p. The scalar e is fixed at a positive value th roughout  
the algorithm. 

Dual descent generating procedure 

Let (x, p)  be a primal dual pair  satisfying e-CS such that Ex ¢ 0. Denote d = Ex 
and select some row s o f  E with ds # 0. In the description that  follows we assume 

d~ < O. The case where d~ > 0 may be treated in an analogous manner.  

We apply the painted index algorithm, with s as the lever index, to the extended 

linear homogeneous  system (whose columns are indexed f rom 1 to n + m), 

[ - I  E ] [ ~ ' J  = 0, (20) 

where index i (corresponding to wi), i = 1, 2 , . . . ,  n, is painted 

white i f d i > 0 ,  

black i f d ~ < 0 ,  

red if d~ = 0, 
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and index j + n  (corresponding to zj), j = 1, 2 , . . . ,  m, is painted 

green i f !~ < x s < c ; ,  

e. e black i f ! j = x j < c  s ,  

white if ly < xj = c ; ,  

red if l~ = x~ = c~. 

Furthermore,  we (i) use as the initial Tucker  tableau one for  which s is basic; (ii) 

assign the lowest priority to index s (this ensures that s is basic during all pivots, 

as shown in [18, Appendix  B]). The key feature o f  the procedure  is that  for each 

Tucker tableau generated by the painted index algori thm we check to see if a dual 

descent direction can be obtained from its lever row (row indexed by s): 

For  each nonbasic  index r, denote ar the tableau entry in the lever row and the 
column indexed by r. Applying (17b) to the extended linear homogeneous  system 

(20) we obtain the elementary vector (u, v) of  .(2 j using s that  corresponds to the 

current tableau. This vector is given by 

1 if i = s ,  

u~ = -c¢~ if i is nonbasic,  i 1, 2 . . . .  , n, (21) 

0 otherwise, 

{Oj+,, i f j +  n is nonbasic,  
W = otherwise, j = 1, 2 , . . . ,  m. (22) 

For this choice of  (u, v) we obtain (using (13a), (21) and (22)) that 

c'(v, t )  = J , - 2  , * , 4 +  )_2 (c  I - x j ) ~ j + , ,  + )_2 ( ! ;  - x j ) ,~ j  ~,,. 

j + n  i . . . .  t r e d  j + n i  . . . . . . . . .  t (23) 

I f  C ~ (v, t ) <  0 then the direction u is a dual descent direction (cf. Proposi t ion 1) 

and the procedure  terminates. Note from (23) that if the tableau is such that the 

row indexed by s is compatible,  then C~(v, t) < 0  since our  choice o f  index painting 

and the definition of  a compatible  row (cf. Figure 7) imply that (also using the 

hypothesis d, < 0), 

d, < 0  and a~d~>0 for all i such that i is nonbasic;  

x i c~ for a!! j such that j + ,  it nnnhn<ic" aria nat  red, . . . . .  ~+,, z 

X~=/Y for a l l j  such t h a t j + n  is nonbasic  and not red, and o0+,,<0; 

which in view of  (21), (22) and (23) implies C~(v, t ) < 0 .  

We know that the painted index algori thm terminates with either a compat ible  

row using s or a compat ible  column using s. Therefore if we do not find a direction 
u for which C~(v, t ) < 0 ,  we must find a compat ible  column using s. In the latter 
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case, we compute  a direct ion z * c  R m f rom x that  decreases the total  deficit while 

main ta in ing  e-CS: 

Denote  by r* the index of  the compat ib le  co lumn (it can be seen f rom Figure 6 
and  the fact that  this co lumn uses s, that  r* is either b lack  or white) and,  for each 
basic  index h, denote  by  ~h the tableau entry in the compat ib le  column and the 

row indexed by  h. 
Case 1. I f r * = i *  for  s o m e i * c { 1  . . . .  , n } a n d  r* is b lack  then set 

' +n if n + j  is basic, 
w* ~ i if i is basic,  z*,-- 

else. 
else, 

Case 2. I f  r* = n + j *  for  some j*  c {1 . . . .  , m} and r* is b lack  then set 

t i  j i f j  = j * ,  
i f / i s  basic,  j + o  

else, else. 

Case 3. I f  r* = i* for  some i* c { 1 , . . . ,  n} and r* is white then set 

[i ' - f l j+ .  if n + j  is basic, 
w/*<-- - i if  i is basic, z*~- 

' 0 else. 
else, 

Case 4. I f  r* = n + j *  for  some j*  c {1 . . . .  , m} and r* is white then set 

I - i j  i f j  = j * ,  w*<- - / - f l i  if  i is basic, z*<-- - +, if n + j  is basic, 

0 else, else. 

It  can be seen using (17a) and (20) that  w* and z* so defined satisfy w * =  Ez*. 

Fur thermore ,  our  choice of  index paint ing,  together  with co lumn compat ibi l i ty  of  
the co lumn indexed by  r*, guarantees  that  for /x > 0  sufficiently small,  x + l x z *  

satisfies e-CS with p and x +/xz* has strictly smaller  total  deficit than x. 

Given  the above discussion,  we see that  the modif ied painted  index algori thm 
will either p roduce  a dual  descent  direct ion u as given by (21) that  can be used to 
improve  the dual funct ional ,  or p roduce  a pr imal  direct ion z* as given above that  

can be used to reduce the total  deficit. 
The special  case where  the initial t ab leau  is chosen to be E is of  part icular  interest 

for  it leads to the general ized coordinate  descent  (or relaxat ion)  interpretat ion of  
our  method.  To see this, note  that  the dual  direct ion u associa ted with this tableau 

(cf. (21)) has componen t s  

ui = otherwise,  

so that  the coordinate  direct ions are given priori ty as candidates  for  dual descent  
(in fact if the dual cost were differentiable then one could use exclusively such 
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coordinate descent directions). Computational tests showed that on linear cost 

network flow problems the coordinate directions typically contribute between 80 to 

90 percent of the total dual cost reduction [17]. 

5. Relaxation method 

Based on the discussions in Section 3 and Section 4, we can now formally describe 

the relaxation method (the scalar e is fixed at a positive value throughout the 

method). The basic relaxation iteration begins with a primal dual pair (x, p) satisfying 

e-CS, i.e. l~ ~< xj <~ e f Vj, and returns another pair (x', p') satisfying e-CS such that 

either (i) q(p ' )< q(p) or (ii) p '=p  and (total deficit of x ' ) <  (total deficit of x). 

Relaxation iteration. 
Step O. Given x and p satisfying I~ <~ xj <~ c~ V j, let t and d be the corresponding 

tension and deficit vectors. If  d = 0 then terminate. Otherwise choose a row s of E 

for which d~ ~ 0. 

Step 1. Apply the dual descent generating procedure with s as the lever index to 

the extended linear system 

as described in Section 4. If the procedure terminates with a dual descent direction 

u we go to Step 3. Otherwise the algorithm terminates with a compatible column 

using s, in which case we go to Step 2. 

Step 2. (Primal rectification step.) Compute 

# = m i n ~ m m ~ , m i n ~  m i n - -  
L~::>o z~ ~%::o z ~ 'w~/0 wl ~j '  I 

where z*, w* are computed as described in Section 4. Set 

x ' ~  x + tzz*, p' e p, 

and exit the iteration. (The choice of tx above is the largest for which e-CS is 

maintained and each deficit is monotonically decreased in magnitude.) 

Step 3. (Dual descent step.) Determine a stepsize 3.* for which 

q(p+A*u)  = min{q(p+Au)[A >0}. 

Set p ' e p + A * u  and compute a primal vector x' satisfying e-CS with p'. Exit the 
iteration. 

Validity and finite termination of the relaxation iteration 

We will show that all steps in the relaxation iteration are executable and that the 

iteration terminates in a finite number of operations. By the discussion in Section 



140 P. Tseng, D.P. Bertsekas / Relaxation methods 

4, the relaxation iteration terminates finitely with either a primal rectification step 
(Step 2) or a dual descent (Step 3). Step 2 is clearly executable. Step 3 is executable 
for if there does not exist a line minimization stepsize )t* in the direction u, then 
since u is a dual descent direction at p, the convexity of q implies 

q ' ( p + A u ; u ) < O  VA>O. 

It follows from (8b) and (13b) that (denoting v = E T u )  either (i), 

Z @~+ 2 cjv~<o, 
vj<O vi>0 

or (ii), 

and 

E 6v~+ Y, c~v~=o 
vj<O vi>O 

either g}-(rl)>/j Vrt for s o m e j  with v j < 0  

or g + ( r l ) < q  V• for some j with v j>0 .  

In case (i), for any x that satisfies E x  = 0 and l~ <<- X; <~ cj for all j (such x exists by 
Assumption A) we have 

O = u T E x  = vT X = ~ XjUj + ~ XjVj <~ Z ljVj + ~ Cjvj < O, 
t~i<0 v j>0  t~i<0 vi>O 

a clear contradiction. In case (ii), we obtain from (8a) that 

either f + ( l j ) = - o o  for s o m e j  with v j < 0  

or f j ( c j )  = +oo for some j with v~ > 0, 

and that (using an argument analogous to that for case (i)) any feasible solution x 
of  (P) satisfies 

xj =/j  Vj with vj < 0 and xj = c~ V j  with vj > 0, 

which in turn implies 

! j > - c c ,  f j ( ! ; )<+ec ,  Vj with v~<O, 

and 

c; < +~, £%) < +~, 

This contradicts Assumption C. 

Vj with vj > O. 



P. Tseng, D.P. Bertsekas / Relaxation methods 

6. Finite termination of the relaxation method 

141 

In this section we show that the relaxation method of  Section 5 (under a suitable 

priority assignment of the indexes) terminates in a finite number of iterations. The 

proof  extends the one given in [1] and consists of two parts. In the first part we 

show that the number of dual descent steps is finite. This is done by arguing that 
the optimal dual functional is necessarily -oo if the number of dual descent steps 
is not finite. In the second part we show that, under an appropriate priority 

assignment of the indexes, the number of primal rectification steps between succes- 

sive dual descents is finite. 

We first show that the stepsize in each dual descent step is bounded from below 

by a scalar multiple of e. 

Proposition 3. The stepsize in each dual descent step is at least e / M, where M is some 
constant that depends only on E. 

Proof. For any two price vectors p and u e ~", Proposition 1 says that if C~(v, t) < O, 
where t = ETp and v =  Eru,  then u is a dual descent direction at p +  Au for all 

A c [0, e/H v II). Therefore the line minimization stepsize is at least e/]l v II- Since each 
dual descent direction u is generated from a Tucker representation of ~(2 ± (cf. (21)) 

and the number of such representations is finite, we can upper bound IIETu[I from 
above by the constant 

max{max{]iv]l Jail elementary vectors (u, v) of .(2 ~ with lu,] : 1}lall s} 

which depends only on E. [] 

Denote by pr the price vector generated by the relaxation method just before the 

rth dual descent step and let t r = E~p ~. Also denote by u" the dual descent direction 
in the price space at the rth dual descent step and let v r=  ETu r. We next bound 

the improvement in the dual functional per dual descent step. 

Proposition 4. 
each r c {0, 1,2, . . .} ,  

q ( p r ) _ q ( p , + , ) >  

where we define 

Let e '= e l M  where M is the scalar constant in Proposition 3. Then for  

E£( qz; ) - f i (x;  ) - ( q~y- x f ) t f ]  >~ o, (24) 
]wi th  L,'~ ¢ 0 

, .  ,. f g j ( t f )  if f<o, 

Proof. From the definition of ~v~ and X~ we have 

gi(t~)=xrjt~--~(X~), g~(t~'+e'V~)= ~F~(t~+e'v~)-fi(~F~) , V j  with t ~ 0 .  
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From the definition of q and v r we have 

q(pr +e 'U~)=q(pr )+  ~ [gj(t~+e'V~)--gj(t~)], 
j w i t h v ~ 0  

and from Proposition 3 we have 

q(pr) _ q(pr+,) >1 q(p~) _ q(p~ + e,u~). 

Combining the above three equalities and inequalities gives 

q ( p r ) _ _ q ( p r + l ) ~  2 [ [ x ~ t ~ - f j ( x T ) ] - [ ~ ( t ~ + e ' v ~ ) - f j ( ~ ) ] ]  
j w i t h  v~ -~ 0 

--  £(xr  - -  ( % - -  X ; )  t ; ]  

[ j  w i t h  v ~ ' O  

Since 
r r ~ + r ! r r -- r ! r r ~ j v j =  g j ( t j + e  v j )v j+ ~ g j ( t j + e  vj)v.i 

v ¢'~ 0 j w i t h v ~ # O  'i v ~>O 

- -  r t r r + r t r r <~ ~ g j ( t j + e  v j )v j+ Z g j ( t j + e  vj)v.j 
v ' j < 0  % zJ 0 

=q' (pr+e 'ur ;  Ur) <0 ,  

where the last strict inequality holds by Proposition 3, the strict inequality in (24) 
follows. The right inequality in (24) follows from the convexity of ~. [] 

We will now use Propositions 3, 4 and Lemma 2 of [20] to prove that the number 
of dual descent steps is necessarily finite. 

Proposition 5. The number of  dual descent steps in the relaxation method is finite. 

Proof. We will argue by contradiction. Suppose that the number of dual descent 
steps is infinite. First we show the following property of {tr}: for each j, 

{tT}R-->cc for some subsequence R ~ cj<+oa, ~(cj )<oo,  (25) 

{t~}R~-oo for some subsequence R ~ ! i > - c c ,  £ ( ! j ) > - o o .  (26) 

If {t r} is bounded then (25) and (26) trivially hold. Consider a subsequence R 

for which {t"}R is unbounded. Passing to a subsequence if necessary we assume 
that, for each component j, {tT}R is either bounded, or tends to co, or tends to -oo. 
By Lemma 2 of [20] there exists v c C ~ for which v satisfies 

vj>O i f t ; ~ o o ,  vj<O 

Then for any 21 > 0, 

q ' ( p r -  21u; - u )  = - 
t~l~OO,rc R 

and from (8b) it follows that 

lim q'(pr--21U;--U)=-- ~ CjVj-- Y. ljvj. 
r~OO, rcR v j > 0  v j < 0  

r__> r if tj -oc,  vj=O if tj is bounded. 

g~(trj- A~i)Vj 2 + " -- gj ( tj - 21vj)v i, 
t~--oo, rc R 

(27) 
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Let 0 denote  the r ight-hand side o f  (27). We will argue that 0 = 0. We cannot  have 

0 > 0 since this would  imply that there does not exist a primal feasible solution (cf. 

the a rgument  for case (i) in the validity p r o o f  o f  the relaxation iteration), contradict-  
ing Assumpt ion  A. We also cannot  have 0 < 0  since then (27) implies that for r 

sufficiently large 

q(p" - Au) ~ q(p ' )  + ½AO. (28) 

This is not  possible since A can be chosen arbitrarily large, while q(p) is bounded  

f rom below for all p. Thus the only possibility is that  0 = 0 or 

g cjvj+ g tjvj---0. 
v i > O  v j <O  

Then every feasible primal vector x must  satisfy 

xj = Cj Vj with {t}}g ~ CO, Xj = !i Vj with {tf}R ~ --00. 

This together  with Assumptions  A and C imply (25) and (26). 

Now we will bound  from below the amount  o f  improvement  in the dual functional  
per dual descent by a positive constant. Let s' s /M,  where M is the scalar given 

in Proposi t ion 3. Proposit ion 3 assures us that at each dual descent step the step 

[3s ,  3e ] which we denote  by I. We have length is at least ~". Consider  the interval 1 , 3 , 

that the dual functional is decreasing on the line segment connect ing p '  and p"+~ 
It follows from (25), (26) and Assumption C that there exists a subsequence R such 
that, for each componen t  j, {t~}R is either bounded ,  or tends to oo, or tends to -oo;  

and (also using (13b) and the fact {v"} is bounded  since its elements come from a 

finite set) for r c R sufficiently large, we have for all k c / ,  

r r + r r it" q'(p"+Au";u") Z civi+ Z livj+ Z gj( t j+Avi) t~  
jC: .J  + j Q J  i c ,I ° 

t ' / > 0  

~ I  r r r + o g i ( t i+Avi )v i<O,  
t~/<:: 0 

where we define 

j ' - - - { j l { t ~ } < ~ , ~ o o  L J - - - { j r { , ; } , ~ . - ~ - o ~ } ,  

j o _  {j I{ t~},.{ R is bounded}.  

Consider  a fixed r c  R. We define 0 : R ~  R by 

O(A)- -q(pr+Au ") 

and we consider  two cases. In case (i) the right derivative of  O(A) assumes at most 

2m distinct values in the interval /. In case (ii) the right derivative o f  O(A) assumes 

more  than 2m distinct values in the interval k In case (i) q(p"+Au") is linear for 

A in some subinterval o f  I '  of  I o f  length at least e'/4m and it follows from (Sa) 
and (13b) that q'(p'+Au"; u") over I" is constant  o f  the form 

q ' ( f + A u " ;  Ur) = J~E-'+ CiV;+. J~JY ljV;+ jE~.~,> bivY, (29) 
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where bj denotes  some b reakpo in t  o f  fj (using the cor respondence  be tween the 
breakpoin ts  o f f j  and the l inear pieces of  &). This implies  that,  for  each j c jo  such 
that  v ~  0, the dual  cost  gj(t~+Av~) is l inear with slope bj for  A in I r. For each 
j ~ jo,  {t~}r~R is b o u n d e d  and therefore  the n u m b e r  of  distinct l inear  pieces of  gj o f  

length >I-e' /4m encounte red  during the course of  the me thod  is finite. This together  
with the fact that  v r is chosen f rom a finite set imply  that  q ' ( p r + A U r ,  U ~) (cf. (29)) 

can only assume one o f  a finite set o f  values over  the subinterval  I r. It follows that  
in case (i) we can b o u n d  the amoun t  of  dual  cost i m p r o v e m e n t  f rom below by 
6e/4m,  where 3 is some posit ive scalar. This implies that  case (i) can occur  for only 
a finite set o f  indexes r (for otherwise the dual funct ional  tends to -oo)  and we 
need only to consider  case (ii). In case (ii), for  each r c R there must  exist a j c j0 

for  which v~ ¢ 0 and the right derivat ive of  the funct ion h(A) defined by h(A)---- 
gi(t~+Av~) assumes at least three distinct values in the interval I. It follows that  

r r r r either v~ > 0 so that  t2 +1 >1 t~ + e' v'f and g7 ( tj q-/I 1 V j )  < gi ( tj +/12Vj ) for  at least two 
r r + l  t r -- r r gj (tj + A2vj) < po in t s /11</12inI ,  o r v j < O s o t h a t t j  < ~ t ~ + e v j a n d  + ~ " g j ( t j+/11vj )  

for  at least two points  /11 < / 1 2  in L Passing to a subsequence  if necessary we can 
assume that  for  all r c R, r sufficiently large, it is the same j with the preceding 
proper ty  and either v7 > 0 or v~ < 0. Without  loss of  generali ty we will assume that  

t r vj > 0 for all r c R that  are sufficiently large. Since j ~ j0, the subsequence  { j}r~R 
is b o u n d e d  and  therefore  has a limit point  t*. Passing to a subsequence  if necessary,  
we assume that  {t~} converges  to t*. Then it follows that  there exists a fixed interval 
L such that  

L C (t~, t~+ e'v~) Vr c R, r sufficiently large, (30) 

and 

Th < r/2 and g f ( 7 1 1 ) < g f ( ~ 2 ) ,  (31) 

for  at least two distinct points  ~/1 and ~/2 in L. We define 

~l-= g f  (nl ) ,  ~2 - + = gj (~).  

Then  ~1 and ~2 belong to the interval 

-- + 
[gj (a), gj (b)] ,  

where  a, b are respect ively the left and the right end points  o f  L, and (using (8a)) 
they satisfy 

/ ; ( ~ l )  = T ] I ,  f f ( ~ 2 )  = T~2" 

The latter condi t ion together  with (31) and the facts gf(n0  ~< gf(~l), gf(rl=) ~< gf(72) 
imply  

~1 < ~2  and f f ( # , )  < f j - ( ~ 2 ) "  (32a) 

Then for r sufficiently large, r c R, we obtain (cf. (30)) that  

g f  ( t;) ~ ~, < ~2 ~ gj ( tj + e' vrj). (32b) 
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It follows from Proposition 4 that, for all r 6 R that are sufficiently large, 

- -  r + r q(pr)  __ q(pr+l) ~ £ ( g i  (ti + e'v~)) - -£ (g j  (t i)) 

+ + r r t r + r 
- f i (gi ( ti) )(gJ ( ti + e vi) . . . . .  - g j  ( t j ) )  

>~ f j (  ~z) - f j (  ( , )  - f f  ( ¢l)( ~2 - ~71), (33) 

where the second inequality follows from (32b) and the convexity o f~ .  From (32a) 
and the convexity of f j  we obtain that the right-hand side of  (33) is positive. There- 
fore the dual functional improvement  per dual descent is bounded from below 
by a positive constant, and the dual functional tends to -oo, contradicting 

Assumption A. [] 

The second part of  our finite termination proof  consists of  showing that if the 
index priorities are assigned in a certain way, then the number  of  primal rectification 
steps between successive dual descents is finite. We have the following: 

Proposition 6. I f  in the relaxation method the green indexes are assigned the highest 

priorities and the black and white indexes belonging to { 1 , 2 , . . . ,  n}, except j b r  the 

lever index, are assigned the next highest priorities, then the number q f  primal rec- 

tification steps between successive dual descents is.finite. 

Proof. See [18, Appendix C]. [] 

Propositions 5 and 6 imply that the relaxation method of Section 5, using the 
priority assignment rule stated in Proposition 6, terminates after a finite number of 

iterations. Since the method only terminates when the deficit vector is the zero 
vector, the final primal vector x must satisfy Ex = 0. Since e-CS is maintained at 
all relaxation iterations, x and the final price vector must satisfy e-CS also. 

7. Estimates of suboptimality of solution 

In Section 6 we showed that the relaxation method produces a primal dual pair 
(x, p) satisfying e-CS and x c C. In this section we show that the cost of such a 
pair is within O(e)  of  the optimal cost and furthermore, p yields partial information 

regarding the optimal primal solution. We begin our argument with the following: 

Proposition 7. Let x ~ C and p satisfy e -CS and let ~ and p satisfy CS. Then 

m 

O < ~ f ( x ) + q ( p ) < ~ e  • I ~ - x j ] .  
i 1 
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Proof. Let t = EVp. Since s ~ and p satisfy CS we have 

f j (~j )  = t f j - g j ( t j )  V j  = 1, 2 , . . . ,  m. 

Consider  a co lumn j for which xj ~> ~:j. Then by convexity o f f j ,  

f j ( x j )  + ( ~j - x j ) f f  (x j )  <~ f j ( ( j )  = t f j  - gj( tj). 

Hence 

where the second inequali ty follows from the definition of  e-CS. This inequality is 

similarly obta ined when xj <~ ~j so we have 

f j ( x j )  + gj( tj) <~ I~j - xj le + tixj V j  = 1, 2 , . . . ,  m. (34) 

From the definition of  gj (cf. (3)) we also obtain 

t j x j<~f j (x i )+gj ( t j )  V j =  1, 2 , . . . ,  m. (35) 

Summing (34) and (35) over all j = 1, 2, . . . ,  m yields 

t,x,-< [£ (x , )+g , ( , , ) ]< -  ',xi. 
j - - I  j - -1  j 1 l = l  

Since x~  C and t c  C ± we have 

m 

Z tjxi = 0 
j = l  

and the result follows. [] 

Using Proposi t ion 7 we can obtain an explicit bound  on the suboptimali ty of  the 

solution in the special case where !J > -oc  and cj < +co for all j. 

Corollary 1. Suppose  x c C and  p satisfy e-CS.  Then 

rn 

O < ~ f ( x ) + q ( p ) < ~ e  • ( c j - l j ) .  [] 
j 1 

For the general case we have: 

Proposition 8. Let  x ( e )  a n d  p ( e )  denote  any  f l ow  vector and  price vector pair  f o r  

which x (  e ) and  p(  e ) sat is fy  e - C S  and  E x (  e ) = O. Then f (  x (  e ) ) + q( p (  e ) ) + 0 as e ~ O. 

Proof.  First we show that  x ( e )  remains b o u n d e d  as e ~ 0 .  I f  x ( e )  is not bounded  

as c o 0 ,  then since E x ( e ) = O  for all e > 0  there exists a sequence {e r}o0  and a 

part i t ion o f  the index set { 1 , 2 , . . . ,  m} into I +, I - ,  and I ° such that c j=+oe ,  
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xj(er)~+oo, for a l l j c  I+; /j = -oo, xj(er)~ -0% for a l l j c  I ; and xj(er) is bounded 

for all j ~ I °. By Assumption B, 

lim f~-(~¢)=+oo for a l l j c I  +, lim f ~ - ( ~ ) = - o o  for a l l j 6 I  . 

This and e-CS (cf. (9)) imply 

tj(er)~+oo f o r a l l j c I  +, t j (e j )~-oo  f o r a l l j c I - ,  (36) 

where t(er) = EVp(er). Using Lemma 4 in [20] we can express X(er) as 

x(er)= wr+z ~ for all r, 

where {w r} is bounded and z r satisfies 
r r Ezr=O Vr and z j~+oo V j c I  +, z j ~ - o o  V j ~ I - ,  

(37) 
z~=0  V r V j c I  °. 

Since t(er) = EVp(e~), it follows from (37) that 

Y, tj(er)Z~+ • tj(er)Z~=O for all r, 
i ~  1 + . j~  I 

which contradicts (36) and (37). Therefore x(e)  is bounded as e ~ 0 .  
Now we will show that ( j ( e ) - x j ( e )  is bounded for a l l j  as e-~0, where ( ( e )  is 

• <:~ + some vector satisfying f / ( ~ ( e ) ) ~ <  t i ( e ) ~ f j  (~i(e)) for all j. If  q < +oo then clearly 
~(e)  is bounded from above. If c i=+oo then by Assumption B, f ~ ( ( ) ~ + o o  as 
~'~ +oo. Then the boundedness of xi(e) implies that ti(e ) is bounded from above, 
which in turn implies that scj(e) is bounded from above. Similarly, we can argue 
that sCj(e) is bounded from below. Therefore ~i(e) x~(e) is bounded for all j as 
e ~0 .  This completes our proof  in view of Proposition 7. [] 

Unfortunately Proposition 8 does not tell us a priori how small e must be to 

achieve a certain degree of near optimality. We would need to solve the problem 
first for some guessed value e to obtain x(e)  and ( (e) ,  evaluate the quality of  the 
solution on the basis of the gap f ( x ( e ) ) +  q(p(e))  between primal and dual solution 
and then decide whether e needs to be decreased. If  however the /,'s and the Ci'S 
are finite and known, we can (cf. Corollary 1) obtain an a priori estimate on e. 
Nevertheless, the dual solution does yield useful information about the value of the 
optimal primal solution. This is shown in the following extension of Tardoz's  result 

for linear cost network flow problems [16, Lemma 2.2]. 

Proposition 9. Let x* denote any optimal primal solution and let x be a primal feasible 
solution that satisfies e-CS with some price vector p. Let t = EVp. Then 

x* = !i Vj with f ) ( l i )  -tJ > snM, 
(3s) 

x* = cj Vj with f ~ ( c j ) -  tj < -enM,  

where M is the scalar constant defined by 

M--- max / m a x [ ( B  IER)~il} 
B a n  i n v e r t i b l e  ~ i , j  
s u b m a t r i x  o f  E 
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EB = submatrix of  E consisting of  the rows of  E that correspond 
to the rows of  B. 

Proof. By making, if necessary, the transformation 

(convexity of  the cost function is preserved by this transformation) we can assume 
that x >/x*. We will argue by contradiction. Let h be an index for which 

f h (Ch)  -- th < - e n M  and Xh > Xt* (39) 

(note that M ~> 1 so xh = Ch by e-CS). I f  no such index exists then the claim of the 
proposition holds since for any j such that f f ( / j ) -  tJ > enM we have (since M ~> 1) 
f f ( l j )  - tj > e, and e-CS implies that xj =/j.  On the other hand we have xj >1 x* >1 !J, 
so (38) follows. 

Let J=-{ j l x j  > x*} and denote E~ the j th  column of E. We note that the set 
S -={~]E~=0 ,  ~:j=0 VjCJ,  (j>~0 Vj~J ,  ~:h > 0} is nonempty since x - x *  belongs to 

it. Furthermore, for any s ~ in S, {Ej IJ ~ h, ~ > 0} is nonempty (otherwise Eh = 0 and 
(39) cannot hold), and if {Ej ]j # h, ~j > 0} does not form a set of linearly independent 
columns, then it is easily seen that there exists a ~' in S for which {J l~  > 0} 
{j]~j > 0}. It follows that S contains a ~ for which the set of columns {Ej ]j # h, ~j > 0} 
is linearly independent. Let B denote a square submatrix of this set of  columns 

having the same column rank, and let ~:~ denote the vector ( . . . ,  ~,...)j~h.~j>0. It 
follows that 

B~B + Bh~h = O, 

where Bh denotes the portion of Eh corresponding to B. Then ~R/~h = - B  ~Bh and 
from the definition of M we obtain 

~. scJ<~nM, (40) 
j~h  ~h 
( i>o  

and that x '  = x* + p~: is primal feasible, where p =- min{(xj - x*)/~j  I J ~ J}. Let /3 = 
f ( x ' ) - f ( x * ) .  We will show that /3 < O, thereby contradicting the optimality of  x*. 

Let K ~ {jls~; > 0}. We have 

I? I; fl = f ( x ' ) - f ( x * )  = rE; ~) dr  = ~ ~j f f ( x *  + ~'~) dr. (41) 
iE K 

Since 

f f ( x * + T ~ j ) < ~ f f ( x j )  V z c [ O , p ) ,  V j c K ,  

it follows from (41) that 

fi <~ 2 ~j f f ( x j )  dr  = 2 ~ j p f f ( x j ) .  
,jcK j~K 

(42) 
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Since E~ = 0, we have that tT~: = 0, or equivalently 

- • ~jtj = O. 
j c K  

Adding (43) to (42) yields 

fl<~ Z ~ p [ f j ( x j ) - - t j ] = p ( h [ f h ( X h ) - - t h ] + p  E 
j ¢ K  . jcK,j~h 

Since (using 

whose right 
established. 
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(43) 

~ [ f f ( x j )  - tj]. (44) 

e-CS) f f ( x j )  - tj <~ e for all j c K, j # h, (40) and (44) imply 

p ~ h [ f  h (Xh)  -- th] d- penM~h = P~h[f  h(Xh) - th d- e n M ] ,  

hand side is negative by (39). Thus fl < 0  and a contradiction is 
[] 

In general, M is quite difficult to estimate. However, if E is the node-arc incidence 
matrix for an ordinary network, it can be seen, using the total unimodularity of  E 
[15, p. 135], that M equals one. We can use Proposition 9 to solve (P) and (D) as 
follows: we apply the relaxation method (with some positive e) to find a feasible 

primal dual pair satisfying e-CS, use Proposition 9 to fix a subset of  the primal 
variables at their respective optimal values (which reduces the dimension of the 
primal vector), and then repeat this procedure with a smaller ~ for the reduced 
problem. Since the relaxation method converges more rapidly with larger e and 
smaller primal vector dimension, this implementation would be computationally 
efficient if a large number  of primal variables were fixed while e is still relatively 
large (for example when M is small). 

8. Conclusion and extensions 

We have described a dual descent method for monotropic programs. The method 
uses as descent directions the elementary vectors of a certain extended dual space 
and, under one particular implementation, has the interpretation of a generalized 
coordinate descent method. When the e-complementary slackness mechanism is 

used, the method is guaranteed to terminate finitely with a feasible primal dual pair 
whose cost is within O(e)  of  the optimal cost. 

A few words concerning practical implementation are in order. The line search 
in Step 3 can be performed by solving the following single-constraint problem: 

Minimize f ( y )  pTEy 

subject to u l E y - O .  

When each~  is simple (such as the pointwise maximum of a small number  of  linear, 
quadratic and exponential functions) this problem is easily solved. For general ~ ' s ,  
we can use either procedures analogous to those described in the appendix of [20], 
or more sophisticated line search procedures such as those described in [6, 8]. 
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Alternatively, it can be seen from Section 6 that  exact line search in Step 3 is not  

crucial for convergence.  In particular, any stepsize between a e / M  and the line 

search stepsize, where c~ is a fixed scalar in (0, 1] and M is the constant  defined in 

Proposi t ion 3, ensures finite convergence.  The bounds  l~ and c~ can also be computed  

only approximate ly  (for example, any ~: satisfying e >~f+(~) - b >" f ie ,  where/3  is a 

fixed scalar in (0, 1], can be used for l;) .  Furthermore,  the value of  e can be changed 

after each dual descent step, provided that  it remains bounded  away from zero. 
This allows us to per form e-scaling (i.e. begin with a large e and gradually decrease 

it), which can be beneficial when the cost  for different components  vary greatly in 

magnitude.  

In  the future we hope  to code our  method  to test its practical efficiency. We 

suspect that  it should do well on problems to which second derivative methods are 

not appl icab le- -as  is the case when the costs are linear [3, 18] or piecewise 

l inear /quadra t ic  [1]. It would  also be worthwhile  to generalize our method either 
to solve problems whose costs are not  separable or  to incorporate  decomposi t ion  

techniques to handle  problems with side constraints. Some progress has already 

been made in the latter direction for l inear programs [19]. 

An alternative definition of  the e -bounds  that also ensures a finite number  of  

dual descents in the relaxation method is 

sup  g j ( ~ ) - g j ( t j ) + e ,  i n f g J ( ~ ) - g J ( t J ) + e ,  f o r j = l , 2 , . . . , m ,  

used in the fortified dual  descent me thod  of  Rockafel lar  ([15], Chapter  11). This 

alternative definition has the advantage that the cost of  the final solution produced  

is always within e / m  (as compared  to just O(e))  of  the optimal cost. However,  

these e -bounds  appear  to be more difficult to compute  in practice (for example 

when the costs are linear). 
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