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Abstract 

We define the base polytope B(P, g) of a partially ordered set P and a supermodular func- 
tion g on the ideals of P as the convex hull of the incidence vectors of all linear extensions of P. 
This new class of polytopes contains, among others, the base polytopes of supermodular sys- 
tems and permutahedra as special cases. After introducing the notion of compatibility for g, 
we give a complete linear description of B(P, g) for series-parallel posers and compatible func- 
tions g. In addition, we describe a greedy-type procedure which exhibits Sidney's job sequenc- 
ing algorithm to minimize the total weighted completion time as a natural extension of the 
matroidal greedy algorithm from sets to posers. © 1998 The Mathematical Programing So- 
ciety, Inc. Published by Elsevier Science B.V. 
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1. Introduction 

More than twenty years ago, Sidney [1] published his article on the minimization 
of the weighted sum of completion times for one-machine scheduling problems with 
precedence constraints. The algorithm he proposed generalizes Smith's greedy-type 
rule for independent jobs [2]. Sidney proved that there always is an optimal schedule 
starting with an ideal of maximum weight density. Hence, the problem can be solved 
recursively for this ideal and its complement. 

While in general the only ideal with maximum weight density may be the whole 
set, and so nothing is gained, Sidney showed that in the case of series-parallel pre- 
cedence constraints, we can always find a proper sub-ideal to start with. Sidney's al- 
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gorithm is a greedy algorithm extended from sets to special partially ordered sets. 
However, the precise relation of this algorithm to structures induced by sub- or su- 
permodular  functions, which many people would consider the natural setting for 
greedy algorithms, remained unclear. The purpose of  this paper is to shed some light 
on this relation. 

We follow a common approach and study polyhedra induced by supermodular 
functions (the interested reader is referred to Fujishige's book [3] and the references 
cited therein). It is well known that the linear minimization problem over the base 
polytope B(g) = {x E Re: x(S) = y~e~sXe >~ g(S) for all S c E,x(E) = g(E)} of a su- 
permodular  function g can be solved by the greedy algorithm. Every permutation 
L = e l . . . e n  of E induces by & i = g ( { e l , . . . , e * } ) - g ( { e l , . . . , e i  1}) a vertex of 
B(g), and every vertex of the base polytope can be obtained in this way. While su- 
permodular  functions g acting on families of  subsets of a finite set seem to be well 
understood, at least as far as minimization of linear functions on B(g) is concerned, 
much less is known if, in addition, the solutions have to respect a partial order rela- 
tion. Let P be a partially ordered set and g a supermodular function on the ideals of 
P. To every linear extension of P, i.e., every permutation of P which respects the par- 
tial ordering, we associate an incidence vector in the very same way as for B(g). The 
base polytope B(P, g) of  P is the convex hull of the incidence vectors of  all linear ex- 
tensions of P. In Section 2 of  this paper  we introduce the notion of compatibility for 
a supermodular function g on the ideals of  P. In Section 3, we discuss some geomet- 
ric properties of  base polytopes of  arbitrary posets, whereas in Section 4 we derive a 
complete linear description of B(P,g) for series parallel posets and supermodular 
and compatible functions g. Section 5 describes a greedy algorithm to minimize lin- 
ear functions over B(P, g). Instead of repeatedly picking elements with large weights, 
as is done in the matroid case, it follows Sidney's recipe [1] and chooses ideals with 
large average weight. Section 6 gives some examples and extensions. 

2. Notations and definitions 

Let P = (E, <) be a partially ordered set (poset) on a finite set E with n elements. 
A linear extension L = ele2. . ,  e, of  P is a total ordering of  the elements of  E which 
respects the partial ordering of P, i.e., ei < ej in P implies i < j. By 5QP) we denote 
the set of  all linear extensions of  P. 

Given two disjoint posets (PI, <1) and (P2, <2) we define two compositions on 
P Pa UP2: 

Parallel composition: P = ['1 lIP2, 

if I x <l y and x, y E P1, x % y  

L x < 2 y  and x, y E l"2. 
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Series composition: P = P1 @ P2, 

x < l y  and x, y E P1, 
x < y  if x < 2 y  and x,yEP2, 

xEP1, yCP2. 

A poset is series parallel if it can be constructed inductively from singletons by 
applying parallel and series compositions. Equivalently, a poset is series-parallel if 
no four elements induce an N [4]. Four  elements a,b,c,d induce an N, if 
a < b, b > c, and c < d are the only comparabilities among them. 

A subset I C _ P  is an ideal if x E I  and y < x  implies y E I .  In particular, 
I (x)={y:y<~x}  is the principal ideal induced by x. For  X C_E, let 
I(X) = U(I(x):x C X). By J ( P )  we denote the set of  all ideals o fP .  J ( P )  is a lattice, 
i.e., for ideals I and J in J ( P ) ,  also I N J and I U J are in J ( P ) .  

A convex set C c_ P is a subset which contains with x,y c C all elements z c C sat- 
isfying x < z < y. 

Given a lattice 5O, a function g: 5 ° ---+ N U { - o c }  is supermodular if 

g(X U Y) + g ( X N  Y) >~ g(X) + g(Y) (1) 

holds for all elements X, Y E 50. The function g is called strictly supermodular if, in 
addition, inequality (1) holds strictly for all pairs X, Y c 5O such that neither X c y, 
nor Y c_ X. We will assume throughout that supermodular functions are normalized, 
i.e., g((3) = 0. 

Let A,B C_ E be two disjoint subsets of  E (where E is the ground-set of  P). We 
call the tuple (A,B) a series-reducible convex set if A UB is convex and if a < b 
holds for all a c A and b c B. Note that if we fix one set, say A, then the collec- 
tion of all sets B which together with A form a series-reducible convex set is a lat- 
tice. 

Series-reducible convexity can be viewed as a kind of covering relation on certain 
subsets of  P. A subset B of a series-reducible convex set (A, B) covers A in a linear 
extension L of P, if A U B is a chain in L, i.e., L = L1LALBLj. I f  we consider A and 
B as sets and do not care about individual elements, the partial ordering fixes the lin- 
ear extension to proceed with A first, then B. The impossibility of  rearranging LALB 
w.r.t. A and B is independent of  the sets I and J .  I f  this local independence is reflected 
by a function g : J (P) - - -+  R, we call g compatible (with P). More precisely, 
g : J ( P ) - - +  N is compatible (with P) if for all series-reducible convex sets (A,B) 
and any I C J ( P ) , I C E \ ( A U B )  such that I U A E J ( P )  and I U A U B C J ( P ) ,  
the term 

[A[[g(I UA UB) - g(l UA)] - [B[[g(I UA) - g(I)] (2) 

is a constant gA,e independent o f / .  Here, we have multiplied by ]A[ and [B[ to get rid 
of possible different cardinalities of  A and B. Any compatible function g then induces 
a function f on the series-reducible convex sets via f (A,  B) = gA,B. Modular  functions 
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g are always compatible. Supermodular functions are always compatible with weak 
orders (see Section 6, where the definition of weakness and some applications in 
scheduling are given). 

L e m m a  1. Let P be a poset and g: J ( P )  ~ ~ a function on the ideals o f  P. I f  g is 
compatible and supermodular, then the function f induced by g on the series-reducible 
convex sets o f  P is supermodular in both components'. 

Proof .  (i) Let (A,B1) and (A,B2) be two series-reducible convex sets. Choose 
I = I(A U B 1 U B2) \ (A U B1 U B2). Then 

f (A,B1)  + f (A,B2)  = IAl[g(I u A U B1) + g(I U A U B2) - 2g(I UA)] 
-- ([B11 + IB2l)[g(I UA) - g ( I ) l  <~ IAl[g(I UA U (81 U B2)) 
+ g(I UA U (B1 r] B2)) - 2g(I tJA)] - (IB, + IBzl)[g(I UA) - g(I)] 
=f (A ,B1  UB2) +f(A,B~ r] B2). 

(ii) Let (A1,B) and (A2,B) be two series-reducible convex sets. Choose 
I = I ( A I U A z U B ) \ ( A 1 U A z U B )  and let 11 = I U ( A 2 \ A 1 ) , I 2 = I U ( A I \ A 2 )  and 
J = 11 U12. Observe that h UA1 = I U (A1 UA2) = J U (A1 r]A2) -- I2 UA2. Hence 

f (A I ,B)  + f (A2,B)  = ]All[g(ll UA1 UB) - g ( I i  UA,)] 
+ IA21[g(/2 UA2 UB) -g ( I2  UA2)] ]Bl[g(Ii UA1) +g(/2 UA2) 
- g(I1)  - g(I2)] -- IA1 U A2 I[g(I U A1 U A2 U B) - g ( I  U A1 U A2)] 
-IBI[g(1UAI UA2) -g ( I i ) ]  + [A, NAzI[g(JU (AI fqA2) UB) 
- g ( J  U (A1 FqA2))] - IBl [g(J  U (A, NA2)) -g(I2)] <~f(ml UA2,B) 
+ f(A1 f-I A2, B) by supermodularity. [] 

For  a subset S of  P and x E R P, let x(S) : -  ~e~sX~. I f S  - {e} is a singleton, we 
omit the brackets, i.e., x(e) = x({e}) - xe. 

3. The base polytope of  a poset  

Recall that the base polytope of a supermodular function g is defined as 
B(g) = {x C RE: x(S) >~ g(S) for all S c E,x(E) ---- g(E)}. Equivalently, it is the con- 
vex hull of the incidence vectors x(L) of all permutations L ---- el . . .  en of E. Here, the 
incidence vector x(L) is defined by xe~ = g ( { e l , . . . , e i } ) - g ( { e , , . . . , e i  1}) for 
1 ~< i ~< n. A prominent member of the class of base polytopes is the permutahedron 
(cf., e.g., [5-7]). It is defined as the convex hull of all permutations, 
perm = conv{(~z(1),.. . ,~(n)): 7c permutation of E}. In more general terms, the 
convex hull of those permutations that are extensions of a given poset P on the 
ground set E has aroused considerable interest in the last years, in particular for 
its application in scheduling (see [8 13]). In this and the next sections, we particularly 
investigate which properties of  these special polytopes are passed to them by the 
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more general framework. To be more precise, let P be a poset and g: J ( P )  ~ R a 
supermodular function on the ideals of P. Then, our object of study is the base poly- 
tope of the poset P with respect to g which is defined as 

B(P,g) := conv{x(L): L E 5('(P)}. 
The following results which generalize the respective ones for the permutahedron 

of a poset (cf., Schulz [14]) can be proved simply by using the (strict) supermodular- 
ity of g. 

Proposition 2. Let P be a poset with P1 @ P2, and let g : ~¢(P) ---+ ~ be a supermodular 
function. Then B(P, g) is the Cartesian product o f  the polytopes B(P1, g) and B(P2, g') 
where g'(S) - g(S U P1) - g(P~). 

A minimal description in terms of linear equations and inequalities for the Carte- 
sian product of given polyhedra can be obtained by the juxtaposition of minimal lin- 
ear systems of the given polyhedra. Consequently, when studying B(P, g), we may 
concentrate on posets P that are not series decomposable. We will make use of this 
property in Section 4. With the help of Proposition 2 it is easy to determine the di- 
mension of B(P, g). 

Proposition 3. Let P be a poset with series decomposition P1 ® • • • ® Pq (i  e., Pi is' not 
further series decomposable), and let g: J ( P )  ---+ ~ be a strictly supermodular function. 
Then 

x ( P l U . . . U P i ) = g ( P 1 U ' " U P , . )  f o r i =  1 , 2 , . . . , q  
is' a minimal linear equation system defining the affine hull orB(P, g). In particular, 

dim(B(P,g)  ) = n - q. 

Finally, for strictly supermodular functions g, we characterize the facet defining 
inequalities among those which naturally emerge from the base polytope B(g) of g. 

Proposition 4. Let P be a poset with series decomposition P1 ® " "  ® Pq, and let 
I = P l ® . . . ® P i ® ] ,  i c { 0 , . . . , q - 1 } ,  be an ideal of  P. I f  ] l @ ' " ® l , r  and 
t~l ® . . .  @ l+s are the series decompositions of  I and P/+l \ *~, respectively, then the 
face of  B(P,g) induced by x(I) >~ g(I) is of  dimension n - (q 4- r 4- s) 4- 1. 

4. Base polytopes of series-parallel posets 

For a poset P and a supermodular function g : ~(P)  ---+ • compatible with P let 
P(P,g) be the polytope defined by the inequalities 

IAIx(B)-  IBlx(A) >~ f ( A , B )  
for all series-reducible convex sets (A, B), A, B series-prime, 
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x(I) >~ g(I) for all ideals I C J ( P ) ,  
x(P) = g(P). 

Note that P(P, g) is not well-defined if g is not compatible with P. A subset A of P is 
called series-prime if A does not allow a series-decomposition. We call the first class 
of inequalities convex set constraints', and the second class ideal inequalities. 

For series~arallel posets P and compatible supermodular functions g we will 
show that P(P,g)  equals B(P,g) .  In particular, P(P,g)  is integral if g is integral. 
Our proof  follows to a good part the proof given by Arnim et al. [8] for the per- 
mutahedron of series-parallel posets. We thereby emphasize the crucial role that 
the supermodularity of the function g plays. In contrast to the special case of the per- 
mutahedron, however, the inclusion B(P, g) C_ P(P, g) is not trivial. To show the va- 
lidity of the convex set constraints for B(P,g)  we need the compatibility of g (see 
Theorem 8). Justified by Proposition 2, we assume throughout this chapter, when 
considering a series~arallel poset P, that P is series-prime. 

The following observation is immediate. 

Lemma 5. Let P be a poset and g : J ( P )  -* [R supermodular and compatible. Let 
pt = p \ I for some ideal I o f  P, gt : J ( U )  -~ ~ with g'(J) := g(l  U J)  - g(l)  and f '  the 
Junction induced by g( Tken g~ is supermodular and compatible with U and f~ f on 
n \ I .  

Given a vector x c P(P,g) ,  we call an ideal I tight at x if x(1) = g(1) holds. 

Lemma 6. Let P be a poset and g : J ( P )  ~ ~ supermodular and compatible. Let 
x E P ( P , g )  and let I be a tight ideal. Then y = ( x i :  i C l )  c P ( l , g )  and 
z = (xi: i c P \ I) c P(P \ I, g') where g'(J) g( l  U J) - g(I), as above. 

Proof. The previous lemma implies that z satisfies the convex set constraints and y 
satisfies both ideal and convex set constraints. Since I is tight, we also have 
y(I) = g(I), i.e., y c P( l ,g) .  For an ideal J _C P \ I, we have z(J) = x(J) = x(I  U J) 
- x ( I )  >1 g(I U J)  - g ( I )  = g'(J), i.e., z satisfies the ideal constraints induced by g'. 
Finally, z(P \ I) = x(P \ I) = x(P) - x(I) = g(P) - g(I) g'(P \ I), i.e., z c P(P 
\ I ,g ' )  [N. 

Proposition 7. Let  P be a series-parallel poset and g : J ( P )  -+ ~ supermodular and 
compatible. Then P(P,g)  C B(P,g)  holds. 

Proof. (i) We first show by induction that B(P, g) contains P (P, g) if for any vertex of 
P(P, g) there exists a tight proper ideal. For IPI = 1 the claim obviously holds. Now 
let x be a vertex of P(P, g) and I be a tight proper ideal. By Lemma 6 and induction, 
y = (xi: i E I) E P(I ,g)  C B(I ,g)  and z = (xi: i E P \ I )  c P(P \ I , g ' )  c B ( P \ I , g ' ) .  
Hence, y and z are convex combinations of incidence vectors of linear extensions o f /  
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and P \ I ,  respectively. It follows that x itself is a convex combination of incidence 
vectors of  linear extensions of  P and thus contained in B(P, g). 

(ii) It remains to show that we can find tight proper ideals. Remember  that we as- 
sumed that P = P1 ]]P2. Suppose that x is a vertex of P(P, g) with no tight proper ide- 
al. Then c := min{x(I) - g ( I ) :  I is a proper ideal of  P} is positive. Choose a vector 
c C R e, such that x is the unique minimum for min{cz: z E P(P, g)}. We may assume 
that c(/2)IPj I - c(P1)IPzl ~< 0, otherwise we can renumber P1 and/2 .  Now let y be giv- 
en by { xi+~/IP1] for i E P1, 

yi = 
xi - ~/IP21 for i c / 2 .  

We claim that y E P(P,g) .  Obviously, y lies on the hyperplane y(P) = g(P). Since 
P P111/2, any series-reducible convex set is contained in either P1 o r / 2 .  By using 
that the convex set constraints are invariant under adding the same constant to every 
component,  it follows for any series-reducible convex set (A,B) that 
IAIy(B) IBIy(A) = IAIx(B) - IBIx(A)  >~ f (A ,B) .  Finally, the ideal inequalities hold 
for any proper ideal I c_ P since 

y(I) Z xi + e + Z xi >~ x(I) - e >~ g(I). 
iElYtP 1 i6INP 2 

But cy = cx + e(c(P~)/IP11 - c(Pz)/IP21) <~ cx, contradicting the uniqueness of  x. 
Hence, there must exist a tight proper ideal. [] 

Theorem 8. Let P be a series paralleI poset and g : J ( P )  ~ R supermodular and 
compatible. Then P(P, g) coincides with B(P, g). 

Proof. Because of Proposition 7, it is sufficient to show B(P,g) C_ P(P,g) .  Let 
x x(L) be the incidence vector of  a linear extension of P. Obviously, x satisfies 
x(P) = g(P) and the ideal constraints. 

Now, let (A, B) be a series-reducible convex set with A and B series-prime. Let 
L e l . . . e n , j = m a x { i : e i C A }  and J = { e l , . . . , e j } .  Then xjCB(J,g) and 
xp\j c B(P \ J, g'). In particular, x(B) >~ g' (B) = g(J U B) - g(J) holds i fB is an ideal 
in P \ J .  I f  J \ A is an ideal of J ,  too, then x(A) = x(J) - x(J  \ A) <~ g(J) - g(J \ A). 
Using I - - J \ A ,  the desired convex set inequality IAIx(B) IBIx(A) >~ 
IAl[g(I UA UB) - g(I UA)] - IBl[g(I UA) g(I)] would follow. It  remains to show 
that we can force J \ A and B to be ideals in J and P \ J ,  respectively. 

Suppose J UB is not an ideal of  P. Then there exists a first element 
ei = c E P \  ( J U B )  in L with c < b for some b E B. F rom i > j and the convexity 
ofA U B we conclude cljA. Since P is series-parallel and B is series-prime, c < B fol- 
lows. Let L' be the linear extension arising from L by exchanging ei and ej with in- 
cidence vector x'. The supermodularity of  g implies x'(A)>~x(A), whereas 
x'(B) = x(B) remains unchanged. We continue the exchange operations until J U B 
is an ideal of  P. 
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Suppose I = J \ A is not an ideal of P. Then there exists elements a c A and y c I 
with a < y. Since ej --: a' belongs to A, we know that y < a' or yll a'. Because A is con- 
vex, y must be parallel to a'. We again distinguish two cases. 

(a) atla'. Let b c B be arbitrary. Then a, b, a',y induce an N, which contradicts the 
fact that P is series-parallel. 
(b) a < a'. Because A is series-prime and P is series-parallel, there must be an el- 
ement a"ll {a, a'}. If a"lly, then a, b, a", y induce an N. If a" < y, then a", b, a', y in- 
duce an N. Both possibilities contradict that P is series~arallel. Since A is convex, 
y cannot be a predecessor of a". [] 

The characterization of B(P, g) given in Theorem 8 generalizes similar characteriza- 
tions of v. Arnim et al. [8] for the permutahedron, and of Queyranne and Wang [10] 
for a related scheduling polyhedron. 

5. Optimization 

Let P be a poset, g: J ( P )  ~ R a supermodular function and c c R P. Consider the 
linear programming problem 

opt(P,g,c)  := min{cx: x E B(P,g)}.  

Since x(P) = g(P), we may assume that c is nonnegative. 
Call an ideal I p-maximal if p(1) c(1)/1II >~ cQJ)/lJI = p(J) for all ideals J c_ P. 

The algorithm we propose to solve opt(P, g, c) for series parallel posets and super- 
modular and compatible functions g is a generalization of Sidney's algorithm [1] for 
minimizing the weighted sum of completion times in a one-machine scheduling envi- 
ronment. It starts with some p-maximal ideal I and solves the problem recursively on 
I and P \ I. In general, P itself may be the only p-maximal ideal and the approach 
does not work. However, if P decomposes into two parallel components, there is al- 
ways a p-maximal ideal that is contained in one of the components. This is implied 
by the following observation which holds for all x,y >~ 0 and X, Y c R: 

( X +  Y ) / ( x + y )  <.X/x  ~:~ r / y < , X / x .  (3) 

Lemma 9. Let P be a poset, g : J ( P )  ~ ~ supermodular and c E •P. Let L LiLpv be 
an optimal linear extension for opt(P,g,  c). Then any linear extension L ' =  L)Upv 
starting with I is' optimal for opt(P, g, c) if  and only (f L) is optimal for opt(I, g, cl) and 
Up\ I is optimal for opt(P \ I, g', cpv ), where g' (J) = g(I U J) - g(I), as above. 

Proof. By definition of B(P,g) and g' we have opt(P,g,c)<<.opt(I,g,c~)+ 
opt(P \ I, g', cpv). Since L is optimal for opt(P, g, c), equality follows. [] 

Lemma 10. Let P be a poset and g : J ( P )  ---+ ~ be supermodular and compatible. Let 
L L ia l . . .  arbl • .. bsLj be a linear extension of  P with incidence vector x containing a 
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series-reducible convex set (A,B) = ({aa, . . . ,a~} ,  {b l , . . . , b~} ) .  
Aj :-= { a j , . . . ,  ar} and Bj := {b l , . . . ,  bj}, we obtain 

x(bj) = x(al) + f ( A ,  b 1) - U(A2, bl) - f (Ar ,  bl ) ~- f (Ar ,  B j) 
+ f (Ar ,  Bj_l) for j =  1 , . . . , s  

and 

x(aj) = x(al) + f ( A ,  bl) f (A2,  bl) - f (A j ,  bl) + f(Aj+~, bl) 
f o r j =  l , . . . , r .  

Then, 

167 

using 

(4) 

(5) 

Proof. The convex set constraints for Aj ® {bl }, 1 <~ j <~ r, and {at} ® B j, 1 <~ j ~< s, are 
tight at x(L). 

By induction on j we first show x(bj) = x(ar) + f(ar,  B j) - f (ar ,  Bj 1). For  j = 1, 
the tight convex set constraint for {ar} ® {bl } gives 
X(bl ) -- X(ar) ~- f ( a r ,  b 1) = f ( a r ,  B 1) - f ( a r ,  0). In the induction step we use the tight 
convex set constraint for {at} ® Bj. With ~J-1 x(bi) - ix(at) = f(ar,  Bj) we get 

j - 1  

x(bj) = f(a~,Bj)  + jx(a~) - Z x(bz) = f(a~,Bj)  + jx(a~) - (j - 1)x(ar) 
i--1 

j-1 
+ Z ( - f ( a r ,  Bz)+f(a~,Bi_l ) )  = f (a~ ,B j )+x (a~ )  - f ( a r , B j  1). 

i 1 

By symmetry, x ( @  - x(bl) - f (mj ,  bl) + f(Aj+l, b~) holds. Using x(al) = x ( b l ) -  
f ( A , b l )  + f ( A 2 , b l )  to substitute for X(bl) in the equation for x(aj), we obtain 
x(al) = x(al) + f ( A ,  bl) - f (A2,  bl) f (A j ,  b,) + f(Ai+~ , bl). Using this equation to 
substitute for x(a~) in the equation for x(bj), we finally obtain 
x(bj) = x(al) + f ( A , b l )  - f (A2 ,b l )  - f (A~,b l )  + U(A~,Bj) + f (A~,Bj  1). [] 

Corollary 11. Let P and g be as in Lemma 10, let L = L~el . . .  ekLj be a linear extension 
of  P with incidence vector x and let {e~ , . . . ,  ek} be a series-reducible convex set o f  P. 
Then 

x(e i )  = x ( e ] )  i I si, 

and the values o f  si are independent o f  L on P \ {e l , . . . ,  ek}. 

Proposition 12. Let P be a poset, g : J ( P )  --~ N strictly supermodular and compatible 
and c E NP. Let L = Liel . . .  ekfl . . . J i L j  and U = Lifl  . . . f l e l  . . .  ekLj be two linear 
extensions o f  P with incidence vectors x and y and series-reducible convex sets 
E = {e l , . . .  ,ek} a n d F  = { f~ , . . .  , f l} .  Then cx<~cy holds i f  and only i f p (E)  >~ p(F) 
holds. 

Proof. Using Corollary 11, we can write 
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x(ei )  = x ( e l )  @ ti, x ( f j )  = x ( f l )  -}- sj,  

y(ei) = y(e ,)  + ti, y( f j )  = y(J]) + sj 

for all 1 ~< i ~< k, 1 ~< j ~< 1. Then cx <~ cy is equivalent to 
k l k l 

Z % x ( e , ) +  ~ e, Tx(J's. ) <. Z c j ( e , ) +  Z cfY (fd) 
i -1  j - 1  i -1  j = l  

c(E)X(el) + c(F)x( f , )  <~ c(E)y(e,)  + c(F)y( f l )  
¢=ee c(E) [g(I to e,) - g(I)  - g( I  to F U e I ) ~- g( I  U F)] 
<~ c(F)[g(I to f O  - g(I)  - g( I  to E to f l )  + g(I  tO E)]. 

We have g(I  U E) - g(I)  = Eki , x(ei) = kx(e,) + Eki l ti = kg'(el) -7 Ei~I ti, and 
g(I  U F )  g(I) = lg'(f l)  + ~ - 1 S l .  Using the linear extension Lle,Ji . . . f t e 2 . . .  ekLj 
it follows that  g(I  U F  U el) - g(I  U e,) = l (g ' ( {e l , f l } )  - g'(el)) + ~I=,  sj, and simi- 
larly g(I  U E U f l )  - g(I  U f l )  = k (g ' ( {e l , f l } )  g'(f~)) + ~l= l  ti. Substituted into the 
last inequality above we get 

c(E)[l(g'(fl  ) + g' (el ) - g' ( {f l ,  el}))] ~< c(F)[k(g'OCl ) + g' (e~ ) - g ' ({f l ,  el}))]. 

Since g ' ( {e l , f l } )  - g'(el) g ' ( f l )  > 0 (g is strictly supermodular)  the last inequality 
holds if and only if c(E)/IE[ >~ c(F)/IF[ holds. [ ]  

Again,  let L = e l . . . e n  be a linear extension of  P. We call an interval 
I = eiei+l . . .  e~ o f  L series-reducible, if {ei, e~+l,.. . ,  ek} is a series-reducible convex 
set o f  P. The interval I is called maximal  series-reducible (in L), if no larger series-re- 
ducible interval J ~) I in L exists. 

Proposition 13. Let P be a series-parallel poset. Let L be a linear extension with (in this 
order, f rom the beginning o f  L to its end) maximal  series-reducible intervals 
Ei, l <~ i <~ s, i.e., Ei is a singleton or Ei = Ai @ Bi with nonempty subsets Ai and Bi. Then 

EiHEi+~ for all 1 ~<i < s. (6) 

Proofl We proceed by induct ion on n = IPI. I f  n = 1 or P = P1 ®/'2,  we must have 
s = 1 and we are done. N o w  let P = P1HP2 . Suppose the first element el o f  L belongs 
to P1. Let ei be the first element in L out  o f  P2. By the induction hypothesis, the claim 
is valid for the linear extensions e l . . . e i - i  and ei . . .en .  The last maximal  series- 
reducible interval in el . . .  el-1 is a subset o f  P1, and the first maximal series-reducible 
interval in e i . . .  en is a subset o f  P2, so they are parallel to each other, too. [] 

Corollary 14. Let P be a series' parallel poset, g:  J ( P )  --+ E strictly supermodular and 
compatible, and c E •P. Let  L = Lsel . . .  ekfl . . . f l L j  be an optimal linear extension for  
op t (P ,g , c )  and U = L i f l . . . f t e l . . . e k L j  be a linear extension o f  P, too. Let  
E = {e~,. . .  ,ek} a n d F  = { f , , . . .  ,fk}. Then, U is' optimal for  op t (P ,g , c )  i f  and only 
i f  p(F)  >~ p(E). 
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Proof. Let E = E1 ]]... liEs and F = F1 [1 .-. ][Ft be the decomposition of E and F in 
maximal series-reducible intervals in L, respectively. Since L is optimal and L' is valid, 
Propositions 13 and 12 imply 

p(E1) >/p(E2) >/ . . .  >/p(Es) >/p(F1) /> p(F2) ~> . . .  >/p(Ft). (7) 
Observe that L can be transformed into L' by swapping Ei with Fj, 
j = 1 , . . . ,  t, i -- s , . . . ,  1. By Proposition 12, every swap does not decrease the objec- 
tive function value. 

Let L' be optimal, too. Suppose p(F) < p(E). Then p(Eio) > P(Fj0) for at least one 
pair (io,jo). Swapping Ei0 with Fj0 increases the objective value, any other swap op- 
eration does not decrease the objective value. This contradicts the optimality of L'. 

In the other direction, p(F)>~ p(E) and the inequalities (3) and (7) imply 
p(F) = p(E). Consequently, equality in Eq. (7) follows. Now, by Proposition 12 ev- 
ery swap operation keeps the objective function value constant. Hence L' is optimal, 
too. [] 

This proves the "adjacent string interchange property" (see, e.g., [15]) for optimal 
linear extensions. 

Like Sidney, we call an ideal I p*-maximal if it is p-maximal and does not contain 
a smaller ideal which is p-maximal, too. 

Theorem 15. Let P be a series-parallel poset, g: J ( P )  ~ E strictly supermodular and 
compatible and c E NP. Let L be an optimal linear extension for opt(P, g, c). Then L 
starts with a p*-maximal ideal I. 

Proof. We proceed by induction on n = [P[. The case n = 1 is trivial. By Lemma 9, it 
is sufficient to consider the case P =/'1 ][P2 in the induction step. Let L1 be the p*- 
maximal initial ideal ofL = el . . .  en, i.e., among all initial ideals of L the smallest one 
with maximal p-value. To be more precise, let J0 :=min{j:V1 ~<k~< 
n: p({ej, . . . ,  e j } )  >1 p({ea, . . . ,  ek})}. Then L1 - e l , . . . ,  ejo and we denote by I1 the 
underlying set, i.e., I1 = {e: e E L1}. By Propositions 13 and 12, L1 is a singleton or 
series-reducible. Hence I1 is entirely included in P1 or in/'2. W.l.o.g., we assume that 
/1 c_ P1. By Lemma 9, L1 is optimal for opt(It,g, ci1) and L \ L1 is optimal for 
opt(P \ I1, g', cp\i1 ). We claim that I1 is a p*-maximal ideal in P. 

By the induction hypothesis, L1 starts with a p*-maximal ideal of l l .  The choice of 
I1 assures this is I1. Hence,/1 does not include a smaller ideal with the same or a big- 
ger p-value. 

Again by the induction hypothesis, L \ L 1  starts with a p*-maximal ideal 
J C_ P \ 1/. Now, if p(Ii) < p(J) then equivalence (3) implies that p(I1) < p(I1 U J).  
This contradicts the choice of Ll. Consequently, the p-value of any ideal in P \ 11 
is at most p(I1). 

It remains to consider any ideal K of P such that K A 11 ¢ 0 and K N (P \ I1) ¢ 0. 
However, again by use of Eq. (3), p(K N 11) <<, p(I1) and p(K n (P \ I1)) <~ P(J) imply 
p(K) <~p(I1). [] 
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The next two lemmas are direct extensions of their counterparts in Sidney's theory 
[1]. Lemma 17 corresponds to Sidney's "Main Decomposition Theorem". 

Lemma 16. Let P be a poset and c c R P. Then, the p*-maximal ideals of  P are pairwise 
disjoint. 

Proof. Let I and J be two distinct p*-maximal ideals. Hence, I ~ J and vice versa. 
Suppose that K = I N J is nonempty. Then, K is an ideal with p(K) < p(I) = p(J). In 
this case, using equivalence (3), p(l \ K) > p(K) and p(I \ K) > p(I) follow. Again 
using equivalence (3), p(J U (I \ K)) > p(I) would follow which contradicts the p- 
maximality of I. [] 

Lemma 17. Let P be a poset and c E R  P. Let S~S2...Sa and TITz...Tb be two 
sequences of p*-maximal ideals" (i. e., Sj is p*-maximal in P \ Uf__~Si for 1 ~ j <~ a, and 
Tj is p*-maximal in P\L~_~Ti for l<~j<~b). Then a b, and there exists a 
permutation ~ such that S,. T~(i) for all i. 

Proof. We proceed by induction on n = [PI- The induction start is trivial. If $1 = Tj 
holds in the induction step, we are finished by the induction hypothesis. Hence, 
assume S j ¢  T1. From Lemma 16 we know that S1 n Tj - ~). Notice that T1 is p- 
maximal in P \ $1, too. By the induction hypothesis for P \ $1 we can conclude that 
T1 C { S 2 , . . . , S a } .  Now the exchange ofNi : - T  1 and Sl in the sequence S 1 S 2 . . . S  a 

leads us back to the previous case. [] 

Corollary 18. L e t  P be a poset and c C R P. Every p-maximal ideal is the disjoint union 
of y-maximal  ideals'. 

Theorem 19. Let P be a series-parallel poset, g: J ( P )  ---+ ~ strictly supermodular and 
compatible, and c C R P. Let S be a p*-maximal ideal. Then there exists an optimal 
linear extension of P for opt(P,g,  c) starting with S. 

Proof. Let L = S 1 S  2 . . . Sa  with S $1 be a linear extension of P such that, for each 
j = 1 , . . . ,  a, the set Sj is a y -maximal  in P \ Ui;~Si. By Theorem 15 there exists a 
linear extension L 1 of P optimal for opt(P, g, c) which starts with a p*-maximal ideal 
T1 of P. By Lemma 9, L' \ T~ is optimal for P \ T1. By  induction, L' ~- T1T2... Tb 
where Tj is p*-maximal in P \ U~-~Ti. Because of Lemma 17 there must be a k with 
Tk = S1 = S. In the case k = 1 we are done. Otherwise, let 
U = T1 . . .  Tk-jS1Tk+I . . .  T b  = E1E2...EIS~Tk+I . . .  Tb, where the E i a r e  maximal 
series-reducible intervals in U. From Propositions 13 and 12, p(Ei) ~> p(Ei+l) for 
all i. Since T1 is p*-maximal, p(S~) - p(Ti) >>- p(E1) holds. Successive swaps of $1 
with El. (i = l , l  1 , . . . ,  1) do not alter the objective value by Proposition 12. 
Consequently, L n =S1T1. . .  Tk 1Tk+l ...Tb is an optimal linear extension starting 
with S. [] 
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Although Theorem 19 is apparently restricted to strictly supermodular functions, 
it already provides most of the ingredients for the general case. 

Corollary 20. Let P be a series-parallel poset, g: J ( P ) - +  R supermodular and 
compatible, and c c R P. Let S be a p*-maximal ideal Then there exists an optimal 
linear extension of  P for opt(P,g, c) starting with S. 

~-,111 i for all c > 0. The function h~ is Proof. We define h~: J ( P )  -~ ~ by h~(l) := ~ L.-¢i=l 
strictly supermodular and compatible. Hence, g + h~ is strictly supermodular and 
compatible, too. Let K -: max{cx: x C B(P, hi)} > 0 (recall that we may assume that 
c > 0) and let d ~> 0 be a lower bound for the difference of the second best objective 
function value of a linear extension with opt(P, g, c). If all linear extensions are 
optimal, there is nothing to show. Now we choose a positive e < d/K.  By Theorem 
19 there exists an optimal linear extension L for opt(P,g  + h~, c) starting with S. 
Since 

opt(P, g, c) + opt(P, h~, c) ~< opt(P, g + h~, c) < opt(P, g, c) + Kd /K  
~< min{cx: x E vert(B(P,g)),cx > opt(P,g,e)} ,  

L must be optimal for opt(P, g, e), too. [] 

As in Sidney's paper the proof  above shows that in general we can start with an 
arbitrary p*-maximal ideal to construct an optimal linear extension. Hence, the algo- 
rithm of Lawler [16] for optimizing over series-parallel ordered sets can be used here, 
too. 

Theorem 21. Let P be a series parallel poset and g: J ( P )  ---+ ~ be supermodular and 
compatible. Let c E ©P. The optimization problem opt(P,g,c)  can be solved in 
O(nlogn) time. 

In the case of an antichain P, the algorithm reduces to the greedy algorithm with 
the initial sorting phase done by mergesort. 

6. Remarks and open questions 

Base polytopes of series-parallel posets are a common generalization of  base poly- 
topes over sets (cf., Fujishige [3]) and permutahedra of  series-parallel posets which 
are defined as follows. With any permutation re of an n-element set E = {1 , . . . ,  n) 
we associate a permutation vector via x(re) := ( re( l ) , . . . ,  re(n)) E ~ .  For  a partially 
ordered set P = (E, <p), we consider only those permutations which are linear exten- 
sions of the poset and define the permutahedron 

perm(P) = conv{x(re): re is a linear extension of P}. 

In [8,10] it is shown that the permutahedron of a series-parallel poset is given by the 
linear inequalities 
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IAIx(B) - IBIx(A) >~ ½ IAIIBI(IAI+IBI) 
for all series-reducible convex sets (A, B), 

x(I) >>- ½1Ij(jlI + l) for all ideals I c J ( P ) ,  
x(P) = ½[P[(tP[ + 1). 

It is easily seen that g(I) - ]  [ I [ ( ] I [ -  1 + 1) is strictly supermodular and compatible and 
f (A ,B)  = ½ [A[[B[([A[ + [B[) is the function induced by g. Queyranne and Wang [10] 
(see also [12]) extend this characterization to the generalized permutahedron which 
corresponds to the weighted case discussed below. 

Queyranne and Schulz [13] show that the problem of scheduling jobs with unit ex- 
ecution times and compatible release dates on m machines with nonstationary speeds 
may be formulated in terms of optimizing linear functions over contra-polymatroids. 
For  example, for the case of zero release dates, let P be an antichain of n jobs, and 
suppose there are m machines i = 1, . . .  ,m with processing rates cri(~) ~> 0. Define 

t t(i, 0 ) : =  0 and t(i, k ) := min{t: f,(i,~ 1)ai(r)d~ 1} as the earliest completion time 
of the kth job on machine i. For  A c p, let qS(A) be the sum of the [A[ smallest ele- 
ments in the multiset {t(i, k): 1 ~<i<~ m~ 1 <~ k ~< n}. Then q5 is supermodular, and the 
completion time vectors of all schedules (with minimum makespan) is 
{x c ~P: x(A) >~ ~(A) for allA c P,x(P) = q~(P)}. By using the results of Section 3, 
we can immediately extend this description to weak orders. (A poset P is a weak or- 
der, if it is the series-composition A1 ® . . .  ® As of a family of antichains A,.) In this 
case, the compatibility requirement 2 is trivial because l = I(B) \ (A U B) is unique, 
and the supermodularity of qS(A) := min{x(A): x is a completion time vector of 
minimum makespan schedule} follows from the supermodularity of 4) on an anti- 
chain. 

We have used the cardinality function in the convex set constraints to simplify the 
presentation. The arguments carry over to any positive weight function w : E ~ ~+. 
For  a linear extension L -- e l . . .  e~ of  P, let the weighted incidence vector x of  L be the 
vector with components xe, = l /we,(g({el , . . . ,  e/}) - g ( { e l , . . . ,  e/ 1 })) for 1 ~< i ~< n. 
Let xw(I) = ~ c l  w~x~ and call a supermodular function g : J ( P )  -+ ~ w-compatible 
(on P) if for all series-reducible convex sets (A, B) and any 
I C J ( P ) ,  I C_ E \ (A U B) such that I U A C J ( P )  and 1 U A U B C J ( P ) ,  and the term 

w(A)[g(I U A tO B) - g(I UA)] - w(B)[g(I UA) - g(I)] (8) 

is a constant independent of I. Consider the polytope P~(P,g) defined by the in- 
equalities 

w(A)xw(B) - w(B)xw(A) >~ f (A ,  B) 
for all series-reducible convex sets (A, B), A, B series-prime, 
Xw(1) >~ g(I) for all ideals I c J ( P ) ,  
xw(P) = g(P). 

It is a technical exercise to derive the following corollary. 
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Corollary 22. Let P be a series parallel poset P and g : J ( P )  ~ R be a supermodular 
and w-compatible function. Then a vector x is a vertex of  Pw(P, g) if  and only i f  it is' the 
weighted incidence vector of  a linear extension. 

We close with two open questions. First, the inequalities 
IAIx(B)-  [BIx(A ) ~ f ( A , B )  closely resemble the defining system of pseudomatroids 
(cf. [17]). Second, Faigle and Kern [18] have introduced another type of greedy algo- 
rithm on posets, also generalizing the polymatroidal procedure. In both cases, it is 
not clear how these approaches relate to the base polytope of a poser. 
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