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Abstract 

The cost scaling push-relabel method has been shown to be efficient for solving minimum-cost 
flow problems. In this paper we apply the method to the assignment problem and investigate 
implementations of the method that take advantage of assignment's special structure. The results 
show that the method is very promising for practical use. 

Keywords: Network optimization; Assignment problem; Algorithms; Experimental evaluation; Cost scaling 

1. Introduct ion 

Significant progress has been made in the last decade on the theory of  algorithms for 

network flow problems. Some of  the algorithms that came out of  this research have been 

shown to have practical impact as well. In particular, the push-relabel method [ 11, 16] 

is the best currently known way for solving the maximum flow problem [2, 8, 23].  This 

method extends to the minimum-cost  flow problem using cost scaling [ 11, 17]. Earlier 

implementations of  this method [5, 14] performed well on some problems but relatively 

poorly on others. A later implementation [ 12] has been shown very competit ive on a 

wide class of  problems. In this paper we study efficient implementations of  the cost 

scaling push-relabel method for the assignment problem. 
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The most relevant theoretical results on the assignment problem are as follows. The 
best currently known strongly polynomial time bound of O ( n ( m  + n log n)) is achieved 
by the classical Hungarian method of Kuhn [21]. Here n denotes the number of nodes 
in the input network and rn denotes the number of edges. (Implementations of the 
Hungarian method and related algorithms are discussed in [7].) Under the assumption 
that the input costs are integers in the range [ - C  . . . . .  C], Gabow and Tarjan [10] 
use cost scaling and blocking flow techniques to obtain an O ( v / n m l o g ( n C ) )  time 
algorithm. Algorithms with the same running time bound based on the push-relabel 
method appeared in [ 15, 24]. 

In this paper we study implementations of the scaling push-relabel method in the 
context of the assignment problem. We use the ideas behind the minimum-cost flow 
codes [5, 12, 14], the assignment codes [3,4,6] ,  and the ideas of theoretical work on 
the push-relabel method for the assignment problem [ 15], as well as new techniques 
aimed at improving practical performance of the method. We develop several CSA 
(Cost Scaling Assignment) codes based on different heuristics which improve the code 
performance on many problem classes. The "basic" code CSA-B does not use any 

heuristics, the CSA-Q code uses a "quick-minima" heuristic, and the CSA-S code 
uses a "speculative arc fixing" heuristic. Another outcome of our research is a better 
understanding of cost scaling algorithm implementations, which may lead in turn to 
improved cost scaling codes for the minimum-cost flow problem. 

We compare the performance of the CSA codes to four other codes: SFR10, an 
implementation of the auction method for the assignment problem [6]; SJV and DJV, 
implementations of Jonker and Volgenant's shortest augmenting path method [ 19] tuned 
for sparse and dense graphs respectively; and ADP/A, an implementation of the interior- 
point method specialized for the assignment problem [25]. We make the comparison 
over classes of problems from generators developed for the First DIMACS Implemen- 
tation Challenge [18] 3 and on problems obtained from digital images as suggested 
by Knuth [20]. Of our codes, CSA-Q is best overall. This code outperforms ADP/A 
on all problem instances in our tests, outperforms SFR10 on all except one class, and 
outperforms SJV and DJV on large instances in every class. Although our second-best 
code, CSA-S, is somewhat slower than CSA-Q on many problem classes, it is usually 
not much slower and it outperforms CSA-Q on three problem classes, always outper- 
forms ADP/A, is worse than SFR10 by only a slight margin on one problem class and 

by a noticeable margin on only one problem class, and loses to the Jonker-Volgenant 
codes only on one class and on small instances from two other classes. While we use 
the CSA-B code primarily to gauge the effect of heuristics on performance, it is worth 
noting that it outperforms ADP/A in all our tests, the Jonker-Volgenant codes on large 
instances from all but one class, and SFR10 on all but one class of problems we tested. 

This paper is organized as follows. Section 2 gives the relevant definitions. Sec- 
tion 3 outlines the scaling push-relabel method for the assignment problem. Section 4 

3 The DIMACS benchmark codes, problem generators, and other information we refer to are available by 
anonymous ftp from diraacs, rutgers, odu. 
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discusses our implementation, in particular the techniques used to improve our code 's  

practical performance. Section 5 describes the experimental setup. Section 6 gives the 

experimental results. In Section 7, we give concluding remarks. 

2. Background 

Let G = (V = X U Y,E) be an undirected bipartite graph and let n = I V] and m = IEI . 

A matching in G is a subset of  edges M C ~ that have no node in common. The 

cardinality of the matching is IMI . Given a weight function ~ : E -+ R, we define the 

weight of M to be the sum of  weights of  edges in M. The assignment problem is to 

find a maximum cardinality matching of  maximum weight. We assume that the weights 

are integers in the range [ - C  . . . . .  C ] .  To simplify the presentation, we assume that 

IXI = ]YI, G has a perfect matching (i.e., a matching of  cardinality IX1), and every node 

degree in G is at least two. We can dispense with these last assumptions without any 

significant decrease in performance by using a slightly more complicated reduction to 

the transportation problem than the one described below. 

Our implementation reduces the assignment problem to the transportation problem 
defined as follows. Let G = (V,E) be a digraph with a real-valued capacity u(a) and 

a real-valued cost c(a) associated with each arc 4 a and a real-valued supply d(v) 
associated with each node v. We assume that ~ v  d(v) = O. A pseudoflow is a function 

f • E -+ R+ satisfying the capacity constraints: for each a G E, f (a )  <~ u(a). For 

a pseudoflow f and a node v, the excess flow into v, e f ( v ) ,  is defined by e l ( v )  = 

d ( u )  + ~(~,,~,)cE f (u ,  v) - ~-~4,,,w)cE f ( v ,  w). A node v with e / ( v )  > 0 is called active. 
Note that ~vcv  ef(v) = O. 

A flow is a pseudoflow f such that, for each node v, ef(v) = 0. Observe that a 

pseudoflow f is a flow if  and only if  there are no active nodes. The cost of a pseudoflow 

f is given by c o s t ( f )  = ~a~E c (a) f (a ) .  The transportation problem is to find a flow 

of  minimum cost. 

We use a slight variation of  the standard reduction from the assignment problem to 

the minimum-cost  flow problem (see, e.g., [22] ). Given an instance of  the assignment 

problem ( G , ~ ) ,  we construct a transportation problem instance (G --- (V,E),c,u) as 

follows. We define V = V = X U Y. For every edge {v, w} E E such that v C X and 

w E Y, we add the arc (v,w) to E and define c(v,w) = --d(v,w) and u(v,w) = 1. 
Finally we define d(v) = 1 for all v E X and d(w) = - 1  for all w E Y. Note that the 

graph G is bipartite. 

For a given pseudoflow f ,  the residual capacity of an arc a ~ E is u f ( a )  = u ( a )  -- 

f (a ) .  The set of  residual arcs Ef contains the arcs a C E with f (a )  < u(a) and the 

reverse arcs a R, for every a E E with f (a )  > 0. The residual graph Gf = (V, EI) is the 

graph induced by the residual arcs. For a E E, we define c(a R) = -c (a) .  Note that if  

4 Sometimes we refer to an arc a by its end points, e.g., (v, w). This is ambiguous if there are multiple arcs 
fiom v to w. An alternative is to refer to v as the tail of a and to w as the head of a, which is precise but 
inconvenient. 
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procedure MIN-COST( V,E, u, c) ; 
[initialization] 
e ~-- C; Vv, p (v )  *'- O; 
[loop] 
while e /> 1/n do 

(e, f , p )  *- REFINE(E,p); 
re turn ( f ) ;  

end. 

Fig. 1. The cost scaling algorithm. 

G is obtained by the above reduction, then for any integral pseudoflow f and for any 

arc a ~ E, u ( a ) , f ( a )  E {0, 1}. 
A price funetion is a function p : V ---+ R. For a given price function p, the reduced 

cost of  an arc (v, w) is C p ( V , w) = c( v , w) + p ( v ) - p ( w ) and the partial reduced cost 

is c~,(v,w) = c ( v , w )  - p ( w ) .  

For a constant • ~> 0, a pseudoflow f is said to be •-optimal with respect to a price 

function p if, for every residual arc a C Ef ,  we have 

a E E ~ cp(a)  >/ 0, aR E E ~ Cp(a) >/--• .  

A pseudoflow f is •-optimal if f is •-optimal with respect to some price function p.  If  
the arc costs and capacities are integers and • < l /n ,  any •-optimal flow is optimal. 

For a given f and p, an arc a E Ef  is admissible iff 

a E E a n d e p ( a )  < ½• or a R E E a n d c p ( a )  < - ½ e .  

The admissible graph GA = (V, E A )  is the graph induced by the admissible arcs. 

3. The method 

First we give a high-level description of the successive approximation algorithm (see 
Fig. 1 ). For a detailed presentation of  the successive approximation framework and the 
associated proofs, see [17].  The algorithm starts with • = C and p ( v )  = 0 for all 
v C V. At the beginning of  every iteration, the algorithm divides • by a constant factor 
o~ and sets f to the zero pseudoflow. The iteration modifies f and p so that f is an 
( • / a ) - o p t i m a l  flow with respect to p. When • < I /n ,  f is optimal and the algorithm 

terminates. The number of  iterations of  the algorithm is 1 + Llog,(nC)J .  
Reducing • is the task of  the subroutine refine. The input to refine is • and p such 

that there exists a flow f that is e-optimal with respect to p. The output from refine is 
• ~ = •/ce, a flow f ,  and a price function p such that f is •t-optimal with respect to p. 

The generic refine subroutine (described in Fig. 2) begins by decreasing the value 
of e, setting f to the zero pseudoflow (thus creating some excesses and making some 
nodes active), and setting p ( v )  = -min(v,w)EE{Cp (v, w)} for every v C X. This converts 
the f into an •-optimal pseudoflow (indeed, into a 0-optimal pseudoflow). Then the 
subroutine converts f into an •-optimal flow by applying a sequence of  push and relabel 
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procedure REFINE( 6, p ) ; 
[initialization] 
e 6--- e/OL'; 

Va E E, f(a) +-- 0; 
Vv E X, p(v) ~-- - min(v,w)~E c~p(v, w); 
[loop] 
while f is not a flow 

apply a push or a relabel operation; 
return(e, f, p) ; 

end. 

Fig. 2. The generic refine subroutine. 

operations, each of  which preserves e-optimality. The generic algorithm does not specify 

the order in which these operations are applied. Next, we describe the push and relabel 

operations for the unit-capacity case (see Fig. 3). 

A push operation applies to an admissible arc (v, w) whose tail node v is active. It 

consists of  pushing one unit of flow from v to w, thereby decreasing e f ( u )  by one, 

increasing e f ( w ) ,  and either increasing f ( v , w )  by one if ( v , w )  E E or decreasing 

f ( w , u )  by one if ( w , v )  E E. A relabel operation applies to a node v. The opera- 

tion sets p ( u )  to the smallest value allowed by the e-optimality constraints, namely 

maxf. ,w)EE:{p(w) - - c ( v , w ) }  if v E X, or max(..w)EEs{P(W) - - c ( v , w )  - -e}  otherwise. 
The analysis of  cost scaling push-relabel algorithms is based on the following facts 

[ 15, 17]. During a scaling iteration, 

• the node prices monotonically decrease; 

• for any v E V, p ( v )  decreases by O ( n e ) .  

4. I m p l e m e n t a t i o n  a n d  h e u r i s t i c s  

In this section we discuss implementation issues and heuristics aimed at speeding up 

the method. 
The efficiency of  a scaling implementation depends on the choice of scale factor ce. 

Although an earlier study [6] suggests that the performance of  scaling codes for the 

assignment problem may be quite sensitive to the choice of  scale factor, our observations 
are to the contrary. Spot checks on instances from several problem classes indicated that 

PUSH(U,W), 
send a unit of flow from v to w. 

end. 

RELAI~EL(u). 
if v E X 

then replace p ( v ) by max(.,w) E E.: {P ( w ) -- c ( v, w ) } 
else replace p(v) by max(u,v)EF~: {p(u) + C(U,V) -- e} 

end. 

Fig. 3. The push and relabel operations. 
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the running times seem to vary by a factor of no more than 2 for values of a between 
4 and 40. We chose o~ = 10 for our tests; different values of a would yield running 

times that are somewhat worse on some problem classes and somewhat better on others, 
but the difference is not drastic. We believe the lack of robustness alluded to in [6] 
may be due to a characteristic of the implementation of SFR10 and related codes. 
In particular, SFR10 contains an "optimization" that seems to terminate early scaling 
phases prematurely. Our codes run every scaling phase to completion as suggested by 

the theory. 
The efficiency of an implementation of refine depends on the number of operations 

performed by the method and on the implementation details. We discuss the operation 

ordering first. 
The implementation maintains the price function p and the flow f .  For each node 

w E Y with e f ( w )  = 0, we maintain a pointer to the unique node v = /x(w)  such that 

f ( v ,  w) = 1. 
Our implementation maintains the invariant that only the nodes in X are active, except 

possibly in the middle of the double-push operation described below. The implementation 

picks an active node and applies the double-push operation to it. 
The performance of the implementation depends on the strategy for selecting the next 

active node to process. We experimented with several operation orderings, including 
those suggested in [ 13, 17]. Our implementation uses the LIFO ordering, i.e., the set of 
active nodes is maintained as a stack. This ordering worked best in our tests; the FIFO 
ordering usually worked somewhat worse, although the difference was never drastic. 

4. I. The double-push operation 

The double-push operation is similar to a sequential version of the match-and-push 
procedure from [ 15]. This operation was independently discovered in [ 1 ]. The operation 

applies to an active node v. Recall that at the beginning of a double-push, all active 

nodes are in X, so v C X. 
First the double-push operation processes v by relabeling v, pushing flow from v along 

an admissible arc (v, w), and then relabeling v again. If ef (w)  becomes positive, the 
operation pushes flow from w to # (w)  and sets # (w)  = v. Finally, double-push relabels 

W. 

Lemma 4.1. The double-push operation is correct. 

Proof. We only need to show that double-push applies the pushing operation correctly. 
Since immediately before the flow is pushed out of v the node is relabeled, there is an 
admissible arc out of v and the push is correct. If  this push makes w active, then there 
is a second push from w to /x(w) .  

Consider the last double-push into w which set /x(w) to its current value. Because 
the network is obtained via a reduction described in Section 2, (w,/x(w))  is the only 
residual arc out of w. So when the double-push relabeled w, Cp(#(w) ,w)  became 
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e. From this double-push to the current one, w and /x(w) have not been relabeled; 

(the latter holds because (W, lX(W)) was the only residual arc into /x(w) during that 

time period). Thus during the current push from w, Cp(IZ(W), w) = e, so the push is 
valid. [] 

L e m m a  4.2. A double-push operation decreases the price of  a node w C Y by at 
least e. 

Proof. Just before the double-push, w is either unmatched or matched. 

In the first case, the flow is pushed into w and at this point the only residual arc out 

of  w is the arc (w, v). Just before that the double-push relabeled v and Cp(V, w) = O. 
Next, double-push relabels w and p ( w )  decreases by e. 

In the second case, the flow is pushed to w and at this point w has two outgoing 

residual arcs, (w, v) and (w , / z (w) ) .  As we have seen, Cp (v, w) = 0 and Cp(tX(w), w) = 

e. After the second relabeling of  v, double-push pushes flow from w to/x(w) and relabels 
w, reducing p(w)  by e. [] 

Corol lary  4.3. There are O( n 2) double-push operations per refine. 

4.2. Efficient implementation 

Suppose we apply double-push to a node v. Let (v, w) and (v, z ) be the arcs out of  

v with the smallest and the second-smallest reduced costs, respectively. These arcs can 

by found by scanning the adjacency list of v once. The effects of  double-push on v are 

equivalent to pushing flow along (v, w) and setting p(v )  = -Cp (v, z ) .  To relabel w, we 

set p(w)  = p (v )  + c(v, w) - e. This implementation of  double-push is summarized in 
Fig. 4. 

It is not necessary to maintain the prices of  nodes in X explicitly; for v E X, 

we can define p(v )  implicitly by p(v )  = --min(v,w)eE{Cp(V,w)} if e f ( v )  = 1 and 

p(v )  = c1(v,w) + e if e f ( v )  = 0 and (v ,w)  is the unique arc with f ( v , w )  = 1. One 

can easily verify that using implicit prices is equivalent to using explicit prices in the 
above implementation. The only time we need to know the value of  p(v )  is when we 

relabel w in double-push, and at that time p(v )  = -dp(V, z)  which we compute during 

the previous relabel of  v. Maintaining the prices implicitly saves memory and time. The 

DOUBLE-PUSH (/9). 
let (v, w) and (v, z ) be the arcs with the smallest and the second-smallest reduced costs; 
PUSH (v, w) ; 
p(v) = -c~(v,z); 
if el(w)  > 0 

PUSH(W,/~(W) ); 
/z (w)  = v; 
p(w) = p(v) + c(v, w) - e; 

end. 

Fig. 4. Efficient implementation of double-push. 
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implementation of the double-push operation with implicit prices is similar to the basic 

step of the auction algorithm of [ 3 ]. 
Our code CSA-B implements the scaling push-relabel algorithm using stack ordering 

of active nodes and the implementation of double-push with implicit prices mentioned 
above. 

4.3. Heuristics 

In this section we describe two heuristics that often improve the algorithm's perfor- 

mance. 
The kth-best heuristic [3] is aimed at reducing the number of  scans of arc lists 

of nodes in X. The idea of the kth-best heuristic is as follows. Recall that we scan 
the list of v to find the arcs (v, w) and (v, z) with the smallest and second-smallest 
values of the partial reduced cost. Let k ~> 3 be an integer. When we scan the list of 
v C X, we compute the kth-smallest value K of the partial reduced costs of the outgoing 

arcs and store the k -  1 arcs with the k -  1 smallest partial reduced costs. The node 
prices monotonically decrease during refine, hence during the subsequent double-push 
operations we can first look for the smallest and the second-smallest arcs among the 
stored arcs whose current partial reduced cost is at most K. We need to scan the list of 
v again only when all except possibly one of the saved arcs have partial reduced costs 

greater than K. 
Our code CSA-Q is a variation of CSA-B that uses the fourth-best heuristic. 

The idea of the speculative arc fixing heuristic [9, 12] is to move arcs with reduced 
costs of large magnitude to a special list. These arcs are not examined by the double- 
push procedure but are examined as follows at a (relatively large) periodic interval. 
When the arc (v, w) is examined, if the e-optimality condition is violated on (v, w), 

f ( v ,  w) is modified to restore e-optimality and (v, w) is moved back to the adjacency 
list of v; if e-optimality holds for (v, w) but lct,(v, w)I is no longer large, (v, w) is 
simply moved back to the adjacency list. This heuristic takes advantage of the fact that 

the flow isfixed on arcs of high reduced cost [ 17]. 
Our code CSA-S is a variation of CSA-B that uses the speculative arc fixing heuristic. 
We implemented a number of other heuristics that are known to improve performance 

of cost scaling code for the minimum-cost flow problem [ 12]. Among these are: global 
price updates which periodically ensure, via a specialized shortest-paths computation, 
that the admissible graph contains a path from every node with flow excess to some node 
with flow deficit; and price refinement which determines at each iteration whether the 
current assignment is actually el-optimal for some e / < e, and hence avoids unnecessary 

executions of refine. Our best implementation uses neither of these strategies, however, 
since even taking advantage of the assignment problem's structure to simplify and speed 
up these heuristics, a typical price refinement iteration used more time than simply 
executing refine in our tests. The double-push operation seems to maintain a sufficiently 
"aggressive" price function and global price updates cannot reduce the number of push 
and relabel operations enough to improve the running time. 
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Table 1 
DIMACS benchmark times 
C benchmarks FORTRAN benchmarks 
Test 1 Test 2 Test 1 Test 2 
2.7 sec 24.0 sec 1.2 sec 2.2 sec 
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5. Experimental setup 

All the test runs were executed on a Sun SparcStation 2 with a clock rate of  40 MHz 

and 96 Megabytes of  main memory. We compiled the SFR10 code supplied by Castafion 

with the Sun Fortran-77 compiler, release 2.0.1 using the -04  optimization switch. 5 We 

compiled the DJV and SJV codes supplied by Hao with the Sun C compiler release 

1.0, using the -02  optimization option. We compiled our CSA codes with the Sun C 

compiler release 1.0, using the - f a s t  optimization option; each choice seemed to yield 

the fastest execution times for the code where we used it. Times reported here are 

UNIX user  CPU-times, and were measured using the t i m e s  () library function. During 

each run, the programs collect time usage information after reading the input problem 

and initializing all data structures and again after computing the optimum assignment; 

we take the difference between the two figures to indicate the CPU-time actually spent 

solving the assignment problem. 

To give a baseline for comparison of  our machine's speed to others, we ran the DI- 
MACS benchmarks wmatch (to benchmark C performance) and netflo (to benchmark 

FORTRAN performance) on our machines, with the timing results given in Table 1. It 

is interesting (though neither surprising nor critical to our conclusions) to note that the 

DIMACS benchmarks do not precisely reflect the mix of  operations in the codes we 

developed. Of two C compilers available on our system, the one that consistently ran 

our code faster by a few percent also ran the benchmarks more slowly by a few percent; 
(the C benchmark times in Table 1 are for code generated by the same compiler we used 

for our experiments). But even though they should not be taken as the basis for very 

precise comparison, the benchmarks provide a useful way to estimate relative speeds 

of different machines on the sort of operations typically performed by combinatorial 

optimization codes. 

We did not run the A D P / A  code on our machine, but because the benchmark times 

reported in [25] differ only slightly from the times we obtained on our machine, we 

conclude that the running times reported for A D P / A  in [25] form a reasonable basis for 

comparison with our codes. Therefore, we report running times directly from [25] .  As 
the reader will see, even if this benchmark comparison introduces a significant amount 

of error, our conclusions about the codes' relative performance are justified by the large 

differences in performance between A D P / A  and the other codes we tested. 

5 Castafion 16] recommends setting the initial "bidding increment" in SFR10 to a special value for problems 
of high density; we found this advice appropriate for the dense problem class, but discovered that it hurt 
performance on the geometric class. We followed Castafion's recommendation only on the class where it 
seemed to improve SFR10's performance. 
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The DJV code is designed for dense problems and uses an adjacency-matrix data 
structure. The memory requirements for this code would be prohibitive on sparse prob- 
lems with many nodes. For this reason, we included it only in experiments on problem 
classes that are dense. On these problems, DJV is faster than SJV by a factor of about 
1.5. It is likely that our codes and the SFR10 code would enjoy a similar improvement 
in performance if they were modified to use the adjacency-matrix data structure. 

We collected performance data on a variety of problem classes, many of which we 
took from the First DIMACS Implementation Challenge. Following is a brief description 
of each class; details of the generator inputs that produced each set of instances are 
included in Appendix A. 

5.1. The high-cost class 

Each v C X is connected by an edge to 2 log 2 IV I randomly-selected nodes of Y, with 
integer edge costs uniformly distributed in the interval [0, 10s]. 

5.2. The low-cost class 

Each v ~ X is connected by an edge to 2 log 2 t VJ randomly-selected nodes of Y, with 
integer edge costs uniformly distributed in the interval [0, 100]. 

5.3. The two-cost class 

Each u C X is connected by an edge to 2 log 2 I VI randomly-selected nodes of Y, each 
edge having cost 100 with probability ½, or cost 108 with probability ½. 

5.4. The fixed-cost class 

For problems in this class, we view X as a copy of the set { 1,2 . . . . .  ½iV I}, and Y as 
a copy of {½1VI + 1,2!lVl + 2 , . . . ,  IVI}. Each v C X is connected by an edge to ~IVI 
randomly-selected nodes of Y, with edge (x, y),  if present, having cost 100xy. 

5.5. The geometric class 

Geometric problems are generated by placing a collection of integer-coordinate points 
uniformly at random in the square [0, 106] X [0, 106], coloring half the points blue and 
the other half red, and introducing an edge between every red point r and every blue 
point b with cost equal to the floor of the distance between r and b. 

5.6. The dense class 

Like instances of the geometric class, dense problems are complete, but edge costs 
are distributed uniformly at random in the range [0, 107]. 



A.V. Goldberg, R. Kennedy~Mathematical Programming 71 (1995) 153-177 

5.7. Picture problems 
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Picture problems, suggested by Knuth [20], are generated from photographs scanned 
at various resolutions, with 256 greyscale values. The set V is the set of pixels; the 

pixel at row r, column c is a member of X if r ÷ c is odd, and is a member of Y 

otherwise. Each pixel has edges to its vertical and horizontal neighbors in the image, 

and the cost of each edge is the absolute value of the greyscale difference between its 

two end points. Note that picture problems are extremely sparse, with an average degree 

always below 4. Although picture problems are an abstract construct with no practical 
motivation, the solution to a picture problem can be viewed as a tiling of the picture 

with dominos, where we would like each domino to cover greyscale values that are as 

different as possible. 

For our problems, we used two scanned photographs, one of each author of this paper. 

6. Experimental observations and discussion 

In the following tables and graphs, we present performance data for the codes. Note 

that problem instances are characterized by the number of nodes on a single side, i.e., 
half the number of nodes in the graph. 

We report times on the test runs we conducted, along with performance data for the 

ADP/A code taken from [25]. The instances on which ADP/A was timed in [25] 

are identical to those we used in our tests. We give mean running times computed 

over three instances for each problem size in each class; in the two-cost and geometric 

classes we also give mean running times computed over fifteen instances and sample 

deviations for each sample size. We computed sample deviations for each problem class 
and size, and observed that in most cases they were less than ten percent of the mean 

(often much less). The two exceptions were the two-cost and geometric classes, where 

we observed larger sample deviations in the running times for some of the codes. For 
these two classes we also collected data on fifteen instances for each problem size. The 

sample statistics taken over fifteen instances seem to validate those we observed for 

three instances. All statistics are reported in seconds. 

6.1. The high-cost class 

Fig. 5 and Table 2 summarize the timings on DIMACS high-cost instances. The kth- 

best heuristic yields a clear advantage in running time on these instances. CSA-Q beats 

CSA-B, its nearest competitor, by a factor of nearly 2 on large instances, and CSA-Q 

seems to have an asymptotic advantage over the other codes, as well. The overhead of 
speculative arc fixing is too great on high-cost instances; the running times of CSA-S for 

large graphs are essentially the same as those of SFR10. SJV has the worst asymptotic 

behavior. 
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Fig. 5. Running times for the high-cost class. 

Table 2 
Running times for the high-cost class 

Nodes IX I ADP/A SFRI0 SJV CSA-B CSA-S CSA-Q 

1024 ] 7 1.2 0.87 0.7 1.1 0.5 
2048 36 2.9 4.40 1.9 2.7 1.3 
4096 132 6.4 18.1 4.3 6.2 2.8 
8192 202 15.7 65.6 10.8 15.3 6.5 

16 384 545 37.3 266 25.5 38.3 14.3 
32 768 1463 85.7 1197 58.7 84.0 32.4 

6.2. The low-cost class 

The  s i tua t ion  here  is very s imi la r  to the h igh-cos t  case: C S A - Q  en joys  a s l igh t  

a s y m p t o t i c  advan t age  as wel l  as a c lear  cons tan t - fac to r  advan t age  over  the c o m p e t i n g  

codes.  SJV has  worse  a sympto t i c  b e h a v i o r  than the  o ther  codes  on  the  low-cos t  class,  

j u s t  as i t  does  on  h i g h - c o s t  ins tances .  See Fig. 6 and  Table  3. 
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Fig. 6. Running times for the low-cost class. 

Table 3 
Running times for the low-cost class 

Nodes IXI ADP/A SFR10 SJV CSA-B CSA-S CSA-Q 

1024 15 0.75 0.82 0.48 0.64 0.44 
2048 29 1.83 3.03 1.21 1.77 0.98 
4096 178 4.31 12.6 2.99 4.13 2.43 
8192 301 10.7 57.0 7.39 10.3 5.72 

16 384 803 27.7 229 20.1 27.8 13.4 
32 768 2464 68.5 1052 46.9 64.6 30.3 

6.3. The two-cost class 

The two-cost  data appear in Fig. 7 and Tables 4 and 5. It is difficult for robust  

scaling algori thms to exploit  the special structure of two-cost instances; the ass ignment  

problem for most  of  the graphs in this class amounts  to f inding a perfect match ing  on 

the high-cost  edges, and none  of  the scaling codes we tested is able to take special 

advantage of  this observation.  Because SJV does not  use scaling, it would  seem a good 
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Fig. 7. Running times (three-instance samples) for the two-cost class. 

Table 4 
Running times (three-instance samples) for the two-cost class 

Nodes IXI SFRI0 SJV CSA-B CSA-S CSA-Q 
time s time s time s time s time s 

1024 5.13 0.09 0.35 0.00 3.09 0.24 2.58 0.15 5.21 0.33 
2048 14.0 1.! 1.16 0.01 7.72 0.28 6.19 0.18 l l.I l.O 
4096 37.3 1.1 4.21 0.16 17.7 1.1 14.2 1.6 23.3 2.4 
8192 107 12 18.2 0.43 43.4 35 36.7 2.1 58.6 3.3 

16384 366 81 73.6 0.58 102 2.8 85.4 3.2 133 7.8 
32 768 894 180 320 1.2 240 6.0 185 6.8 299 6.4 
65536 1782 60 1370 5.8 531 15 417 11 628 25 

cand ida t e  to pe r fo r m  espec ia l ly  well  on  this  class,  and  indeed  it does  well  on smal l  

two-cos t  ins tances .  For  large ins tances ,  however ,  SJV uses  a great  deal o f  t ime  in i ts 

shor tes t  a u g m e n t i n g  pa th  phase ,  and pe r fo rms  poor ly  for  this  reason.  Specula t ive  arc 

f ix ing improves  s igni f icant ly  upon  the p e r f o r m a n c e  o f  the  basic  C S A  i m p l e m e n t a t i o n ,  

and  the  k th -bes t  heur is t ic  hur ts  p e r f o r m a n c e  on this  class o f  p rob lems .  It seems  that  the  
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Table 5 
Running times (fifteen-instance samples) for the two-cost class 
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Nodes IXI SFR10 SJV CSA-B CSA-S CSA-Q 
time s time s time s time s time s 

1024 5.05 0.32 0.35 0.02 3.07 0.21 2.56 0.10 4.93 0.40 
2048 14.1 1.1 1.18 0.04 7.49 0.37 6.18 0.26 10.8 0.73 
4096 37.4 2.7 4.22 0.14 17.7 1.0 14.7 0.84 24.1 1.6 
8192 109 9.8 18.0 0.37 44.6 2.5 36.5 1.5 57.5 3.2 

16384 314 50 73.7 0.57 105 4.2 84.1 2.9 130 8.4 
32768 822 194 320 2.1 239 8.5 186 4.8 293 15 
65 536 2021 342 1376 7.5 524 25 426 16 637 27 

kth-best heuristic tends to speed up the last few iterations of  refine, but it hurts in the 

early iterations. Like kth-best, the speculative arc fixing heuristic is able to capitalize on 

the fact that later iterations of  refine can afford to ignore many of  the arcs incident to 

each node, but by keeping all arcs of  similar cost under consideration in the beginning, 

speculative arc fixing allows early iterations to run relatively fast. On this class, CSA-S 

is the winner, although for applications limited to this sort of  strongly bimodal  cost 

distribution, an unscaled push-relabel or blocking flow algorithm might perform better 

than any of  the codes we tested. No running times are given in [25] for A D P / A  on 

this problem class, but the authors suggest that their program performs very well on 

two-cost problems. Relative to those of  the other codes, the running times of  SFR10 are 

comparatively scattered at each problem size in this class; we believe this phenomenon 

results from the premature termination of  early scaling phases in SFR10 (see Section 4) .  

The relatively large sample deviations shown in Fig. 7 and Table 4 motivated our ex- 

periments with fifteen instances of each problem size. The sample means and deviations 

of the fifteen-instance data are shown in Table 5, and they are consistent with and very 

similar to the three-instance data shown in Fig. 7 and Table 4. 

6.4. The fixed-cost class 

Fig. 8 and Table 6 give the data for the fixed-cost problem class. On smaller instances 

of  this class, CSA-B and CSA-Q have nearly the same performance. On instances with 

IXI = 1024 and IX I = 2048, CSA-Q is faster on fixed-cost problems than CSA-B,  or 

indeed any of  the other codes. On smaller instances, speculative arc fixing does not pay 

for itself; when IXI = 2048, the overhead is just  paid for. Perhaps on larger instances, 

speculative arc fixing would pay off. It is doubtful, though, that CSA-S would beat 

CSA-Q on any instances of  reasonable size. SJV exhibits the worst asymptotic behavior 

among the codes we tested on this problem class. 

6.5. The geometric class 

On geometric problems, both heuristics improve performance over the basic CSA-B 

code. The performance of  CSA-S and CSA-Q is similar to and better than that of  the 
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Table 6 
Running times for the fixed-cost class 

Nodes IxI ADP/A SFRI0 SJV CSA-B CSA-S CSA-Q 

128 3 0.16 0.18 0.06 0.08 0.07 
256 I I 0.63 2.14 0.30 0.37 0.32 
512 46 3.59 19.4 1.6 1.8 1.7 

1024 276 20.5 168 7.8 8.2 6.0 
2048 n.a. 123 1367 37.8 37.6 27.9 

other  codes.  The Jonker -Volgenan t  codes seem to have asymptot ic  behavior  similar to 

the o ther  codes on this class. See Fig. 9 and Table 7. 

Because  the sample deviat ions shown in Fig. 9 and Table 7 are somewhat  large 

compared  to those we observed on most  other  problem classes, we ran experiments  on 

fifteen instances as a check on the validity o f  the data. Statistics calculated over  fifteen- 

instance samples are reported in Table 8, and they are very much  like the three-instance 

data. 
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Table 7 
Running times (three-instance samples) for the geometric class 

Nodes IxI ADP/A SFR10 SJV DJV CSA-B CSA-S CSA-Q 

time s time s time s time s time s time s time s 

128 12 0.5 1.27 0.46 6.64 4.4 4.36 2,9 0.79 0.28 0.62 0.05 0.58 0.19 
256 47 1 6.12 0.23 25.3 3.3 16.9 2.0 3.67 0.67 2.56 0.08 2.43 0,34 
512 214 42 31.0 4.1 110 2.8 73.2 1.0 27.9 8.1 11 .9  0.89 16.7 3,7 

1024 1316 288 193 19 424 51 297 32 114 24 54.9 1.42 62.5 2.6 

Table 8 
Running times (fifteen-instance samples) for the geometric class 

Nodes IX I SFRI0 SJV DJV CSA-B CSA-S CSA-Q 

time s time s time s time s time s time s 

128 1.28 0.21 5.96 2.0 3.85 1.3 0.78 0.16 0.61 0.03 0.57 0.11 
256 6.21 0.82 26.1 4.7 17.5 2.9 3.72 0.51 2.63 0.09 2.50 0.27 
512 35.0 6.0 101 11 68.2 7.4 23.2 4.9 11.8 0.67 15.1 2.4 

1024 214 54 416 38 291 25 127 27 54.4 2.2 66.7 9.7 
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Fig. 10. Running times for the dense class. 

Table 9 
Running times for the dense class 

Nodes IXI SFR10 SJV DJV CSA-B CSA-S CSA-Q 

128 0.51 0.14 0.12 0.36 0.52 0.16 
256 2,22 1.57 1.07 1.83 2.17 0.84 
512 8.50 6.22 4.47 8.12 9.36 4.13 

1024 41.2 28.5 19.6 42.0 47.1 18.9 

6.6. The dense class 

The difference between Fig. l 0  and Tables 8 and 9 shows that the codes '  relative 

performance is significantly affected by changes in cost distribution. Except on very 

small  instances, CSA-Q is the winner  in this class; DJV is its closest competitor, with 

SJV performing fairly well also. As in the case of  geometric problems,  SJV and DJV 

seem to have asymptot ic  performance similar to the scaling and interior-point  codes on 

this class. 
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Table 10 
Running times for problems from Andrew's picture 

Nodes IXI SFR10 SJV CSA-B CSA-Q CSA-S 

65 158 79.20 2656 73.23 103.3 76.70 
131 370 260.2 11 115 173.2 248.0 185.5 
261324 705.2 49 137 665.1 907.8 844.8 
526008 1073 n.a. 1375 2146 1432 

1046 520 n.a. n.a. 5061 n.a. 5204 

Table 11 
Running times for problems from Robert's picture 

Nodes IXI SFRI0 SJV CSA-B CSA-Q CSA-S 

59 318 49.17 1580 50.13 68.10 51.82 
119 132 153.1 6767 154.8 223.6 165.4 
237 272 351.4 26 637 585.0 916.8 6l 1.2 
515 088 827.8 n.a. 2019 3095 3057 
950 152 1865 n.a. 5764 n.a. 8215 
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6. 7. Picture problems 

Although the pictures used had very similar characteristics, the tentative conclusions 
we draw here about the relative performance of the codes seem to apply to a broader 
class of  images. We performed trials on a variety of images generated and transformed 
by various techniques, and found no substantial differences in relative performance, 
although some pictures seem to yield more difficult assignment problems than others. 
See Figs. 11 and 12 and Tables 10 and 11. On the picture problems we tried, SFR10 
performs better than any of the CSA implementations; we believe that the "reverse- 
auction" phases performed by SFR10 [6] are critical to this performance difference. 
We were unable to obtain times for SJV and CSA-Q on the largest problem instance 
from each picture, nor from SFRI0 on the largest problem instance from one of the 
pictures because the codes required too much memory. On the second-largest instance 
from each picture, our experiments suggested that SJV would require more than a day 
of CPU-time, so we did not collect data for these cases. On picture problems CSA-Q 
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performs significantly worse than either of the other two CSA implementations. This 
situation is no surprise because CSA-Q performs an additional pointer dereference each 
time it examines an arc. In such a sparse graph, the four arcs stored at each node 
exhaust the list of arcs incident to that node, so no benefit is to be had from the kth-best 
heuristic. 

7. Concluding remarks 

Castafion [6] gives running times for an auction code called SF5 in addition to 
performance data for SFR10; SF5 and SFR10 are the fastest among the robust codes 
discussed. The data in [6] show that on several classes of problems, SF5 outperforms 
SFR10 by a noticeable margin. Comparing Castafion's reported running times for SFR10 
with the data we obtained for the same code allows us to estimate roughly how SF5 

performs relative to our codes. The data indicate that CSA-S and CSA-Q should perform 
at least as well as SF5 on all classes for which data are available, and that CSA-Q should 

outperform SF5 by a wide margin on some classes. A possible source of error in this 
technique of estimation is that Castafion reports times for test runs on cost-minimization 

problems, whereas all the codes we test here (including SFR10) are configured to 
maximize cost. The difference in every case is but a single line of code, but while on 
some classes minimization and maximization problems are similar, on other classes we 

observed that minimization problems were significantly easier for all the codes. This 
difference is unlikely to be a large error source, however, since the relative performance 
of the codes we tested was very similar for minimization problems and maximization 

problems. 
It is interesting that SJV is asymptotically worse than all its competitors on every 

sparse class, and that SJV and DJV are asymptotically very similar to their competitors 
on the dense classes. DJV performs very well on the uniform dense problem class, but 
we feel SJV provides a more genuine reference point, since the other combinatorial 
codes could be sped up on dense problems by replacing their central data structures 
with an adjacency matrix representation similar to that in DJV. 

From our tests and data from [25] and [6], we conclude that CSA-Q is a robust, 
competitive implementation that should be considered for use by those who wish to 
solve assignment problems in practice. 
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Appendix A. Generator inputs 

The assignment instances on which we ran our tests were generated as follows. 
Problems in the high-cost, low-cost, fixed-cost and dense classes were generated using 
the DIMACS generator a s s i g n ,  e. Problems in the two-cost class were generated using 
a s s i g n ,  c with output post-processed by the DIMACS awk script t w o c o s t ,  a. Problems 

in the geometric class were generated using the DIMACS generator dcube,  c with output 
post-processed by the DIMACS awk script geomasn, a. Picture problems were generated 
from images in the Portable Grey Map format using our program p5pgmtoasn. To obtain 
the DIMACS generators, use anonymous f t p  to d i r a a c s . r u t g e r s ,  edu, or obtain the 
e sa  package (which includes the generators) as described below. 

In each class except the picture class, we generated instances of various numbers of 
nodes N and used various seeds K for the random number generator. For each problem 

type and each N, either three or fifteen values of K were used; the values were integers 
270 001 through 270 003 or through 270 015. For picture problems, we tested the codes 
on a single instance of each size. 

A. 1. The high-cost class 

We generated high-cost problems using a s s i g n ,  c from the DIMACS distribution. 
The input parameters given to the generator are as follows, with the appropriate values 

substituted for N and K: 
nodes  N 
sources 1N 

d e g r e e  2 log 2 N 
maxcost 100 000 000 
seed K 

A.2. The low-cost class 

Like high-cost problems, low-cost problems are generated using the DIMACS gen- 
erator a s s i g n ,  c. The parameters to the generator are identical to those for high-cost 

problems, except for the maximum edge cost: 
nodes  N 

1 N sources 2 
deg ree  2 log 2 N 
maxcost lO0 

seed K 
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A.3. The two-cost class 
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Two-cost instances are derived from low-cost instances using the UNIX awk program 
and the DIMACS awk script t w o c o s t ,  a. The instance with N nodes and seed K was 
generated using the following UNIX command line, with input parameters identical to 
those Ibr the low-cost problem class: 

assign l awk -f twocost.a 

A.4. The fixed-cost class 

We gener~ed fixed-costinstances using a s s i g n . c ,  withinputp~ameters as follows: 
nodes  N 

1 sources ~N 

degree A N  
maxcos t  100 
multiple 

seed K 

A.5. The geometric class 

We generNed geometric problems using the DIMACS generator dcube,  c and the 
DIMACS awk script geomasn, a. We gave input parameters to dcube as shown below, 
and used the following UNIX command line: 

dcube l awk -f geomasn.a 

nodes N 

dimension 2 

maxloc 1000000 
seed K 

A.6. The dense class 

We gener~ed dense problems using a s s i g n . c ,  with input p~ameters as follows: 
nodes  N 

1 sources ~N 

complete 

maxcost I000000 

seed K 

Appendix B. Obtaining the CSA codes 

To obtain a copy of the CSA codes, DIMACS generators referred to in this paper, and 
documentation files, send mail to ftp-request@theory, stanford, edu and use send 
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c s a s .  t a r  as the  sub jec t  l ine;  you  wil l  au tomat ica l ly  be  ma i l ed  a u u e n c o d e d  copy  o f  a 

t a r  file. 
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