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Abstract

An extension of the Gauss—Newton method for nonlinear equations to convex com-
posite optimization is described and analyzed. Local quadratic convergence is estab-
lished for the minimization of h o F under two conditions, namely h has a set of weak
sharp minima, C, and there is a regular point of the inclusion F(z) € C. This result
extends a similar convergence result due to Womersley which employs the assumption
of a strongly unique solution of the composite function ho F. A backtracking line-
search is proposed as a globalization strategy. For this algorithm, a global convergence
result is established, with a quadratic rate under the regularity assumption.
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1 Introduction

In the early nineteenth century, Gauss proposed a powerful method for solving systems of
nonlinear equations which generalized the classical Newton’s method for such systems. The
so called Gauss—Newton method is easily described. Suppose one wishes to solve the system

F(z)=0, (1)
where F': IR™ — IR™ is of class C'. Newton’s method generates iterates of the form
oF = g 4 s (2)
where the step s* is a solution to the linear system
0= F(zF) + F'(z%)s. (3)

Unfortunately, the system (3) may be inconsistent, especially if the system is overdetermined
(m > n). In order to remedy this problem, Gauss proposed taking s* as the best approximate
solution to (3) in the least-squares sense. In making the transition to a step s* based on
a least-squares solution to (3), the underlying problem has been changed from equation
solving to minimization. Specifically, the algorithm is now designed to solve the minimization
problem

min 3 [|F(2)] @

In this context, it is clear that the Gauss-Newton approach can generate iterates that con-
verge to a solution to (4) that is not a solution to (1). Nonetheless, the method is always
implementable and can be made significantly more robust by the addition of a line-search.
Other variations that enhance the robustness of the method are the addition of a quadratic
term to the the objective in the step finding subproblem (see [20, 28]) or the inclusion of a
trust-region constraint (see [11]).

In this paper we discuss the extension of the Gauss-Newton methodology to finite—valued
convex composite optimization. Convex composite optimization refers to the minimization
of any extended real-valued function that can be written as the composition of a convex
function with a function of class C*:

min (2) = H(F(@)) (P)

where h: R™ — IR U{-+oo} is convex and F: R® — R™ is of class C'. In this article, we
consider only the finite-valued case; h: IR™ — IR. Obviously the problem (4) is precisely of
this form. It is interesting to note that in their outline of the Gauss—Newton method, Ortega
and Rheinboldt [29, page 267] used the notion of a composite function. A wide variety of
applications of this formulation can be found throughout the mathematical programming
literature [3, 14, 15, 22, 35, 42, 44, 45], e.g. nonlinear inclusions, penalization methods, min-
imax, and goal programming. The convex composite model provides a unifying framework
for the development and analysis of algorithmic solution techniques. Moreover, it is also a
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convenient tool for the study of first— and second-order optimality conditions in constrained
optimization [5, 7, 15, 18, 42]. Indeed, the deepest results on optimality conditions for a
variety of problems have been obtained in this way.

Our extension of the Gauss—Newton methodology to finite-valued convex composite op-
timization generalizes a similar result due to Womersley [44] which uses the assumption of
strong uniqueness on the composite function f. An important distinction between these re-
sults is that we do not require that the solution set be a singleton. In particular, the solution
set may be unbounded. The approach we take is based on that described in [2] which is an
extension of a technique due to Garcia—Palomares and Restuccia [17]. However, since [2, 17]
are concerned with the more specific problem of solving nonlinear systems of equations and
inequalities, we are not able to capture the full flavor of these results. In particular, [2, 17]
contain results concerning active set strategies that are not considered in this article.

The approach we take requires two basic assumptions: (1) the set of minima for the
function h, denoted by C, is a set of weak sharp minima for h, and (2) there is a regular
point for the inclusion

F(z) eC. (5)

The notion of weak sharp minima was introduced in [6, 12] and is reviewed in the next sec-
tion. The regularity condition that we employ has been studied by many authors in various
forms and contexts [1, 5, 13, 23, 27, 32, 37, 38, 39, 42, 46]. It is related to the stability
of the set of solutions of the inclusion (5). In particular, the regularity hypothesis implies
that the local behavior of the Gauss—Newton method presented in Section 2 mimics that of
the method proposed by Maguregui [23, 24]. Maguregui studies the procedure in the more
general Banach space setting and obtains a convergence result that extends Kantorovich’s
convergence theory for Newton’s method to smooth nonlinear convex inclusions. The key
ingredient in Maguregui’s proof theory is the Robinson—-Ursescu Theorem [39, Theorem 2],
[43] on the stability of convex multifunctions. In this article, we provide a self-contained
and elementary proof theory in the finite dimensional case and link this theory to a glob-
alization strategy via the Gauss-Newton methodology for convex composite optimization.
Our proof technique requires a stability result similar to the one Maguregui obtains from the
Robinson—Ursescu Theorem. However, the proof we provide for this result (Proposition 3.3)
is quite elementary involving a straightforward application of Fenchel duality. It is hoped
that this approach will make these results more accessible to the mathematical programming
community.

The regularity condition is discussed in Section 3. There we establish a few equivalent
formulations of the condition useful to our study and also present our main stability result
for the inclusion (5). The basic Gauss-Newton algorithm is presented in detail in Section
9 and its convergence properties are established in Section 4. We conclude in Section 5 by
presenting a global version of the method and establishing its convergence properties.

The notation that we employ is for the most part standard, however, a partial list is
provided for the readers convenience. The inner product on IR™ is defined as the bi-linear

form

k2
(v, T) = Z YiZi.
=1
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Given two subsets U and V of R" and § € IR, we define
U+BV ={utfv|luel veV}

and
U\Vi={ueU|ug¢V}.

If U ¢ IR" then the polar of U is defined to be the set
U°:={z*eR"|(z*,z) <1Vz € U}.
The indicator and support functions for U are given by

(o) ::{ 0 ifzelU

+o0o otherwise,

and

by (2) = sup {(z”,2) | z" € U},
respectively. The relative interior of U, denoted by riU, is the interior of U relative to the
affine hull of U which is given by

se{l,2,---}, zF €U and s € R
fork=1,2,---,s with S5 Ap=1 |

aff U = {Z Apz®
k=1

The closure of U, cLU is the usual topological closure of the set U. The cone generated by
U is defined by
cone(U) :={Au|A>0,uecU}.

For a given function f, z € argmin{f(z)|z € U} means that z € U and f(z) =
min {f(z) | € U}. Furthermore, for a convex function f, df signifies the subdifferential
multifunction [40].

We denote a norm on IR” by ||-||. The associated closed unit ball for the given norm is
denoted by IB. Each norm has an associated dual norm given by
lzll, = v (z) .

It is straightforward to show that the unit ball associated with the dual norm is the set IB°.
The space in which the sets IB and IB° lie and their corresponding norms is always apparent
from the context of the discussion. If there is ever the possibility of confusion, we write the
unit ball as IB, to specify that B, C IR”.

For a given set U, the distance of a point z to U is given by

dist(z | U) == llLrelg |z — ul.

Finally, the sets ker A and im A represent the kernel and image space of the linear map A,
respectively, and the inverse image of a set U under the mapping A is given by A7!U :=

{y| Ay e U}.



2 The Basic Algorithm

Let f(z) := h(F(z)) be as given in P with h finite-valued. The basic Gauss-Newton
procedure takes a unit step along a direction selected from the following set:

Da(z) i= arg min {h(F(z) + F'(z)d) | |ld]] < A} . (6)

There are two points to note. The first is that the “linearization” is carried out only on the
smooth function F, the convex function h is treated explicitly. This corresponds exactly to
the Gauss—Newton methodology. The second point is that the directions are constrained to
have length no greater than A. This is different from the standard Gauss—Newton procedure
which can be recovered by setting A = oo. Nonetheless, from the standpoint of convergence
analysis it is advantageous to take A finite. Observe that Dy is a multifunction taking points
z and generating a set of directions. The basic algorithm to be considered here is as follows:

Algorithm 1: Let > 1, A € (0,+0c], and z° € IR™ be given. Having z*, determine z**!
as follows:

(1) Choose d* € Da(z*) to satisfy
| a#]| < ndist(0] Da(z¥)) . (7)

If ¢¥ = 0, then stop.
(2) Set zFt! .= gk + d.

Algorithms of this type have been extensively studied in the literature. However, in most
studies, the objective function in the direction finding subproblem,

min {h(F(z) + F'(z)d) | [|d]| <A},

includes a quadratic term of the form %dTH d in order to incorporate some curvature compo-
nents. Further discussion of this curvature component can be found [11, 29] for the classical
Gauss-Newton method and in [15, 35] for convex composite optimization. The relationship
of this component to second—order optimality conditions can be found in [7, 15, 18, 42]. In
this article, we avoid the need for a curvature term by focusing on the local behavior of the
algorithm in the neighborhood of a point Z satistying F(z) € C := argmin h. Our analysis
is based on two key assumptions; the set C' is a set of weak sharp minima for the function
h and the point Z is a regular point (see Section 3) for the inclusion (5). The weak sharp
minima concept was introduced in [12].

Definition 2.1 The set C C IR™ is a set of weak sharp minima for the function h: IR™ —
IR U{=£oco} if there is an o > 0 such that

R(y) > Poin + adist(y | C), for ally € R™, (8)

where h;, = min, h(y). The constant o and the set C are called the modulus and domain
of sharpness for h over C, respectively.
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Note that in finite dimensions, if inequality (8) is satisfied for one choice of norm, then
it is satisfied for every other norm with perhaps a different choice of . The prototypical
example of a function h having a set of weak sharp minima is the distance function dist(- | C)
itself. Other examples are explored in [6, 12]. For example, if / is polyhedral convex, then its
set of minima is necessarily a set of weak sharp minima. Moreover, in this case, if it is further
assumed that the norm on IR™ is polyhedral, then one can obtain a direction choice satisfying
(7) of Step 1 in Algorithm 1 by computing a least-norm solution of a linear program in the
sense of [25, 26]. Numerical methods for obtaining least-norm solutions to linear programs
have been developed in [10].

The notion of weak sharp minima generalizes the notion of a sharp [33, 34] or strongly
unique [9, 22, 30, 31, 44] minimum. These concepts have a long history in the literature and
have far reaching consequences for the convergence analysis of many iterative procedures
9, 19, 22, 33, 34, 44]. In [6], it was shown that some of these convergence results can
be extended to the case of weak sharp minima. This article continues this discussion in the
context of convex composite optimization. Whereas in the fully convex case one obtains finite
termination criteria, in the convex composite case we can establish quadratic convergence
when regularity is also assumed.

3 Regularity

In this section, we develop a notion of regularity for the inclusion (5). Regularity is the basic
tool in our analysis of the linearized inclusion

F(z)+ F'(z)d € C, with ||d]| <A (9)

In particular, the regularity condition implies that the direction finding subproblem (6) is
locally equivalent to solving the inclusion (9) in the sense that their solution sets coincide.
Regularity also allows us to establish bounds on the local behavior to the solution set of the
linearized inclusion (9). Based on these results, we establish a quadratic convergence result
for Algorithm 1 in the next section.

Definition 3.1 A point & € IR" is a regular point of the inclusion (5) if F(Z) € C and
ker(F'(z)") N N¢ (F(z)) = {0} . (10)
Recall that the the normal cone mapping for the convex set C is defined by the relation

Ne (y) == 0c(y) -

In the context of the nonlinear least squares problem (4), the set C' is the origin and so the
normal cone to C at F(Z) is all of IR™. Therefore the condition (10) reduces to the classical
condition for this problem, namely, that the mapping F'(Z) is surjective. Indeed, this is the
case whenever h has a unique minimizer, and in particular when h has a strongly unique
minimum.

Our first objective in this section is to establish several equivalent forms of regularity
that are pertinent to the discussion. We begin by defining an extension of the normal cone
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mapping to a multifunction whose domain is the whole space. Recall that the the normal
cone mapping for the convex set C' can be written as

Ne (9) [cone(C —y)]°, ify €C,and
y =
¢ 0, otherwise.

An extension of this multifunction to one having domain IR™ is given by the mapping
I'e: R™EIR™ defined by the relation

I'c(y) = [cone(C —y)]°, for all y € R™.

Clearly, this multifunction differs from the normal cone mapping only off the set C. It is
straightforward to show that I'c has the following very useful dual representation:

To(z) ={y | {y,2) — ¥ (y) 2 0} (11)

Observe that we can state the regularity condition (10) in terms of the multifunction I'c.
By doing so, it is easy to show that the regularity condition is a local property.

Lemma 3.2 Let z € IR™ and A € R™*", and suppose that C' is a non—empty closed convex
subset of R™. Then the following statements are equivalent:

(i)  ker A"NTc(z) ={0}.

(i) imA +cone(riC — 2) = R™.
(ii1) 0 € int (AB, +(riC — 2)).
(iv) There is a f > 0 such that

AT'Be NTe(Z) € 1B, . (12)

(v) There is an ¢ > 0 such that each of the conditions (i)-(1v) above hold for all (2,A) €
(2, A) + e B where the unit ball in R™ x R™*" is determined by the norm

(2, 4) = (2, )| = llz— 21 + | A - 4]

with the operator norm on IR™ ™ chosen to be compatible with the gien norms on R"
and R™. In particular, the parameter B in (iv) depends only on the point (z,A).

Proof To obtain the equivalence of (i) and (ii), we first take the polar of the relation in (i)
to see that )
im A 4 clcone(C — z) = R™ .

From this equation, the equivalence follows from a simple separation argument and the fact
that ricone S = cone (ri S) for any convex set S.



Clearly, (ii) follows from (iii). The reverse implication again follows by a simple separation
argument. Indeed, if this implication were false, then one could separate the origin from the
set AIB, -+(ri C' — Z). But then the cone generated by this set, namely im A+ cone(riC — 2),
would lie in a half space which would contradict (ii).

To see that (iv) follows from (iii), note that (iii) is equivalent to the statement that
there exists an n > 0 such that nIB, C AB, +(iC — z). This implies that 77]B C
A, +cone (C' — z). The polar of this last expressmn is precisely (iv) with 8 =n~*

Clearly, (iv) implies (i) since ker A = AT7'0 and the only bounded cone is the origin.

For the final statement of the lemma, it is obvious that (v) implies any one of (i)~(iv).
We obtain the equivalence of (v) with any one of (i)-(iv) by showing that (iii) implies the
local version of (iv). This will simultaneously establish the uniform nature of the parameter
B. As noted above, the condition in (iii) implies the existence of an 1 > 0 such that
nB, C AB, +(riC — Z). Hence

B,

nB, C AB,+(1iC —2) + 5

whenever (z,4) € (2,A4) + 21B. Therefore, by the Radstrom Cancellation Lemma [36,
Lemma 1],
gIBm C AB, +(riC — 2) C AB,+cone(C — z).

Taking the polar of this last statement and setting € := I =: 7', we find that (iii) implies the
existence of ¢ > 0 and 8 > 0 such that the condition in (iv) holds for all (z, A) € (2, A) +¢IB.

O
Remarks:

1. The form of the regularity condition used by Maguregui [23, 24] most closely resembles
condition (iii) above. The actual condition he employs is

zeC, 0€core(imA+C —z), (13)

where the core of a closed convex set in a Banach space is the same as the interior of the set
in the norm topology [41, pg. 31]. Condition (iii) is equivalent to this regularity condition
if it is further assumed in (iii) that z € C. Observe that the use of the multifunction I'c
avoids the need to specify that Z € C for results such as Lemma 3.2. Moreover, it should
be pointed out that these conditions are not equivalent when 2 ¢ C. For example, take
C = {2}, z =0 and A as the identity map on IR.

In the infinite-dimensional setting (13) is stronger than the condition in (i). However,
condition (i) is not sufficiently strong to obtain the necessary result. Condition (13)
provides the link to Maguregui’s application of the Robinson—Ursescu Theorem.

2. By taking A = F'(z) and zZ = F(Z), Lemma 3.2(v) implies that
ker (F'(2)") (\Te(F()) = {0}

for all points z near Z at which (10) holds. That is, regularity is a local property.
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The following proposition states that the linearized inclusions (9) are solvable in a strong
sense near regular points. It is the key technical result required to establish the local
quadratic convergence of Algorithm 1. We show that under the regularity hypothesis the
distance to the solution set of the linearized inclusion can be bounded locally by the distance
of the linearization to the set C. This result is reminiscent of several similar results due to
Robinson [37, 38, 39, 43]. Indeed, the bound (14) is easily derived from the Robinson—Ursescu
Theorem. On the other hand, our proof of the result is a simple application of Fenchel’s
Duality Theorem [40, Corollary 31.2.1].

Proposition 3.3 IfZ is a regular point of (5), then for all A > 0, there is some neighborhood
N(Z) of T and a [ > 0 satisfying

dist(0 | Da(z)) < Adist(F(z) | C), (14)
whenever z € N (Z). Moreover, N'(Z) can be chosen so that there ezists a d € AIB satisfying
F(z)+ F'(z)d e riC (15)

for all z € N(Z).

Proof We first establish (14). Since dist(F(z) | C) is a continuous function of z and F(Z) €
C, the relation (14) follows from the inequality

dist(0 | Deo(z)) < Adist(F(z) | C), (16)

for all z sufficiently close to Z. This latter inequality follows easily from the following
argument based on Fenchel duality.
Let ¢ > 0 be given by Lemma 3.2(v) at the pair (F(z), F'(Z)). Let N'(Z) be the neighbor-
hood of Z chosen so that the pair (F(z), F'(z)) € (F(), F'(Z)) + ¢ B whenever z € N(Z).
The Fenchel dual to the problem

dist(0 | Deo(x)) = inf{||d||| F(z)+ F'(z)d € C}
= inf (o (d) + Yor) (F'(2)d)}

is the problem
sup{(y, F(z)) — ¥ (y) | F'(z)"y € B°}, (17)

and the optimal values of these problems coincide with attainment in (17) if there exists
d € IR" such that

F(z)+ F'(z)d eriC . (18)

The existence of such a vector d is guaranteed by Parts (iii) and (v) of Lemma 3.2 for all
z € N(Z). Hence

dist(0 | Deo(w)) = max{(y, F(z)) — ¥¢ (v) | F'(«)"y € B} . (19)
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Moreover, since 0 < dist(0 | Doo()), the constraint region on the right-hand side of (19) can
be further restricted by adding the inclusion y € ['c(F(z)). This follows from the identity
(11). This observation along with Parts (iv) and (v) of Lemma 3.2 yields the relation

dist(0 | Deo(z)) = max{(y, F(z)) — 9% (v) | y € F'(z)" B NLa(F(z))}
< max{(y, F(z)) =¥z (y) | y € f1B°}
B dist(F(z) | C)

Il

for all z € N (%), where the last equality follows from [4, Lemma 2.9].

To complete the proof, we now establish (15). Let A > 0 be given. By (14), there is
a neighborhood of Z on which D%(a:) # 0. Let dy € D%(m). By Parts (iii) and (v) of
Lemma 3.2, there is a dy € IR” satisfying (18). By [40, Theorem 6.1], it follows that

(1= [F(z) + F'(z)di] + t[F(z) + F'(z)dy] € 1iC, Vit € (0,1]

and hence that
F(z)+ F'(z)((1 — t)dy + tdy) € ri C.

The required d is determined by choosing ¢ > 0 small enough so that (1—-1t)d; +tdy € AIB.
O

The remainder of this section is not critical to the development of the convergence theory
for our algorithm. We show that regularity combined with weak sharpness implies that the
composite function is also weak sharp in a local sense (see Proposition 3.4). In the proposition
above, we have obtained (14), essentially a linear result, by way of Fenchel duality. However,
a stronger result is obtained by Robinson [38, Theorem 1], where it is shown that the same
regularity assumption implies

dist(z | F~1(C)) < ndist(F(z) | C),

for all z in a neighborhood of the regular point Z and some 1 > 0. It is immediate from this
fact that regularity of Z for the inclusion F(z) € C coupled with an assumption that h is
sharp on C implies that the composite function s o F' is locally sharp [6] with respect to the
set F~1(C). This observation is summarized in the following proposition.

Proposition 3.4 Let Z € IR" be a regular point of the inclusion (5) where C is a set of
weak sharp minima for h. Then there is a v > 0 and a neighborhood N(Z) of T such that

f(z) = MF(@) = (@) +ydist(z | F(C)), (20)
whenever T € N(Z).

This result allows us to relate the hypotheses used in the current paper to those used by
Womersley [44]. Womersley assumes that the compostite function f has a strongly unique
minimum, and uses this assumption to derive a quadratic convergence rate for his Gauss—
Newton procedure. In this paper, we make the assumption that Z € IR" is a regular point
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of the inclusion (5) where C is a set of weak sharp minima for i and show in the next
section that this guarantees a quadratic convergence rate for our Gauss—Newton procedure.
This is the fundamental difference between the two approaches: Proposition 3.4 shows that
our assumptions guarantee local sharpness of f, whereas Womersley assumes that f has a
strongly unique minimum. Consequently, our proof theory is based on sufficient conditions
to ensure sharpness, whereas Womersley assumes only sharpness and a unique solution. The
proof we give does not assume that the set of minimizers of f is even bounded, let alone a
singleton.

4 Quadratic Convergence

We can now establish the local quadratic convergence of Algorithm 1. For this we require
the following technical result whose proof is found in the Appendix.

Lemma 4.1 Suppose {z*¥} C R", zF — z* and

) “xk-f-l _ xk“ "
imsup ——5 < M.
koo ||zF — k1|
Then, z* — z* quadratically, that is

ol

lim sup 5 <

koo |2k — z*|

The following result extends the standard domain of attraction theory for Gauss-Newton
methods to finite—valued convex composite optimization under the weak sharpness and regu-
larity assumptions. In particular, this extends the quadratic convergence result under strong
uniqueness due to Womersley [44]. Our result is local and guarantees a quadratic rate of
convergence. Related results can be found in [24, 19, 30, 31].

Theorem 4.2 Let T € IR™ be a regular point of the inclusion (5) where C is a set of weak
sharp minima for h and suppose F' is locally Lipschilz at . Then there is a netghborhood
M(Z) of & such that if the algorithm is initiated in M(Z), then the iterates {z*} converge to
some t* € R"™ with F(z*) € C; that is, z* solves P. Furthermore, z* — z* and h(F(z*)) —
h.... at a quadratic rate.

Proof Let NV(Z) be the neighborhood of Z postulated by Proposition 3.3 and assume with-
out loss that F' is Lipschitz on N (Z) with Lipschitz constant L. Note that h (being finite-
valued and convex) is Lipschitzian on the bounded set F(N(Z)) + § B . Denote the corre-
sponding Lipschitz constant by M. Choose 1 > 6 > 0 such that

nLMéf

a

< 1land Z+26B C N(Z). (21)

11



Since dist(F(z) | C) is continuous, there is a neighborhood O(Z) such that
dist(F(z) | C) < 555, for all z € O(z). (22)

Let M(Z) := N(z2)NO(Z) (T + 6 B). We claim that for £ =0,1,2,...
f e N(@), (23)

] < nBa BFE) ~ hua) < TP | < 5o 20

Note that (23) implies that the algorithm is well defined for k = 0,1,2,.... The proof of the
claim proceeds by induction on k. Note that

)
|&°] < mpdist(F@*) | ©) <3, (25)

the first inequality following from (7) and (14) and the second inequality from (22). Since
z0 € M(Z) we have

0

1 = 0 _ 0
|ot -] < ||o° - 3| + @] < 6+ 5 <26,

Hence 2! € 7 + 26 1B C N(Z). Furthermore, by the quadratic bound lemma, [29, 3.2.12]

2 L
1 S”a

0 1¢ .0y 40 1 L 0
|F@) + F'(2")d - Fla )| gE“d 5

so that F(z°) + F'(2°)d° € F(N(z)) + £1B. Thus,

i

WF(zY) = h(F(z%) + F'(z°)d® + [3 (F'(a° +td°) — F'(z°))d%dt)
B(F(2°) + F'(2%)d®) + M || f3 (F'(a° + td°) — F'(z°))d |
Bomin -+ M || Jo (F(a° + 2d°) — F'(z9))d°d

2
S hmin + %].\_/L Hdoll ’

VAN

(26)

the second equality following from (15). We now have that

ldY < nBaH(A(F(z')) = Pumin) (from (7), (14) and (8))
< nMB ||| (from (26))
< kM8 (5 (from (25))
< {272 (from (21))

Next we assume that (23) and (24) hold for k£ = 0,1,... ,s and show that it also holds
for k = s+ 1. First of all, since z° € M(Z) we have

I B R T TR S P
k=0 2 k=0 2 k=0
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so that z°*! € N(Z). Therefore, as in (26), h(F(z°+1)) < i + 24 ld*||*, and so by the
induction hypothesis we obtain

@t < nBa (W(F @) = h)
nLMp | 0o
<
< el
2
< nLMf <§2_23>
- 200 2
< Spalrnye  Sgr-r
— 2 2 ?

which concludes our induction.

Therefore, the sequence is Cauchy, and so must converge to some z* satisfying h(F'(z*)) =
h..... Moreover, the quadratic rate of convergence for {z*} follows from (24) and Lemma 4.1
while the quadratic rate of convergence for {h(F(z¥))} is obvious from (24). 0

5 A Globalization Strategy

In this section, we propose a globalization strategy for Algorithm 1, based on a backtracking
line-search. The algorithm is simply stated as follows:

Algorithm 2: Let n > 1, A € (0,400}, ¢ € (0,1), v € (0,1), and z° € R™ be given. Having
zF, determine z**1 as follows:

(1) Choose d* € Da(z") to satisfy

Hd’““ < ndist(0 | Da(s")), (27)
where
Da(z) = argmin {A(F(z) + F'(z)d) | |ld| < A} . (28)
If ¢* = 0, then stop.
(2) Set
ty = max?y’

subject to s € {0,1,...}, and
W(F(z* +7°d")) — h(F ("))
< ey’ [A(F(z*) + F'(2*)d*) — h(F(z"))]

(3) Set zF*! := oF + tdF.
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Algorithm 2 is an instance of the class of algorithms studied in [3]. Hence the global
convergence properties of the method follow from Theorems 2.4 and 5.3 in [3]. These theo-
rems specify the behavior of sequences generated by Algorithm 2 in terms of the first—order
optimality conditions for the problem P. A point Z is a first~order stationary point for the
problem P if

F'(z:d) > 0 for all d € R, (29)

where f'(Z;-) is the usual directional derivative of f at the point Z. This condition can be
equivalently stated in terms of the convex subdifferential of h as

0 € F'(z)"0h(F(T)) . (30)

Moreover, by [3, Lemma 4.5 and Theorem 3.6}, the conditions (29) and (30) are equivalent
to the conditions

h(F(z)+ F'(z)d) — h(F(Z)) =0 for all d € Da(Z) (31)
and
0 € Da(Z) . (32)

These latter conditions are particularly important in light of the search direction and step—
length choice specified in Algorithm 2.

The key global properties established in [3] for Algorithm 2 are recalled in the following
theorem.

Theorem 5.1 Let z° € IR"™ and let f = ho F be as in P. Suppose that F' is uniformly
continuous on the closed convex hull of the set {x € R™: f(z) < f(z°)} and that h is
Lipschitz on the set {y € R™: h(y) < f(z°)}. If {z*} is the sequence generated by Algorithm
2 with nitial point x°, then at least one of the following must occur:

(i) The iterates terminate finitely at a first-order stationary point for the problem P.
(i) The sequence of values {f(z*)} decrease to —oo.
(iii) The sequence {“dk“} diverges to +oo.

i) For every subsequence K C {1,2,...} for which the search directions d*}x remain

bounded, one has
lim[1(F(a*) + F'(a")d®) = h(F(3*))] = 0.

Moreover, every cluster point of the subsequence {z*}x is a first-order stationary point

for P.
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An immediate consequence of the above result is that if the set C' = argminh is non—
empty and A < +o0, then

11]?1[h(F(m’“) + F'(z*)d*) — h(F(z*))] =0

and every cluster point of the sequence {z*} is a first-order stationary point for . We now
show that if C' is a set of weak sharp minima for h and there is a cluster point of the sequence
{z*} that is a regular point of the inclusion (5), then the entire sequence must converge to
this cluster point at a quadratic rate.

Theorem 5.2 Let f := ho F be as in P with h finite-valued and F' locally Lipschitz
continuous. Suppose that {z*} is a sequence generated by Algorithm 2 and that T is a cluster
point of this sequence. If T is a regular point of the inclusion (5) where C is a set of weak
sharp minima for h, then % — % and f(z*) — h,.. at a quadratic rate.

Proof Since the regularity hypothesis at Z implies that F'(Z) € C, the result will follow
immediately from Theorem 4.2 if it can be shown that there is a neighborhood, NV of Z such
that

h(F(z +d)) — h(F(2)) < c[h(F(z) + F'(z)d) — h(F(x))], (33)

for all z € N and d € IR" satisfying ||d|| < ndist(0 | Da(z)). Indeed, if (33) holds, then
Algorithms 1 and 2 generate identical iterates sufliciently close to Z. Hence, by Theorem 4.2,
these iterates remain close to Z and converge to a solution of P. Since Z is a cluster point
of this sequence, the entire sequence must converge to Z with z* — 7 and f(z*) — A
quadratically.

Suppose to the contrary that (33) does not hold near . Then there is a sequence {Z*}
converging to Z such that

c[h(F(z%) + F'(Z%)d*) — h(F(z%))] < h(F(z* + d%)) — h(F(z")) (34)

at each Z* for some d* € IR" satisfying
||| < ndist(0] Da(a")) . (35)

In particular, we obtain from (14) that
|2 0. (36)

Let N; be a compact neighborhood of Z containing the set  + 2A 1B and let K and M be
Lipschitz constants for k on F'(N;) and F” on N, respectively. Let A > 6 > 0 be chosen so
that the conclusions of Proposition 3.3 hold for this choice of §. We suppose with no loss of
generality that {#¥} C Z + 6 B. Then for all k£ we have from [29, 3.2.12] that

WEF@EF +d%) = by = [W(F(E* + %) = BF(E) + F'(3*)d°)|
< K|P@*+d") - F@E) - /(@)
KM .2
< = [
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Therefore, by (34)

e = HF(E*)] = c[h(F(z%) + F'(3%)d") — h(F(z"))]
W(F(z* +d*)) = h(F(3*))

<
< hin — W(F(ZF)) +

1l

KM
=l
Consequently,
0 < (1= )l — h(F(E)] + 52 |2
< (c— 1)adist<F(§",’°) } C’) KMJ‘CZI”“ (from (8))
< (e—Da(fn) ™t ||dF| + £ |2, (from (14) and (35)).

After dividing this expression through by ”J’““ and using (36) while taking the limit in &k, we
obtain the contradiction

0< (c—Da(Bn)™

A Appendix

We now establish Lemma, 4.1. Our proof is based on [16, Lemma 3.7].
Lemma 4.1 Suppose {zF} C R", z¥ — z* and

I
lim su
bono? |2 — 21 ||k — k- 11[2 -

Then, z* — z* quadratically, that is

I]mk+1 gt

< M.

lim su
P ||k — z*|)?

Proof Let 0 < p < 1/2. Then there is some N depending on u such that

e R e Y e
forall £k > N. Now
[|$k+1 _ xk+z’+1” < l.$k+1 _ xk+2ll + . ”xmz _ xk-l—i—i—l”
< (1+ b ) 2Rt = :ck+2“
S |
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In the limit as 7 — oo we have

“xkﬂ . xk+2”
<

llxk+1 — | < . (37)
Similarly,
Hx’” — gk > lek _ xk+1] _ ”mkﬂ _ xk-{—?“ - l]xlﬁ—z‘—l gk
> (1= (= p)/(1 =) |o* - 2",
which in the limit as ¢ — oo gives
llmk o 1 - 2# ” kaH ‘ (38)
Therefore, it follows from (37) and (38) that for all £ > N,
I]xk-H . 1—p ka—l—l _ xk+2“
lz# — | T (1 =2w)? ||zk - gk’
L—p
(1 —2p)?
as required. -
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