
Mathematical P*ogramming 14 (1978) 41-72.
North-Holland Publishing Company

LARGE-SCALE LINEARLY CONSTRAINED OPTIMIZATION*

B.A. M U R T A G H

University of New South Wales, Sydney, Australia

M.A. S A U N D E R S

DSIR, Wellington, New Zealand
Stanford University, Stanford, CA, U.S.A.

Received 27 September 1976
Revised manuscript received l I July 1977

An algorithm for solving large-scale nonlinear' programs with linear constraints is presented.
The method combines efficient sparse-matrix techniques as in the revised simplex method
with stable quasi-Newton methods for handling the nonlinearities. A general-purpose produc-
tion code (MINOS) is described, along with computational experience on a wide variety of
problems.

Key words: Large-scale Systems, Linear Constraints, Linear Programming, Nonlinear
Programming, Optimization, Quasi-Newton Method, Reduced-gradient Method, Simplex
Method, Sparse Matrix, Variable-metric Method.

1. Introduction

This paper descr ibes our efforts to develop a non l inea r p rog ramming a lgor i thm

for p rob lems charac te r ized by a large sparse set of l inear cons t ra in t s and a

signif icant degree of non l inea r i ty in the ob jec t ive func t ion . It has been our

expe r i ence that m a n y l inear p rog ramming prob lems are inord ina te ly large

because they are a t t empt ing to approx imate , by piecewise l inear iza t ion, what is

essent ia l ly a non l inea r problem. It also appears that m a n y real-life p rob lems are

such that only a small pe rcen tage of the var iables are invo lved non l inea r ly in the

ob jec t ive func t ion . Thus we are led to

fo l lowing s tandard form:

min imize F(x) = f (x y) + e V x,

sub jec t to A x = b,

l < _ x < _ u

cons ider p rob lems which have the

(1)

(2)

(3)

where A is m x n, m - n. We par t i t ion x into a l inear por t ion x L and a non l inea r

* This research was supported by the U.S. Office of Naval Research (Contract N00014-75-C-0267),
the National Science Foundation (Grants MCS71-03341 A04, DCR75-04544), the U.S. Energy
Research and Development Administration (Contract E(04-3)-326 PA #18), the Victoria University
of Wellington, New Zealand, and the Department of Scientific and Industrial Research Wellington,
New Zealand.

42 B.A. Murtagh, M.A. Saunders[Linearly constrained optim&ation

portion XN:

[x j X = -
x L •

The components of x N will normally be called the nonlinear variables. Note that

A and c operate on all variables x. In some cases the part of cTx involving x N

may be incorporated into f(xN); in other cases c may be zero. We assume that

the function f (x N) is continuously differentiable in the feasible region, with
gradient

V f (x N) = g(xN),

and we assume that both f and g can be computed at any feasible point x N.

The research work reported here was stimulated by some of the deficiencies in
the algorithms of Murtagh and Sargent [44, 50] and Goldfarb [30], especially

when applied to large-scale systems. The resulting algorithm is related to the

reduced-gradient method of Wolfe [56] and the variable-reduction method of

McCormick [41, 42]. It also draws much from the unconstrained and linearly-
constrained optimization methods of Gill and Murray [21, 22, 25].

In essence the algorithm is an extension of the revised simplex method
(Dantzig [12]). To use some of the associated terminology, it might be described

as an extension which permits more than m variables to be basic. Because of the

close ties with linear programming (LP) we have been able to incorporate into
our implementat ion many of the recent advances in LP technology. The result is

a computer program which has many of the capabilities of an efficient LP code

and is also able tO deal with nonlinear terms with the power of a quasi-Newt0n
procedure.

I. 1. Notation

Partitioning x and F(x) into linear and nonlinear terms is of considerable

practical importance; for descriptive purposes, however , it is convenient to
denote F(x) and VF(x) simply by f(x) and g(x).

With a few conventional exceptions, we use upper-case letters for matrices,
lower-case for vectors and Greek lower-case for scalars. The quantity E > 0
represents the precision of floating-point arithmetic.

2. Basis of the method

2.1. Basic solutions; justification for standard form

Before proceeding to the nonlinear problem, we need to introduce some linear
programming background. In particular, equations (1)-(3) with f (x N) = 0 are the
standard form for stating linear programs and for solving them in practical

B.A. Murtagh, M.A. Saunders/ Linearly constrained optimization 43

implementat ions of the simplex method. A basic solution is character ized by

having at most m "bas ic" variables lying between their bounds while the

remaining n - m "nonbas ic" variables are equal to one b o u n d or other. An

associated square basis matrix B is drawn from the columns of the constraint
matrix A, and as the simplex method proceeds the columns of B are replaced
one at a time.

Note that it is assumed in the standard form that A and x contain a full
identity matrix and a full set of slack variables, respectively. (General equality

and inequality constraints are accommoda ted by placing suitable upper and

lower bounds on the slacks.) There are many practical reasons for retaining the
standard form here. Full justification would require much implementat ion

background, but very briefly, a sparse triangular factorization of B can be

maintained more easily if columns (but not rows) of B are altered. Further,
although the total number of variables is apparent ly greater, it is very easy to

take advantage of the unit vectors associated with slacks, whenever B is
re-factorized.

2.2. Superbasic variables

One virtue of the concept of basic solutions is the emphasis thereby given to

the upper and lower bounds, I -< x -< u. It is misleading to regard these as "sparse

constraints"; more importantly, they serve directly to eliminate a large percen-
tage of the variables. The simplex method is therefore free to focus its attention

on t ransforming (factorizing) just B, rather than the whole of A. (When B is
large and sparse, this is problem enough.)

With nonlinear problems we cannot expect an optimal point to be a basic
solution. However , if the number of nonlinear variables is small, it seems

reasonable to suppose that an optimal solution will be "near ly" basic. Thus, as a
simple generalization we introduce the notion of superbasic variables and
partition the set of general constraints (2) as follows:

n x =

m s n - m - s

B S N

basics super- nonbasics
basics

EIBI
XS

XN

= b. (4)

The matrix B is square and nonsingular as in the simplex method, S is rn x s
with 0 - < s - < n - m , and N is the remaining columns of A. The associated
variables xB, Xs, xN are called the basics, superbasics and nonbasics respec-
tively. Both basics and superbasics are free to vary between their bounds. The

44 B.A. Murtagh, M.A. Saunders[Linearly constrained optimization

name is chosen to highlight the superbasics ' role as "driving force" ; they may be
moved in any direction at all (preferably one that improves the object ive value),

and the basics are then obliged to change in a definite way to maintain feasibility
with respect to the constraints A x = b.

Our expectat ion that solutions will often be "near ly" basic is confirmed by the
following theorem:

Theorem 1. Suppose a nonlinear program has t variables occurring nonlinearly

(in either the objective or the constraints). An optimal solution exists in which the

number of superbasic variables s satisfies s <- t.

Proof (due to A. Jain). Let the nonlinear variables be fixed at their optimal
values. The remaining problem is a linear program for which a basic solution

exists (s = 0). The result follows trivially if the nonlinear variables are now

regarded as superbasic in the original problem. (At first sight s = t, but if any of
the nonlinear variables are actually on a bound we can label them nonbasic, and
then s < t.)

2.3. Derivation of method

We will assume that f (x) can be expanded in a Taylor ' s series with remainder
of second order:

f (x + Ax) = f (x) + g(x)TAx + ½AxTG(x + TAx)Ax (5)

where 0 --< 7 --< 1, and G(x + yAx) is the Hessian matrix of second partial deriva-

tives evaluated at some point be tween x and x + Ax. Note that G is a constant
matrix if f (x) is a quadratic function.

Let us partition Ax and g(x) corresponding to the partitioning of A.
If f (x) were truly quadratic, we could obtain a constrained stationary point at

x + Ax by requiring two propert ies of the step Ax:

Property 1.

N- F A xB]

0 0 I = 0, (6)

i.e., the step remains on the surface given by the intersection of the active

constraints.

Property 2.

~s + G | a x s | : S T
gN LAxN J N T A '

(7)

B.A. Murtagh, M.A. Saunders/ Linearly constrained optimization 45

i.e., the gradient at x + a x (given by the left hand-side of (7)) is orthogonal to the

surface of active constraints and is therefore expressible as a linear combinat ion

of the active constraint normals.

For a more general function f(x) , the step a x may not lead directly to a

stat ionary point, but we shall use Propert ies 1 and 2 to determine a feasible
descent direction.

From (6) we have:

ZlXN = 0, (8)
and

Axe = - WAxs , (9)
where

W = B - i s . (10)

Thus,

Equation (7) simplifies when multiplied by the matrix

- W T I . (11)
0 0

First it provides an expression for est imates of the Lagrange multipliers for the
general constraints:

B T # = g B + [I 0 O G AXs. (12)

Note that when]lZlXsH = 0 (which will mean x is stationary) we have

B T # = gB (13)

in which case # is analogous to the pricing vector ~r in the revised simplex

method. (From now on we shall denote the solution of (13) by 7r.) Next we have
f rom (7) that

l = g N - N r # + [0 0 I IG Axs (14)

and again when I[axsll = 0 this equation reduces to

,~ = gN - NT~ " (15)

wh ich is analogous to the vector of reduced costs in linear programming.
The third result f rom equation (7), following pre-multiplication by the matrix

46 B.A. Murtagh, M.A. Saunders/ Linearly constrained optimization

(l 1), is an expression for the appropriate step:

[- W r I 0]G Axs = - h

where

(16)

2.4. Summary

Recently, Gill and Murray [25] have considered a class of algorithms in which

the search direction along the surface of active constraints is characterized as

being in the range of a matrix Z which is orthogonal to the matrix of constraint
normals. Thus, if J,x = / ; is the current set of n - s active constraints, Z is an

n x s matrix such that

A Z = O. (1 9)

This characterizat ion may be used to describe several published algorithms,
which are discussed and compared in [25] as well as in the review papers by

Fletcher [17] and Sargent [49].

In the notation of [25], the main steps to be per formed at each iteration are as
follows. (They generate a feasible descent direction p.)

(A) Compute the reduced gradient gA = ZTg-
(B) Form some approximat ion to the reduced Hessian, viz.

GA -- Z T G Z .

(C) Obtain an approximate solution to the system of equations

Z T G Z p A = - - z T g (20)

by solving the sys tem

GApA = -- gA.

(D) Compute the search direction p = ZpA.

h = [- - ~V T I 0]g = gs - WTg~ = gs - s T " J T . (17)

The form of equation (16) suggests that

[- W r I 0]G (18)

can be regarded as a '°reduced" Hessian and h = [--WT I 0]g a reduced

gradient, with (16) giving a Newton step in the independent variables AXs. Note

that Ilhll = 0 becomes a necessary condition for a stationary point on the current
set of active constraints, which, if the reduced Hessian is nonsingular, implies

that Ilax~ll = o.

B.A. Murtagh, M.A. Saunders/ Linearly constrained optimization 47

(E) Perform a iinesearch to find an approximation to a*, where

f (x + ,~*p) = min f (x + ap).
o~

{x +ap feasible}

Apart from having full column rank, eq. (19) is (algebraically) the only
constraint on Z and thus Z may take several forms. The particular Z cor-
responding to our own procedure is of the form

,m
Z : = | I | } s (21)

L 0] } n - m - s .

This is a convenient representat ion which we will refer to for exposition
purposes in later sections, but we emphasize that computationally we work only
with S and a triangular (LU) factorization of B. The matrix Z itself is never
computed.

For many good reasons Gill and Murray [25] advocate a Z whose columns are
orthonormal (ZTZ = I). The principal advantage is that transformation by such a
Z does not introduce unnecessary ill-conditioning into the reduced problem (see
steps A through D above, in particular equation (20)). The approach has been
implemented in programs described by Gill, Murray and Picken (e.g. [27]), in
which Z is stored explicitly as a dense matrix. Extension to large sparse linear
constraints would be possible via an LDV factorization (see Gill, Murray and
Saunders [29]) of the matrix [B S]:

[B S] = [L O]DV

where L is triangular, D is diagonal and DJ/2V is orthonormal, with L and V

being stored in product form. However if S has more than 1 or 2 columns, this
factorization will always be substantially more dense than an LU factorization
of B. Thus on the grounds of efficiency we proceed with the Z in (21). At the

same time we are conscious (from the unwelcome appearance of B -1) that B
must be kept as well-conditioned as possible.

3. Implementation

The basic ideas were presented in the previous section; their actual im-
plementation in a computer code requires considerably more effort. The code
itself is a Fortran program called MINOS which is designed to be almost
machine-independent and to operate primarily within main memory. The central
part of MINOS is an efficient implementation of the revised simplex method
which incorporates several recent advances in linear programming technology.
These include:

48 B.A. Murtagh, M.A. Saunders/ Linearly constrained optimization

(1) Fast input of the constraint data in standard MPS format ~ u s i n g hash

tables (in particular, the method of Brent [6]) for storing row-names and distinct
matrix coefficients.

(2) Compac t in-core storage of the constraint matrix A using an elementary
version of Kalan 's super-sparseness techniques [36]. 2

(3) Upper and lower bounds on all variables.
(4) A version of Hel lerman and Rarick 's "bump and spike" algorithm p4 [33]

for determining a sparse L U factorization of the basis matrix B. 3

(5) Imbedding of non-spike columns of L within A.
(6) Stable updating of the LU factors of B by the method of Bartels and

Golub [2, 3] as implemented by Saunders [52].

(7) An improved " C H U Z R " procedure for phase 1 of the simplex method, as
implemented by J.A. Tomlin, following ideas due to Rarick [48] and Conn [10].

For optimization of the reduced function we have implemented a quasi-

Newton procedure using the factorization GA = RTR (R upper triangular) to

approximate ZTGZ. This parallels the methods described by Gill and Murray

[21, 22], Gill, Murray and Pitfield [28] which are based on the Cholesky fac-
torization GA = L D L T (L lower tr iangular,D diagonal). Stable numerical methods

based on orthogonal t ransformat ions are used for modifying R during uncon-

strained steps and for certain other modifications to R whenever the basis

matrices B and S change. (Operations on R rather than L and D are somewhat

easier to implement and involve little loss of efficiency in this context.)
Another module which is fundamental to the success of the present algorithm

is an efficient and reliable linesearch. The particular routine used is a Fortran
translation of Gill and Murray ' s Algol 60 procedure delinsearch, 4 which uses

successive cubic interpolation with safeguards as described in [24]. This routine

evaluates the object ive function and its gradient s imultaneously when required.

We have left just cme parameter available to the user to change at his/her
discretion, namely, eta (0 .0< eta < 1.0) which controls the accuracy of the

search. This flexibility has proved to be very sat isfactory in practice.

3.1. Summary of procedure

An outline of the optimization algorithm is given in this section; some of the
finer points of implementat ion are discussed in later sections.

1 This is the CONVERT data format described in user's manuals for the IBM systems MPS/360,
MPSX and MPSX/370.

2 This has been dispensed with in later versions of MINOS, since in a pure Fortran code it results
in only moderate storage savings and considerable loss in execution speed.

3 The block-triangular structure of B is currently being found using subroutines MC 13 and MC21
from the Harwell Subroutine Library (Duff [14], Duff and Reid [151). Hellerman and Rarick's p3 [32]
is then applied to each block.

4 More recently implemented as Fortran subroutines LNSRCH and NEWPTC by Gill et al. [59].

B.A. Murtagh, M.A. Saunders / Linearly constrained optimization 49

A s s u m e we have the fol lowing:

(a) A feasible vec to r x sat isfying [B S N]x = b, l <- x <- u .

(b) The co r re spond ing func t ion value f (x) and gradient vec tor g (x) =
[gB gs gN] T.

(c) The number of superbas ic variables, s (0----- s -< n - m).

(d) A fac tor iza t ion, L U , of the m x m basis matrix B.

(e) A fac tor iza t ion , RTR, of a quas i -Newton approx imat ion to the s × s matrix

ZTGZ. (Note that G, Z and ZTGZ are never actual ly computed .)

(f) A vec to r rr sat isfying BT~ - = gB.

(g) The reduced-grad ien t vec to r h = gs - S T~r.

(h) Small posi t ive c o n v e r g e n c e to lerances T O L R G and T O L D J .

Step 1. (Test for conve rgence in the cur ren t subspace) . I f]]h]] > T O L R G go to

step 3.

Step 2. (" P R I C E " , i.e., es t imate Lagrange multipliers, add one superbasic) .
(a) Calcula te I = gu - NTTr.

(b) Select A q l < - T O L D J (Aq2> + T O L D J) , the largest e lements of I cor-

r esponding to variables at their lower. (upper) bound. If none, S T O P ; the

K u h n - T u c k e r neces sa ry condi t ions for an opt imal solution are satisfied.

(c) Otherwise~

(i) Choose q = ql or q = q2 co r re spond ing to IAq] = max(lAql [, Ixq21),
(ii) add a o as a new co lumn of S;

(iii) add Aq as a new e lement of h ;

(iv) add a suitable new co lumn to R.

(d) Increase s by 1.

(Note: M I N O S also has a M U L T I P L E P R I C E opt ion which allows more than

one nonbas ic variable to b e c o m e superbasic .)

Step 3. (Compute direct ion of search, p = Zps).

(a) Solve RTRps = - h .

(b) Solve LUpB = - S p s .

(c) Set p = s •

Step 4. (Ratio test, " C H U Z R ") .

(a) Find am,x-> 0, the greates t value of a for which x + ~p is feasible.

(b) If C~max = 0 go to step 7.

Step 5. (Linesearch) .

(a) Find a, an approx imat ion to c~*, where

f (x + ~*p)= min f (x + Op).
0<0--<C~ma x

(b) Change x to x + ap and set f and g to their values at the new x.
Step 6. (Compute reduced gradient, /~ = ZTg).
(a) Solve UTL'rrr = gB.

50 B.A. Murtagh, M.A. Saunders/ Linearly constrained optimization

(b) Compute the new reduced gradient , /~ = gs - ST~r.

(c) Modify R to reflect some variable-metric recursion on RTR, using a, ps

and the change in reduced g r a d i e n t , / ~ - h .

(d) Set h =/~.

(e) If a < Otma x go to step I. No new constraint was encountered so we remain
in the current subspace.

Step 7. (Change basis if necessary; delete one superbasic). Here o~ = Ogrnax and

for some p (0 < p --< m + s) a variable corresponding to the p-th column of [B S]
has reached one of its bounds.

(a) If a basic variable hit its bound (0 < p -< m),

(i) interchange the p-th and q-th columns of

respectively, where q is chosen to keep B nonsingular (this requires a vector
~-p which satisfies urLr~rp = ep);

(ii) modify L, U, R and ~ to reflect this change in B;
(iii) compute the new reduced gradient h = gs - sTy ' ;

(iv) go to (c).

(b) Otherwise, a superbasic variable hit its bound (m < p - < m + s). Define
q = p - m .

(c) Make the q-th variable in S nonbasic at the appropriate bound, thus:
(i) delete the q-th columns of

(ii) restore R to triangular form.

(d) Decrease s by 1 and go to step 1.

3.2. Work per iteration

The work involved in one pass through the above procedure is roughly equivalent

to
(a) one iteration of the revised simplex method on a linear program of

dimensions m × n, plus
(b) one iteration of a quas i -Newton algorithm on an unconstrained optimiza-

tion problem of dimension s.

Note that the P R I C E operation (step 2) is per formed only when I[hll is
sufficiently small, which means an average of about once every 5 iterations. This
is a typical f requency in commercial LP systems using multiple pricing. The
extra work involved in the quasi -Newton steps is somewhat offset by the fact
that a basis change (step 7(a)) occurs only occasionally, so the growth of
nonzeros in the LU factors of B is minimal. Thus if s is of reasonable size and if

B.A. Murtagh, M.A. Saunders[Linearly constrained optimization 51

f (x) and g(x) are inexpensive to compute , iterations on a large problem will

proceed at about the same time per iteration as if the problem were entirely

linear. (The total number of iterations required is, of course, undetermined.)

3.3. Updating the matrix factorizations

As in the simplex method, a stable factorization of the basis matrix B is
important for solving equations of the form By = b or BTz = c. Here we use an

implementat ion of the method of Bartels and Golub [2,3] for updating the
factorizat ion B = LU. Details are given in Saunders [52]. We normally re-

factorize B every 50 iterations regardless of the number of modifications tha t

have been made to L and U.

The remainder of this section is devoted to the methods used for modifying R
in the approximat ion RTR ~- ZTGZ whenever x and/or Z change. The nota t ion/~

will be used to represent R after any particular modification. To ensure stability,

all modifications to R have been implemented using e lementary orthogonal

matrices Qj.k (plane rotations) whose non-trivial e lements are at the intersection
of the j-th and k-th rows and columns, and are of the form

[c _ s] , where c2+ S 2 = 1.

3.3.I. Quasi -Newton updates

Any of the usual updating formulas (e.g., Davidon [13], Fletcher and Powell

[18], Broyden [7]) can be used to account for a nonzero change in the superbasic
variables (step 6). The two we have exper imented with are:

The Complementary D F P formula

C O M D F P _l~Tl~ RTR 1 T 1 T
- - y y + h ~ s h h • • ~_ + otyTps

The Rank-one Formula

R A N K I : /~T/~ = RTR + 1 aw Yps wwT'

where y = / ~ - h, the change in reduced gradient, and w = y + ah.

The C O M D F P formula can be used on both constrained and unconstrained

steps (a = amax and a < a resp.) An al'ternative is to use RANK1 on con-
strained steps as long as it results in a positive definite recursion, otherwise
COMDFP. Systematic testing may perhaps revea l a slight advantage for one
strategy over another, but in the interest of simplicity we now use C O M D F P in
either case.

If a = a m a x and area× is very small it is possible that the computed value of y
will be meaningless. Following the suggestion of M.J.D. Powell (private corn-

B.A. Murtagh, M.A. Saunders/ Linearly constrained optimization 52

munication) we allow for this by monitoring the change in directional derivative
and modifying R only if

hTps > 0.9h Tps.

The same test is used even if a < amax. Since hVps < 0 , this means that R is
modified if

gT
- - P s r / - = ~ < 0.9,
In Psi

which will normally be true if a value eta <0 .9 is given to the parameter of

procedure delinsearch, which uses 171 -< eta as one criterion for a successful
search. (Note that gyp = gTZp s = hVps.) The test also ensures that the COMDFP
update will preserve positive definiteness.

Both COMDFP and RANK1 are implemented by means of the following

routines:

R1ADD: I]~TII~ = R T R + VI3 T,

R 1 S U B : ~ T / ~ = R T R _ v v T .

These use forward and backward sweeps of plane rotations respectively, as
described in Saunders [51, Ch. 7], Gill, Golub, Murray and Saunders [20].

3.3.2. Bas i s change (step (7(a))
Suppose that the p-th basic variable is interchanged with the qth superbasic

variable. Once R has been updated to account for the move which is causing the
basis change (step 6), a further "stat ic" update is required to allow for a
corresponding change in the definition of Z. The relationship between the new
null-space matrix and the old is given by

= Z(I + eqV T) (22)

where eq is the q-th unit vector and v is defined by the equations

BT~'gp = ep,

y = sT~'I'p,

yq = yTeq,

1
v = - - - (y + eq).

Yq

Derivation of this result is rather lengthy but the quantities involved are easily
computed and they serve several purposes:

(1) The j-th element of y, viz.

Yi = yTej = ~ S e i = eTpB-I(Sej)

is the pivot element that would arise if the j-th column of S were selected for the
basis change. Hence y can be used as a guide for determining q. Broadly

B.A. Murtagh, M.A. Saunders/ Linearly constrained optimization 53

speaking, the condition of B will be preserved as well as possible if yq is the

largest available pivot element (assuming the columns of S have similar norm).
In practice it is reasonable to relax this condition slightly in favor of choosing a
superbasic variable that is away from its bounds. Thus, with j ranging over the
superbasic set, we define q by the following:

Ymax = max lYJ[,

d i = min{lxi - l i] ,]x i - ufl} (for each j),

dq = max{ 4 []yj]--- 0.1ymax}.

This rule is numerically more reliable than that suggested by Abadie [1], which in
the above notation is equivalent to maximizing [ys]di.

(2) ~ can be used to update the vector rr that is computed in step 6(a). (after
the last move but before the current basis change). Thus

g- = ~r + (/Tq/yq)~'p

where /;q is the appropriate element of the reduced gradient/7 in step 6(b). This
is the updating formula suggested by Tomlin [54] for use within the simplex
method. Nonlinearity is irrelevant here since the basis change is simply a
redefinition of Z.

(3) 7rp can also be used to update the LU factors of B (Tomlin [54]).
Conversely, the updated LU factors of B can provide ~'p more cheaply than
solving BTcgp ---- ep (Goldfarb [31]).

The modification to R corresponding to eq. (22) is accomplished as follows:

R1PROD: /~T/~ = (I + v e T) R T R (1 + eqvT).

If rq is the q-th column of R, this expression may be written

/~T/~ = (RT+ v r T) (R + rqvW).

A partial backward sweep of plane rotations Oq,i (J = q - 1 1) reduces rq to a
multiple of eq, filling in the q-th row of R. A multiple of v is added to this row,
and then a partial forward sweep of rotations Qj,q (j = 1 q - 1) restores R to
triangular form. (We could use other methods designed for a general modifying
matrix I + w v T, but the method described takes full advantage of the special case
w = eq. It also allows some rotations in the backward sweep to be skipped if the
corresponding elements of rq are zero.)

3.3.3. R e m o v a l o f o n e s u p e r b a s i c v a r i a b l e (s t ep (7c))
Removal of the q-th superbasic variable implies deletion of the corresponding

column of R. The resulting upper-Hessenberg matrix is restored to triangular
f o r m / ~ by a partial forward sweep of plane rotations Qjd+l. (J = q s - l):

DELCOL: Qs 1,s' '" Qq, q+l | q - t h column = .
Ldeleted

54 B.A. Murtagh, M.A. Saunders[Linearly constrained optimization

3.3.4. Addition of one superbasic variable (step 2(c))
When a vector aq is added to S the new null-space matrix is

r-B-lao]
; ~ = [Z z] , w h e r e z = L ;s J.

Following Gill and Murray ([25], pp. 76-77) we approximate the vector Gz by
finite differences, thus:

v - g (x + 6 z) - g (x) = G z ÷ o(llzll2),
6

where 6 is a small step in the direction z, for example, 6 = ex/2/l[z[I. The following

procedure can then be used to generate a new column for R:

Solve RTr= ZTv,
ADDCOL: Compute o- = zTv --Ilrl[2, o = Io-I 1/2,

Take / ~ = [R r l .
P

(Note that z v is best computed as the last element of zTv rather than from z
and v directly.)

Comparison of

and

R T [R r [RTR ZTv]
LvYz zTv J

Z T FZTGZ ZTGz]

shows that if RTR provides a good approximation to ZTGZ then eXt~ has some
chance of being a useful approximation to ZTGZ. The main work involved here
is in computing B-laq, the gradient vector g(x + 6z), and the reduction ZTv. This
work is essentially wasted if the expression for ~r is not positive, which may

happen for many reasons, e.g., if z~TGZ is not positive definite at the current
point, if R is a poor approximation, or if R is very ill-conditioned. In such cases
we set r = 0 and take p to be either (zTv) 1]2 o r L0 , thus:

/ ~ = [R 0p]. (23)

One advantage, at least, is that the subsequent search direction will move the
new superbasic variable Xq away from its bound, so there is no danger of cyc l ing
o n Xq.

With many problems the condition ~ -< 0 occurs only occasionally or not at all.
Computing r and p as shown then leads to significantly fewer iterations than if
(23) were used all the time. On the other hand, cr > 0 is not a sufficient condition

B.A. Murtagh, M.A. Saunders[Linearly constrained optimization 55

for success. In particular if the current point is near a singularity in g(x) the

difference approximat ion to Gz is unlikely to be good. (An example is when f (x)

has terms of the form xi logxj and the constraints include bounds such as
xj -> 10 10.) In such cases, r and p prove to be consistently very large, resulting in

an R which is much more ill-conditioned than R. Subsequent iterations make
little progress until the associated quasi -Newton updates restore the condition of

/~. In contrast, use of (23) with p = 1.0 gives rapid progress.

Let dm,× and drain be the largest and smallest diagonals of R. As a heuristic
means of detecting the above situation we monitor Hvl[and resort to (23)

whenever]lvl[is significantly larger than dmax or smaller than drain. (As a side
benefit, the expense of computing ZXv and r is then avoided.) A final similar test
is made on p.

In contrast to all previous discussion, the A D D C O L procedure just described

embodies a discernible level of ad hoc strategy. H o w e v e r our experience with it
has been good in general, and the combined use of R1PROD, D E L C O L and

A D D C O L certainly retains more information than resetting /~ = I at every
change to the se t of active constraints.

3.4. Convergence tests

Another area in which strategy plays an important practical role is in deciding

when to stop optimizing in the current subspace and consider moving away f rom

one of the active constraints. Here we must enlarge on the use of T O L R G in
Section 3.1; recall that in step 1 of the algorithm, T O L R G was tested to

determine if it was time to est imate Lagrange multipliers (reduced costs, A) and
add one more superbasic variable.

Suppose that after a particular iteration we have

AXs = the change in the superbasic variables,

Af = the change in f,

~r = the new pricing vector,

h = ZTg, the new reduced gradient,

Ex, e¢, T O L R G , Eg = positive scalars,

e = machine precision,

and let Ti be a set of tests (with values true or false) defined as follows:

TI:][AXsl[~ (~ + 6~/2)(1 + I]xsl[),

T2: [Af] ~ (~t ÷ ~)(1 + Ill),

T3: [[hll--< T O L R G ,

B.A. Murtagh, M.A. Saunders/ Lineariy constrained optimization 56

In place of the simple test

i f T3 then compute A,

the following combined test is used:

if (T~ and T2 and T3) o r T4 then compute A.

The general form of this test follows that used in the algorithm lcmna of Gill,

Murray and Picken [27], in which the scalars identified here by Ex, Ei, T O L R G
and E~ are fixed at certain " loose" values initially and are then reset to "t ight"

values once it appears that the optimal set of active constraints has been

identified. Use of ex and E I, in this way is justified in the sense that it seems
reasonable to remain on the present set of active constraints as long as

significant progress is being made. Use of E~ in T4 allows for the possibility that
the last step, though significant, may have moved x very close to an opt imum in

the current subspace (e.g., the quasi -Newton procedure should achieve this
regularly if f (x) is quadratic).

In adopting the above strategy we have found it beneficial to vary T O L R G

dynamically. In the current version of MINOS this is done as follows. Suppose

that the "bes t " Lagrange multiplier at some stage is Aq = gq-~-Taq. If the

corresponding variable xq becomes superbasic, the reduced gradient for the
expanded subspace will be

Now recall f rom eq. (14) that unless h is reasonably small, even one further

iteration could change ~- and hence Aq significantly. Therefore as a safeguard
(which is admittedly heuristic) we accept)t o and move into the new subspace

only if Ilh[l~-< 0 91Aql, which implies

IIhll <- 0 911 il

We then reset T O L R G for the new subspace to be

T O L R G = n llt;ll
where r/g E (0, 1) is a parameter which is available to the user to set at his own
will (and peril!). A typical value is ~Tg = 0.2 and its function is analogous to that
of the parameter eta in procedure delinsearch. For example a small value of ~/g
allows the user to insist on an accurate optimization within each subspace.

4. Use of first and second derivatives

In the discussion so far, and in the existing implementat ion, we have assumed
that both f (x) and its gradient g(x) are available via a user-writ ten subroutine.
We do not store the matrix Z explicitly and we make no use of the Hessian

B.A. Murtagh, M.A. Saunders/ Linearly constrained optimization 57

matrix G(x) . (Instead we maintain a quasi-Newton approximation to the reduced

Hessian, ZT GZ.)

Some discussion of potential alternatives is in order. The principal factor here

is the expense of transforming even one vector by Z or Z T. In fact, if the
constraint matrix A has many rows, most of the work per iteration lies in
computing p = Zps and h = ZTg. (These calculations are analogous to the
FTRAN and BTRAN operations in linear programming.)

(1) When g is not available it would often be practical to form an approxima-
tion ~ using finite differences along the coordinate directions, e.g.,

~j = f (x + Bei) - f (x) .~ gJ.

(The number of ~s's to be computed this way is equal to the number of nonlinear
variables.) Just one transformation with Z T is then required, viz. h--~ ZTff. For
greater accuracy, central differences may be used, at the cost of extra function

calculations.
(2) An alternative that is normally viable would be to difference f (x) along the

directions zj:

f~s : f (x + 8z i) - f (x) ~. z T g : hi
6

where zi = Zei, j = 1 s. Unfortunately this approach is not practical for large
problems, since storage limitations prevent saving all s vectors zi, and the work
involved rules out recomputing them when required.

(3) If g(x) and perhaps G(x) are available, the system of equations

ZTGZps = - - Z T g (24)

could sometimes be treated by a modified Newton method (Gill and Murray [23],
Gill, Murray and Picken [27]). This involves either computing Z T G Z directly:

Z T G Z = [zTGzi]

or differencing g(x) thus:

g(x + ~zi) - g(x) ~_ Vei,
v i = (~

Z T G Z ~ I (Z T V + VTZ).

However the need for the vectors z i again presents severe difficulties for large
problems.

(4) If G is large and sparse, eq. (24) could sometimes be solved iteratively by
the method of conjugate gradients (e.g., see Gill and Murray ([25], p. 133)).
Storage is minimal since the method avoids forming the matrix Z v G Z or any
approximation to it. However if Z has s columns the method would typically
require O(s) products of the form ZT(G(Zv)) .

58 B.A. Murtagh, M.A. Saunders/ Linearly constrained optimization

(5) A final (more promising) alternative is to abandon eq. (24) and to generate
a search direction by a nonlinear conjugate-gradient type method such as that of

Fletcher and Reeves [19] (e.g., see Gill and Murray ([25], p. 134)). This takes the
form

(a) / ; = - - z T ~

(b) if restart then ps = - h

else Os = - h + tips

(c) p = Z~s

where ps, ps are the previous and current search directions for the superbasics.
Several methods have been suggested for determining the scalar/3, e.g.,

Fletcher and Reeves [19]: /3 = 1[/~[12/Hhl[2;
Polak and Ribiere [46]: /3 =/~T(/~_ h)/[[hll2;

Perry [45]: /3 = /;T(/;_ h - a p S) / p T (h - h).

In MINOS, one of these methods is used if, at a particular iteration, the number

of superbasics s is larger than the dimension specified for the matrix R. A restart

occurs whenever the set of active constraints changes; also every s + 1 iterations
in the (rare) event that more than s consecutive steps are unconstrained. More

refined restart procedures (e.g., Powell [47]) will require future investigation. In

the present environment the above formulas for /3 have all per formed rather

similarly (though seldomly as well as quasi-Newton). An example is given in
Subsection 5.2.4.

To summarize: the reduced-gradient approach allows maximum efficiency in

dealing with large sparse linear constraints, but at the same time it alters our

perspect ive on fhe relative merits of Newton, quas i -Newton and conjugate

gradient methods for handling the nonlinear objective. Even if the exact Hessian
matrix were available (unless it were of very special form) it seems that we

could not afford to use it. In this context we find that quasi -Newton methods
take on a new and unexpected importance. The storage required for the Hessian

approximat ion is often modera te even when there are many linear or nonlinear
variables, as long as the total number of superbasic variables is of order 200

(say) or less. Otherwise, a conjugate-gradient method remains the only viable

alternative.

4.1. Quadrat ic programs

The above s tatements do not hold if G happens to be a constant matrix. In this
case the relation

RTR = z T G z (25)

can often be maintained exact ly without recomputing Z T G Z every iteration.
Such a specialization has been described by Gill and Murray [26], along with the
measures required to allow for z T G z being indefinite. The present quasi-

B.A. Murtagh, M.A. Saunders/ Linearly constrained optimization 59

Newton algorithm could conceivably be specialized as follows:

(1) Initialize R at the start of a run to satisfy (25). (This is trivial if there are

no superbasics; it may not be possible for an arbitrary set of superbasics since

ZTGZ could be indefinite.)
(2) In procedure A D D C O L (Subsection .3.3.4) compute the vector v = Gz

directly rather than by differencing the gradient.

(3) Suppress the quasi -Newton updates to R (COMDFP and RANK1 in

Subsection 3.3.1).
H o w e v e r it is worth noting that the difference approximat ion to v = Gz will be

essentially exact, so that if (25) ever holds at any stage then A D D C O L will

maintain (25) a lmost exactly when a column is added to Z. A step a = 1.0 along

the next search direction will then move x to the new subspace minimum. Now

it is easily verified that the subsequent quas i -Newton updates will cause no net

change to R (ignoring slight rounding error in the case of COMDFP) . The scene
is therefore set for another exact minimization during the next iteration.

The above sequence will be broken if a constraint forces some step a to be

less than 1.0. The quasi -Newton updates will then alter R, (25) will cease to hold
and the next subspace minimization may require more than one iteration. In

certain applications this could be undesirable, but more generally the robustness

and self-correcting propert ies of quas i -Newton methods offer compensat ing

advantages including the ability to start with any matrix R (such as I). Suffice to

say that the general algorithm comes close to being " ideal" on quadratic
programs, without undue inefficiency or any specialized code.

5. Computational experience

Although the prime application of this research is to large-scaie linear pro-

grams with a nonlinear object ive function, we have endeavored to at tack a

comprehens ive range of problems to aid development of the algorithm. It is

unfor tunate that large-scale nonlinear problems are not widely reported in the
literature, so that many of the results discussed here refer to problems which are

solely within the authors ' own purview. A brief description of each problem is
given. Fuller details of constraint data, starting points, etc. must be left to a
future report.

Three of the starting options provided in MINOS are as follows:

(1) (CRASH) A triangular basis matrix is extracted f rom the matrix A, without
regard to feasibility or optimality. The number of superbasic variables is set to
zero.

(2) (Initialization of nonlinears) The user specifies values for any number of
the nonlinear variables. These are made superbasic. CRASH is then applied to
the linear variables in A.

(3) (Restart) A previously-saved bit-map is loaded (specifying the state of all

60 B.A. Murtagh, M.A. Saunders[Linearly constrained optimization

variables), along with values for any superbasic variables. This allows con-
tinuation of a previous run, or an advanced start on a different but related
problem (for example the bounds l -< x -< u may be changed).

Options 2 and 3 normally reduce run time considerably, but the results
reported here were obtained using the "cold start" option 1 unless otherwise
stated. A normal phase 1 simplex procedure was used to obtain an initial feasible

solution.

5.1. Description of test problems

(1) Colville No. I. This is problem no. 1 in the Colville series of test problems
[9]. The objective is a cubic function of 5 variables.

(2) Colville No. 7. This is a quartic function of 16 variables.
(3) Chemical Equilibrium Problem. This particular example of the chemical

equilibrium problem was obtained from Himmelblau [34], problem 6. The

objective is of the form

(Note. Slight corrections were made to the constraint data in [34, p. 401]. The
group of coefficients {-1, -2 , -3 , -4} in column 13 was moved to column 14, and
a similar group in column 12 was moved to column 13.)

(4) Weapon Assignment Problem. This problem appeared originally in
Bracken and McCormick's book on nonlinear programming applications [5], and
more recently in Himmelblau [34], problem 23. The objective function is

aSiJ - 1 f (x) = ui ,,
j=l

with unknowns xii -> 0. We have ignored the requirement that the xij be integers.
(5) Structures Optimization (Q.P.). This is a series of quadratic programming

problems in structures design [58].
(6) Oil Refinery Investment Model. This is typical of many linear programming

based oil refinery models, but has the added feature that nonlinear returns to
scale of capital equipment costs are defined explicitly. The particular problem
cited in the results has 15 nonlinear variables of this kind.

(7) Energy Submodel. A related research project on the development of a

national energy model [43] has given rise to a fairly complex submodel of the
electricity sector. The 24 nonlinear variables are mainly the capacities of the
different types of generating equipment.

(8) Expanded Energy System Model. An expanded model which covers all
aspects of energy production and distribution on a national level has been
developed [53]. This is a medium-scale linear program with 91 nonlinear
variables in the objective; again these are mainly nonlinear returns to scale of

B.A. Murtagh, M.A. Saunders/ Linearly constrained optimization 61

capital equipment costs of the form

91

cix~ ~ with 0 < pi < 1 (around 0.6 to 0.7).
i=1

(9) Energy Model RS8. This is a !6-period energy model which was for-
mulated from the outset as a nonlinear programming problem (see Manne
[38, 39]). The objective is of the form

16 a ± +
;_~3x;y] linear terms

with one pair of nonlinear variables xi, yi for each time period (those for the first
two periods being known). This was the first large problem available to us and is
of interest for several reasons. In particular it provides a comparison with a
(considerably larger) linear approximation to the problem, in which each term
ai/x;y~ was discretized over a two-dimensional grid. Further details are given in

Subsection 5.2.2.
(10) Energy Model ETA (Manne [40]). This is a further development of the

previous model. The objective is the same as in RS8 with the addition of ~1;6-i z~
for 16 variables zi,

5.2. Results

The results summarized in Table 1 were obtained on a Burroughs B6700
computer using single-precision arithmetic (e ~- 10-11). The standard time ratios
quoted are relative to the processor time required for a standard timing program
given in Colvilte [9]. The standard time for unoptimized B6700 Fortran is 83.07
seconds.

The results in Table 2 onwards were obtained using double precision arith-
metic on an IBM 370/168 (~ ~ 10-15). The standard time for this machine with the

IBM Fortran IV (H extended) compiler with full optimization is 3.92 seconds. A
fairly accurate line-search was normally used (eta =0.01) and the quantity

Ilhll/[l~'ll w a s reduced to 10 -6 or less at optimality.

5.2.1. The chemical equilibrium problem (problem 3)
This example provided useful experience in dealing with logarithmic sin-

gularities in g(x). The objective consists of functions of the form

f : ~i xigi'

whose gradient components are

gi = c; + In xi
~ x j

1

62 B.A. Murtagh, M.A. Saunders/ Linearly constrained optimization

%

o

0

~4
I

.o
e ~

- g
. .

. . 2

0 "*-.

.=...~ .-£.~

z ~

z ~

0 •

o - ~ - ~ ~

.=

0

. = o

e q

0a

o ~

0

8

0
r...)

E E

" - 6 ~ 7

II II

z z z

ooo

<~< '4

II II II

II II II

B.A. Murtagh, M.A. Saunders/ Linearly constrained optimization 63

If some xi is zero, the corresponding term in f may be correct ly p rogrammed as
(xigi) = 0. However , gi itself is then analytically minus infinity (unless all xi = 0),

and any particular numerical value given to it in the gradient subroutine will

result in a discontinuity in gi as x~ moves (even slightly) away from zero. To
avoid this difficulty we ran the problem with a uniform lower bound e~ ~ 10 -k on
all variables, for various values of k in the range 4 to 10. (The problem is

infeasible with x i - 10-3.) Results are summarized in Table 3, where each run
continued f rom the run before using starting option 3. The minimal change in

f (x) is typical of dual geometr ic programs, but values xj = 10 -6 and x i = 10 -1°

(say) have very different physical interpretations and therefore warrant more

than the usual degree of resolution.

Table 3
Solution of problem 3 with various bounds xg -> e~

Lo-bound No. of Evaluations a Estimate of b
ek superbasics f(x) Iterations a of f, g ~(RTR)

10 4 10 -1910.366249932 46 130 6 x 105
10 5 14 -1910.381531984 21 75 5 x 106
10 6 17 -1910.382772060 22 72 1 x 108
10 7 19 -1910.382872190 22 88 1 x 109
10 8 23 -1910.382880402 22 90 6 X 10 7

10 ~9 24 --1910.382881101 22 90 4 X 108
10 -I° 24 -1910.382881161 5 27 8 N 107

160 572

a Additional to previous run.
b A lower bound on the condition number of the reduced Hessian approximation RTR is the

square of the ratio of the largest and smallest diagonals of R.

In Table 4 we list the largest solution value x13 and the 8 smallest values in the

order by which they became superbasic. The most significant variation is in x45.
Most values have stabilized by the time k reaches 10.

For interest, the last row of Table 4 shows the values obtained by the program
SUMT as reported by Himmelblau [34]. For the 8 smallest x i the two results

differ in all significant figures. (This may be due to differences in the constraint

data, errors in satisfying the general constraints, or simply different machine
precisions.)

Note that when xi is small the diagonal elements of the Hess ian matrix are
Ogi/Oxj = O(1/xj). H o w e v e r these large elements affect the r e d u c e d Hessian only
when xj is basic or superbasic. The safest s trategy for these problems therefore
appears to be the following:

(a) Solve the problem with relatively large lower bounds, e.g., xi-> 10 -4. A
near-optimal object ive value will be obtained quickly because the reduced
Hessian remains reasonably well-conditioned.

64 B.A. Murtagh, M.A. Saunders/ Linearly constrained optimization

r.

d2

t)

c~

e -

¢c

e.

, q

=_

e , i e q ..2

~ t r ~ D

¢ ' q t ' q C q e~

t " 4 c q C q
e q e q r q

r ~ t ' ~ t " - g--

i r i F i

B.A. Murtagh, M.A. Saunders[Linearly constrained optimization 65

(b) Reduce the lower bounds, perhaps in stages, to O(E 1/2) or O(E2/3). There

will be essentially no further basis changes, and in roughly descending order the

small x s will leave their bounds one by one to become superbasic.
Solution of problem 3 with x i >- 10 -4 followed by x s >- 10 -1° required a total of 103
iterations and 452 function/gradient evaluations as shown in Table 2. Solution
with x s >-10 10 directly required 188 iterations and 886 evaluations, primarily
because the Hessian approximation became very ill-conditioned before a near-
optimal point was reached.

As a natural precaution against rounding error the linesearch procedure
del insearch avoids evaluating f (x + a p) with values of a that are very close
together. On the IBM 370/168 this prevented resolution below 10 -~°, although for
this special case f (x) could easily be evaluated using higher precision arithmetic.
The limiting factor would then become the condition of the reduced Hessian.

5.2.2. Energy model R S 8

Problem 9a in Table 2 refers to the original linearized version of the energy
model, in which each term of the form

a

f (x , y) = xy2

was approximated over a 6 × 6 grid. It has twice as many columns and matrix
coefficients as the nonlinear version 9b. Note that construction of the small but
reasonably fine grid required good prior estimates of the optimal values for the
14 (x, y) pairs.

Run 9b is included to illustrate the rather poor performance that could be
encountered during early "de-bugging" of a nonlinear problem. Some relevant
facts follow.

(a) The bounds on nonlinear variables were conservative in the sense that the
lower bounds were far removed from the optimal solution values and there were
no upper bounds.

(b) No attempt was made to initialize the nonlinears at reasonable values
between their bounds.

(c) The y variables proved to be badly scaled.
To enlarge on the last point, the Hessian matrix of f (x , y) above is

G(x, y) = =x-~y 4 y y x
x X/~x x/~x

and it follows from the diagonal elements of the triangular factor that G has a
condition number K(G) > -- y2/2x2. Now the optimal values for the x and y
variables are all O(1) and O(100) respectively, which might normally be con-
sidered well-scaled; however it means that K(G) is at least O(104), which in this
case is unnecessarily large. Replacing each y by a variable ; = y/100 gave a
significant improvement as shown by run 9c in Table 2.

66 B.A. Murtagh, M.A. Saunders/ Linearly constrained optimization

5.2.3. Energy model ETA
It is in runs 10a-10c tha t the rea l benef i t s f r om a non l inea r op t imize r b e c o m e

appa ren t . This is an e x a m p l e of the m o d e l - b u i l d e r ' s s t a n d a r d m o d e of o p e r a t i o n

w h e r e i n n u m e r o u s runs are m a d e on a s e q u e n c e of c lose ly r e l a t ed p r o b l e m s wi th

the so lu t ion f rom one run p rov id ing a s ta r t ing po in t for the next . H e r e , p r o b l e m

10a (the ba se case) was so lved f rom a cold s ta r t wi th ce r ta in va r i ab le s f ixed at

ze ro ; for run 10b the b o u n d s were r e l a x e d on 16 of these va r i ab le s , and for run

10c a fu r the r 10 va r i ab le s were f reed . (In this pa r t i cu l a r s e q u e n c e the s ta r t ing

so lu t ions for 10b and 10c were c lea r ly feas ib le . This is de s i r ab l e bu t not

essen t ia l .)

C o m p a r e d to so lv ing l inea r i zed a p p r o x i m a t i o n s by s t a n d a r d l inear p r o g r a m -

ming, some of the obv ious a d v a n t a g e s are :

(1) r e d u c e d p r o b l e m s ize;

(2) r e d u c e d v o l u m e of o u t p u t (in the a b s e n c e of a r e p o r t wr i te r) ;

(3) ab i l i ty to p r e p a r e d a t a for s eve ra l runs in a d v a n c e , s ince the re are no grid

va r i ab le s to be m o v e d or ref ined;

(4) the so lu t ion o b t a i n e d ac tua l ly so lves the c o r r e c t p r o b l e m .

5.2.4. Comparison of quasi-Newton and conjugate gradients
The w e a p o n a s s i g n m e n t p r o b l e m (no. 4) was c h o s e n here as a r e a s o n a b l y

smal l bu t non t r iv ia l e x a m p l e . A b o u t 60 changes in the ac t ive cons t r a in t se t o c c u r

dur ing the i t e ra t ions .

The p a r a m e t e r s be ing va r i ed are

r / = l i ne sea rch a c c u r a c y t o l e r a n c e (eta in Sec t ion 3);

rig = the t o l e r a n c e for m i n i m i z a t i o n wi thin each s u b s p a c e (see S u b s e c t i o n 3.4).

Reca l l tha t smal l va lues of these p a r a m e t e r s mean a c c u r a t e min imiza t ion . F o r

Tab le 5 we set rig = 0.5 and c o m p a r e d the no rma l q u a s i - N e w t o n a lgo r i thm wi th

each of the c o n j u g a t e g r ad i en t a lgor i thms for va r ious va lues of ri. W e find tha t

q u a s i - N e w t o n is c o n s i s t e n t l y supe r io r and is qui te r o b u s t wi th r e s p e c t to

d imin i sh ing l i ne sea r ch a c c u r a c y , in c o n t r a s t to the con juga t e g rad ien t (cg)

Table 5
Iterations and function + gradient evaluations for the weapon assignment prob-
lem; "O~ = 0.5; various linesearch tolerances ~/

quasi-Newton

0.001 123 375
0.01 139 255
0.l 122 281
0.2 137 300
0.3 148 291
0.4 156 289
0.5 153 242
0.9 207 256

Fletcher-Reeves Polak-Ribi~re Perry

226 840 222 806 198 713
223 728 237 770 259 849
227 671 238 709 228 665
250 721 252 749 218 578
239 648 248 688 307 814
282 742 296 853 309 762
275 695 394 1079 612 1411
694 987 >999 >2748 818 968

B.A. Murtagh, M.A. Saunders/ Linearly constrained optimization 67

a lgor i thms . U n f o r t u n a t e l y the re is no d i sce rn ib l e t r end tha t s ingles out one cg

a lgo r i thm ove r ano the r .

F o r Tab le 6 the s ame runs we re m a d e wi th ~/g = 0.01. (A more a c c u r a t e

s u b s p a c e m i n i m i z a t i o n m a k e s the s e q u e n c e of c o n s t r a i n t changes more con-

s i s ten t b e t w e e n runs.) This s m o o t h e d ou t the i t e ra t ion and f u n c t i o n - e v a l u a t i o n

coun t s , bu t aga in the re is no e v i d e n c e to f a v o r any pa r t i cu l a r cg a lgor i thm.

Table 6
Iterations and function + gradient evaluations for the weapon assignment problem;
n~ = 0.01 (more accurate minimization within each subspace)

quasi-Newton Fletcher-Reeves Polak-Ribi~re Perry

0.001 220 615
0.01 219 548
0.1 209 461
0.2 218 445
0.3 229 411
0.4 262 441
0.5 262 377
0.9 288 345

493 1628 440 1514 440 1495
498 1520 471 1520 466 1476
560 1597 508 1461 530 1568
582 1589 531 1517 585 1626
612 1557 634 1752 611 1625
748 1831 691 1821 752 1788
691 1633 818 1993 894 1974

>999 > 1855 >999 > 1658 >999 >1156

To i l lus t ra te tha t the cg m e t h o d s are no t to be d i s c a r d e d i m m e d i a t e l y , in

Fig. 1 we have p lo t t ed the va lue of f (x) aga ins t i t e r a t ion n u m b e r for the

s e c o n d row and first two co lumns of bo th Tab les 5 and 6. Thus a r e a s o n a b l y

a c c u r a t e l i ne sea r ch was used for all cases (~ /= 0.01). C u r v e s 1 and 2 c o m p a r e

q u a s i - N e w t o n wi th F l e t c h e r - R e e v e s us ing ~/g = 0.5, and cu rves 3 and 4 do the

same wi th ~/g = 0.01.

The first two cu rves show s m o o t h p r o g r e s s for bo th m e t h o d s . N o t e tha t

a l t h o u g h the cg m e t h o d lags beh ind it has e s sen t i a l l y ident i f ied the final se t of

ac t ive cons t r a in t s b y the t ime the q u a s i - N e w t o n m e t h o d c o n v e r g e s (i t e ra t ion

139). The s t e p - f u n c t i o n shape of cu rves 3 and 4 i l lus t ra tes the w o r k tha t is

w a s t e d in conve rg ing to min ima wi th in each subspace . O t h e r w i s e t hese cu rves

e f f ec t ive ly p l a c e a magn i fy ing glass on the tail end of the o the r runs . The

t e rmina l c o n v e r g e n c e of the cg m e t h o d is c l ea r ly v e r y s low and it is he re tha t

be t t e r r e s t a r t p r o c e d u r e s such as in Powe l l [47] should p r o v e to be m o s t

va luab le .

6. Comparison with other algorithms

M a n y of the ideas d i s c u s s e d here were e i ther impl ic i t in or an t i c ipa t ed by the

w o r k of W o l f e [56, 57], F a u r e and H u a r d [16] and M c C o r m i c k [41, 42]. H o w e v e r

the re have s ince been such s ignif icant a d v a n c e s in i m p l e m e n t a t i o n t echn iques

for the n u m e r i c a l m e t h o d s i n v o l v e d tha t the re is l i t t le po in t in mak ing de ta i l ed

c o m p a r i s o n s . A l g o r i t h m i c a l l y , one i m p o r t a n t d i f fe rence is our e m p h a s i s on

68 B.A. Murtagh, M.A. Saunders / Linearly constrained optimization

E_
.=_
E

~D

il II

,¢- ~ - J

~ ~. L ~
Z ~- Z ' ~ ~ I

q
I II ,a, / I

, , -~ . - . 'x / J l
I I I E t " ~ / I I

~- J _ . ~ J I
e e e @ o.?. ,___~ ~ . , I ;

= ®
1 I l I I I

8 8 8 ~ ~ 8
i I r 5- ~ T

g

O

g
013

I

~..=

~ 2
, - ¢.~

e-, o

g #
~D

e-,

Z

, - . , .
O ¢:'

- ~ °

B.A. Murtagh, M.A. Saunders/ Linearly constrained optimization 69

keeping the number of superbasic variables as small as possible and changing
that number by a small amount (usually 1) each i tera t ion: With the quasi-

Newton approach, this strategy retains maximum information about the reduced
Hessian. Even though the proof of convergence [41] for the variable-reduction
method depended on regular resetting of the reduced Hessian approximation, we
never set R = I except at the start of a run or in the rare event that the linesearch
fails to find an improved point (in which case both R and the true reduced
Hessian are normally very ill-conditioned). Zig-zagging is controlled effectively by

the tolerance ~g and the logic described in Subsection 3.4. Rates of convergence
within each subspace follow from analogous proofs for unconstrained
algorithms.

Since the present algorithm possesses superlinear convergence properties and
can handle rather arbitrary sized problems, it should be competitive with other
algorithms designed specifically for quadratic programming (e.g., Wolfe [55],
Beale [4], Cottle [11], Lemke [37]). In particular a comparison with Beale's
method would be relevant, since it is reported that his method is efficient for
problems which have a small number of quadratic terms. If there are m a n y

quadratic terms and if the optimal solution has most of the variables away from
their bounds, then a sparse-matrix implementation of one of the complemen-
tarity methods will be preferable (e.g., Tomlin's implementation [60] of Lemke 's
method).

A final comment on problems which have a large sparse set of general
constraints Ax->-b in relatively few variables (thus A is m × n with m > n).
Ideally, methods designed specifically for this case u s e an active constraint
strategy and avoid transforming the whole of A each iteration (e.g., the version
of the reduced-gradient algorithm in Wolfe [57], and the implementation of
Buckley [8]). The improved efficiency of these methods is analogous to the
benefit that might be realized in the purely linear case if the dual simplex method
were applied to the dual linear program. Nevertheless, given the use of sparse-
matrix techniques, solution by the present (standard form) method will be quite
efficient unless m ~> n. In any event, with n moderate by assumption, this is one
class of problems where the number of superbasic variables (and hence the
dimension of the reduced Hessian) will always remain manageably small.

7. Conclusion

Our primary aim has been to combine the simplex algorithm with quasi-
Newton techniques in an efficient and reliable computer code for solving large,
linearly constrained nonlinear programs. The full potential of conjugate-gradient

5 In the original reduced-gradient algorithm the set of superbasics was effectively redefined each
iteration as being the current set plus those nonbasic variables whose reduced costs were of the
correct sign.

70 B.A. Murtagh, M.A. Saunders/ Linearly constrained optimization

m e t h o d s in this c o n t e x t r ema ins to be e x p l o r e d , bu t the n e c e s s a r y f r a m e w o r k

now exis t s . This f r a m e w o r k will a lso a c c o m m o d a t e ex t ens ion to p r o b l e m s wi th a

m o d e r a t e n u m b e r of non l inea r cons t r a in t s (e.g., Jain, L a s d o n and S a u n d e r s [35]).

In the m e a n t i m e the code is app l i cab l e to an i m p o r t a n t c lass of p r o b l e m s , and it

shou ld p rov ide a new d i m e n s i o n of u t i l i ty to an a l r e a d y subs tan t i a l b o d y of

l a rge - sca le l inear p r o g r a m m i n g mode ls .

Acknowledgment

W o r k of this na tu re is n e c e s s a r i l y a ga ther ing t oge the r of m e t h o d s and ideas

f rom m a n y sources . W h e r e pos s ib l e we have a c k n o w l e d g e d the con t r i bu t i on of

o the r s wi th in the tex t , and we wish to t hank the ind iv idua l s c o n c e r n e d . W e are

also g ra te fu l to J. A b a d i e , S.J. Byrne , A. Jain, L.S. L a s d o n , A.S . Manne , J .A.

Toml in and M.H. Wr igh t for a s s i s t a n c e in va r ious ways . In pa r t i cu l a r our thanks

go to P .E . Gill and W. M u r r a y for p rov id ing thei r l i ne sea rch p r o c e d u r e and for

the i r va luab le c o m m e n t s on the draf t . Rev i s ion sugges t ions by the r e f e r ee s and

by C.C. Pa ige are also g ra t e fu l ly a c k n o w l e d g e d .

References

[1] J. Abadie, "Application of the GRG algorithm to optimal control problems", in: J. Abadie, ed.,
Integer and nonlinear programming (North-Holland, Amsterdam, 1970) pp. 191-211.

[2] R.H. Bartels, "A stabilization of the simplex method", Numerische Mathematik 16 (1971)
414-434.

[3] R.H. Bartels and G.H. Golub, "The simplex method of linear programming using LU decom-
position", Communications of ACM 12 (1969) 266-268.

[4] E.M.L. Beale, "Numerical methods", in: J. Abadie, ed., Nonlinear programming (North-
Holland, Amsterdam, 1967) pp. 132-205.

[5] J. Bracken and G.P. McCormick, Selected applications of nonlinear programming (Wiley, New
York, 1968).

[6] R.P. Brent, "Reducing the retrieval time of scatter storage techniques", Communications of
ACM 16 (1973) 105-109.

[7] C.G. Broyden, "Quasi-Newton methods", in: W. Murray, ed., Numerical methods for un-
constrained optimization (Academic Press, New York, 1972) pp. 87-106.

[8] A. Buckley, "An alternate implementation of Goldfarb's minimization algorithm", Mathematical
Programming 8 (1975) 207-231.

[9l A.R. Colville, "A comparative study on nonlinear programming codes", IBM New York
Scientific Center Report 320-2949 (1968).

[10] A.R. Conn, "Linear programming via a non-differentiable penalty function", SIAM Journal of
Numerical Analysis 13 (1) (1976) 145-154.

[11] R.W. Cattle, "The principal pivoting method of quadratic programming", in: G.B. Dantzig and
A.F. Veinott, Jr., eds., Mathematics of the decision sciences, Part 1 (American Mathematical
Society, 1968) pp. 144-162.

[12] G.B. Dantzig, Linear programming and extensions (Princeton University Press, NJ, 1963).
[13] W.C. Davidon, "Variable metric method for minimization", AEC Research and Development

Report ANL-5990 (1959).
[14] I.S. Duff, "On algorithms for obtaining a maximum transversal", to appear.

B.A. Murtagh, M.A. Saunders/ Linearly constrained optimization 7l

[15] I.S. Duff and J.K. Reid, "An implementation of Tarjan's algorithm for the block trian-
gularization of a matrix", AERE Report C.S.S. 29 (1976), Harwell, England.

[16] P. Faure and P. Huard, "Resolution de programmes mathematiques a fonction nontineaire par la
methode du gradient reduit", Revue Francaise de Recherche Operationelle 36 (1965) 167-206.

[17] R. Fletcher, "Minimizing general functions subject to linear constraints", in: F.A. Lootsma, ed.,
.Numerical methods for nonlinear optimization (Academic Press, London and New York, 1972)
pp. 279-296.

[18] R. Fletcher and M.J.D. Powell, "A rapidly convergent descent method for minimization",
Computer Journal 6 (1963) 163-168.

[19] R. Fletcher and C.M. Reeves, "Function minimization by conjugate gradients", Computer
Journal 7 (1964) 149-154.

[20] P.E. Gill, G.H. Golub, W. Murray and M.A. Saunders, "Methods for modifying matrix
factorizations", Mathematics of Computation 28 (1974) 505-535.

[21] P.E. Gill and W. Murray, "Quasi-Newton methods for unconstrained optimization", Journal of
Institute of Mathematics and its Applications 9 (1972) 91-108.

[22] P.E. Gill and W. Murray, "Quasi-Newton methods for linearly constrained optimization",
Report NAC 32 (1973), National Physical Laboratory, Teddington.

[23] P.E. Gill and W. Murray, "Newton-type methods for unconstrained and linearly constrained
optimization", Mathematical Programming 7 (1974) 311-350.

[24] P.E. Gill and W. Murray, "Safeguarded steplength algorithms for optimization using descent
methods", Report NAC 37 (1974), National Physical Laboratory, Teddington.

[25] P.E. Gill and W. Murray, eds., Numerical methods for constrained optimization (Academic
Press, London, 1974).

[26] P.E. Gill and W. Murray, "Linearly constrained optimization including quadratic and linear
programming", in: Jacobs and Scriven, eds., Modern numerical analysis (Academic Press,
London, 1977), Proceedings of conference on "State of the art of numerical analysis",
University of York (April 1976).

[27] P.E. Gill, W. Murray and S.M. Picken, "The implementation of two modified Newton
algorithms for linearly constrained optimization" (to appear).

[28] P.E. Gill, W. Murray and R.A. Pitfield, "The implementation of two revised quasi-Newton
algorithms for unconstrained optimization", Report NAC 11 (1972), National Physical Labora-
tory, Teddington.

[29] P.E. Gill, W. Murray and M.A. Saunders, "Methods for computing and modifying the LDV
factors of a matrix", Mathematics of Computation 29 (1975) 1051-1077.

[30] D. Goldfarb, "Extension of Davidon's variable metric method to maximization under linear
inequality and equality constraints", SIAM Journal of Applied Mathematics 17 (1969) 739-764.

[31] D. Goldfarb, "On the Bartels-Golub decomposition for linear programming bases", AERE
Report C.S.S. 18 (1975), Harwell, England.

[32] E. Hellerman and D.C. Rarick, "Reinversion with the preassigned pivot procedure", Mathema-
tical Programming 1 (1971) 195-216.

[33] E. Hellerman and D.C. Rarick, "The partitioned preassigned pivot procedure", in: D.J. Rose
and R.A. Willoughby, eds., Sparse matrices and their applications (Plenum Press, New York,
1972) pp. 67-76.

[34] D.M. Himmelblau, Applied nonlinear programming (McGraw-Hill, New York, 1972).
[35] A. Jain, L.S. Lasdon and M.A. Saunders, "An in-core nonlinear mathematical programming

system for large sparse nonlinear programs", presented at ORSA/TIMS joint national meeting,
Miami, Florida (November, 1976).

[36] J.E. Kalan, "Aspects of large-scale in-core linear programming", Proceedings of ACM con-
ference, Chicago (1971) 304-313.

[37] C.E. Lemke, "Bimatrix equilibrium points and mathematical programming", Management
Science 11 (1965) 681-689.

[38] A.S. Manne, "Waiting for the breeder", The review of economic studies symposium (1974)
47-65.

[39] A.S. Manne, "U.S. options for a transition from oil and gas to synthetic fuels", presented at the
World Congress of the Econometric Society, Toronto (August 1975).

72 B.A. Murtagh, M.A. Saunders/ Linearly constrained optimization

[40] A.S. Manne, "ETA: a model for Energy Technology Assessment", Bell Journal of Economics
(Autumn 1976) 381-406.

[41] G.P. McCormick, "The variable-reduction method for nonlinear programming", Management
Science 17 (3) (1970) 146-160.

[42] G.P. McCormick, "A second order method for the linearly constrained nonlinear programming
problem", in: J.B. Rosen, O.L. Mangasarian and K. Ritter, eds., Nonlinear programming
(Academic Press, New York, 1970) pp. 207-243.

[43] B.A. Murtagh and P.D. Lucas, "The modelling of energy production and consumption in New
Zealand", IBM (N.Z.) 5 (1975) 3-6.

[44] B.A. Murtagh and R.W.H. Sargent, "A constrained minimization method with quadratic
convergence", in: R. Fletcher, ed., Optimization (Academic Press, New York, 1969) pp.
215-246.

[45] A. Perry, "An improved conjugate gradient algorithm", Technical note (March 1976), Dept. of
Decision Sciences, Graduate School of Management, Northwestern University, Evanston,
Illinois.

[46] E. Polak, Computational methods in optimization: a unified approach (Academic Press, New
York, 1971).

[47] M.J.D. Powell, "Restart procedures for the conjugate gradient method", AERE Report C.S.S.
24 (1975), Harwell, England.

[48] D.C. Rarick, An improved pivot row selection procedure, implemented in the mathemati-
cal programming system MPS III, Management Science Systems, Rockville, MA, U.S.A.

[49] R.W.H. Sargent, "Reduced-gradient and projection methods for nonlinear programming", in:
P.E. Gill and W. Murray, eds., Numerical methods for constrained optimization (Academic
Press, London, 1974) pp. 149-174.

[50] R.W. Sargent and B.A. Murtagh, "Projection methods for nonlinear programming", Mathema-
tical Programming 4 (1973) 245-268.

[51] M.A. Saunders, "Large-scale linear programming using the Cholesky factorization", Report
STAN-CS-72-252 (1972), Computer Science Dept., Stanford University, Stanford, CA, U.S.A.

[52] M.A. Saunders, "A fast, stable implementation of the simplex method using Bartels-Golub
updating", in: J.R. Bunch and D.J. Rose, eds., Sparse Matrix Computations (Academic Press,
New York, 1976) pp. 213-226.

[53] B.R. Smith, P.D. Lucas and B.A. Murtagh, "The development of a New Zealand energy
model", N.Z. Operational Research 4 (2) (1976) 101-117.

[54] J.A. Tomlin, "On pricing and backward transformation in linear programming", Mathematical
Programming 6 (1974) 42-47.

[55] P. Wolfe, "The simplex method for quadratic programming", Econometrica 27 (1959) 382-398.
[56] P. Wolfe, "The reduced gradient method", unpublished manuscript, The RAND Corporation

(June 1962).
[57] P. Wolfe, "Methods of nonlinear programming", in: J. Abadie, ed., Nonlinear programming

(North-Holland, Amsterdam, 1967) pp. 97-131.
[58] M.J. Wood, "The February 1975 state of BUILD", Ministry of Works and Development report

(February 1975), Wellington, New Zealand.
[59] P.E. Gill, W. Murray, S.M. Picken, H.M. Barber and M.H. Wright, Subroutine LNSRCH, NPL

Algorithms Library, Reference No. E4/16/0/Fortran]02/76 (February 1976).
[60] J.A. Tomlin, "Robust implementation of Lemke's method for the linear complementarity

problem", Technical Report SOL 76-24, Systems Optimization Laboratory, Stanford University
(September 1976).

