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1. Introduction 

This paper  descr ibes  our  efforts to develop  a non l inea r  p rog ramming  a lgor i thm 

for p rob lems  charac te r ized  by  a large sparse set of l inear  cons t ra in t s  and a 

signif icant  degree of non l inea r i ty  in the ob jec t ive  func t ion .  It has been  our 

expe r i ence  that  m a n y  l inear  p rog ramming  prob lems  are inord ina te ly  large 

because  they are a t t empt ing  to approx imate ,  by piecewise  l inear iza t ion,  what  is 

essent ia l ly  a non l inea r  problem.  It also appears  that  m a n y  real-life p rob lems  are 

such that  only  a small  pe rcen tage  of the var iables  are invo lved  non l inea r ly  in the 

ob jec t ive  func t ion .  Thus  we are led to 

fo l lowing s tandard  form:  

min imize  F(x) = f ( x  y) + e V x, 

sub jec t  to A x  = b, 

l < _ x < _ u  

cons ider  p rob lems  which have the 

(1) 

(2) 

(3) 

where  A is m x n, m - n. We  par t i t ion  x into a l inear  por t ion  x L and  a non l inea r  
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portion XN: 

[x j X = -  
x L  • 

The components  of x N will normally be called the nonlinear variables. Note that 

A and c operate on all variables x. In some cases the part  of cTx involving x N 

may be incorporated into f(xN); in other cases c may be zero. We assume that 

the function f (x  N) is continuously differentiable in the feasible region, with 
gradient 

V f ( x  N) = g(xN), 

and we assume that both f and g can be computed  at any feasible point x N. 

The research work  reported here was stimulated by some of the deficiencies in 
the algorithms of Murtagh and Sargent [44, 50] and Goldfarb [30], especially 

when applied to large-scale systems.  The resulting algorithm is related to the 

reduced-gradient  method of Wolfe [56] and the variable-reduction method of 

McCormick  [41, 42]. It also draws much from the unconstrained and linearly- 
constrained optimization methods of Gill and Murray [21, 22, 25]. 

In essence the algorithm is an extension of the revised simplex method 
(Dantzig [12]). To use some of the associated terminology, it might be described 

as an extension which permits more than m variables to be basic. Because of the 

close ties with linear programming (LP) we have been able to incorporate into 
our implementat ion many  of the recent  advances in LP technology. The result is 

a computer  program which has many  of the capabilities of an efficient LP code 

and is also able tO deal with nonlinear terms with the power  of a quasi-Newt0n 
procedure.  

I. 1. Notation 

Partitioning x and F(x) into linear and nonlinear terms is of considerable 

practical importance;  for descriptive purposes,  however ,  it is convenient  to 
denote F(x) and VF(x) simply by f(x) and g(x). 

With a few conventional  exceptions,  we use upper-case letters for matrices,  
lower-case for vectors  and Greek lower-case for scalars. The quantity E > 0 
represents  the precision of floating-point arithmetic. 

2. Basis of the method 

2.1. Basic solutions; justification for standard form 

Before proceeding to the nonlinear problem, we need to introduce some linear 
programming background.  In particular, equations (1)-(3) with f (x  N) = 0 are the 
standard form for stating linear programs and for solving them in practical 
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implementat ions of the simplex method.  A basic solution is character ized by 

having at most  m "bas ic"  variables lying between their bounds while the 

remaining n - m  "nonbas ic"  variables are equal to one b o u n d  or other. An 

associated square basis matrix B is drawn from the columns of the constraint  
matrix A, and as the simplex method proceeds  the columns of B are replaced 
one at a time. 

Note  that it is assumed in the standard form that A and x contain a full 
identity matrix and a full set of slack variables,  respectively.  (General equality 

and inequality constraints are accommoda ted  by placing suitable upper  and 

lower bounds on the slacks.) There are many practical reasons for retaining the 
standard form here. Full justification would require much implementat ion 

background,  but very briefly, a sparse triangular factorization of B can be 

maintained more easily if columns (but not rows) of B are altered. Further,  
although the total number  of variables is apparent ly greater,  it is very easy to 

take advantage of the unit vectors  associated with slacks, whenever  B is 
re-factorized.  

2.2. Superbasic  variables 

One virtue of the concept  of basic solutions is the emphasis  thereby given to 

the upper  and lower bounds,  I -< x -< u. It  is misleading to regard these as "sparse  

constraints";  more importantly,  they serve directly to eliminate a large percen- 
tage of the variables. The simplex method is therefore free to focus its attention 

on t ransforming (factorizing) just B, rather than the whole of A. (When B is 
large and sparse, this is problem enough.) 

With nonlinear problems we cannot expect  an optimal point to be a basic 
solution. However ,  if the number  of nonlinear variables is small, it seems 

reasonable to suppose that an optimal solution will be "near ly"  basic. Thus,  as a 
simple generalization we introduce the notion of superbasic variables and 
partition the set of general constraints (2) as follows: 

n x  = 

m s n - m - s  

B S N 

basics super- nonbasics 
basics 

EIBI 
XS 

XN 

= b. ( 4 )  

The matrix B is square and nonsingular as in the simplex method,  S is rn x s 
with 0 -  < s - <  n - m ,  and N is the remaining columns of A. The associated 
variables xB, Xs, xN are called the basics, superbasics  and nonbasics  respec-  
tively. Both basics and superbasics are free to vary between their bounds.  The 
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name is chosen to highlight the superbasics '  role as "driving force" ;  they may be 
moved  in any direction at all (preferably one that improves the object ive value), 

and the basics are then obliged to change in a definite way to maintain feasibility 
with respect  to the constraints A x  = b. 

Our expectat ion that solutions will often be "near ly"  basic is confirmed by the 
following theorem: 

Theorem 1. Suppose a nonlinear program has t variables occurring nonlinearly 

(in either the objective or the constraints). An  optimal solution exists in which the 

number of  superbasic variables s satisfies s <- t. 

Proof (due to A. Jain). Let  the nonlinear variables be fixed at their optimal 
values. The remaining problem is a linear program for which a basic solution 

exists (s = 0). The result follows trivially if the nonlinear variables are now 

regarded as superbasic in the original problem. (At first sight s = t, but if any of 
the nonlinear variables are actually on a bound we can label them nonbasic, and 
then s < t.) 

2.3. Derivation of  method 

We will assume that f ( x )  can be expanded in a Taylor ' s  series with remainder  
of second order: 

f ( x  + Ax) = f ( x )  + g(x)TAx + ½AxTG(x + TAx)Ax (5) 

where 0 --< 7 --< 1, and G(x + yAx) is the Hessian matrix of second partial deriva- 

tives evaluated at some point be tween x and x + Ax. Note that G is a constant  
matrix if f (x )  is a quadratic function. 

Let  us partition Ax and g(x) corresponding to the partitioning of A. 
If f ( x )  were truly quadratic,  we could obtain a constrained stationary point at 

x + Ax by requiring two propert ies of the step Ax: 

Property 1. 

N- F A xB ] 

0 0 I = 0, (6) 

i.e., the step remains on the surface given by the intersection of the active 

constraints.  

Property 2. 

~s + G | a x s | :  S T 
gN LAxN J N T A ' 

(7) 



B.A. Murtagh, M.A. Saunders/ Linearly constrained optimization 45 

i.e., the gradient at x + a x  (given by the left hand-side of (7)) is orthogonal to the 

surface of active constraints and is therefore expressible as a linear combinat ion 

of the active constraint  normals. 

For a more general function f(x) ,  the step a x  may not lead directly to a 

stat ionary point, but we shall use Propert ies  1 and 2 to determine a feasible 
descent  direction. 

From (6) we have: 

ZlXN = 0, (8) 
and 

Axe  = - WAxs ,  (9) 
where 

W = B - i s .  (10) 

Thus, 

Equation (7) simplifies when multiplied by the matrix 

- W  T I . (11) 
0 0 

First it provides an expression for est imates of the Lagrange multipliers for the 
general constraints: 

B T # = g B + [ I  0 O G  AXs. (12) 

Note  that when ]lZlXsH = 0 (which will mean x is stationary) we have 

B T #  = gB (13) 

in which case # is analogous to the pricing vector  ~r in the revised simplex 

method. (From now on we shall denote the solution of (13) by 7r.) Next  we have 
f rom (7) that 

l = g N - N r # + [ 0  0 I IG Axs  (14) 

and again when I[axsll = 0 this equation reduces to 

,~ = gN - NT~ " (15) 

wh ich  is analogous to the vector  of reduced costs in linear programming.  
The third result  f rom equation (7), following pre-multiplication by the matrix 
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(l 1), is an expression for the appropriate  step: 

[ - W  r I 0]G Axs = - h  

where 

(16) 

2.4. Summary 

Recently,  Gill and Murray [25] have considered a class of algorithms in which 

the search direction along the surface of active constraints is characterized as 

being in the range of a matrix Z which is orthogonal to the matrix of constraint  
normals.  Thus,  if J,x = / ;  is the current set of n - s  active constraints,  Z is an 

n x s matrix such that 

A Z  = O. ( 1 9 )  

This characterizat ion may be used to describe several  published algorithms, 
which are discussed and compared  in [25] as well as in the review papers by 

Fletcher [17] and Sargent [49]. 

In the notation of [25], the main steps to be per formed at each iteration are as 
follows. (They generate a feasible descent  direction p.) 

(A) Compute  the reduced gradient gA = ZTg- 
(B) Form some approximat ion to the reduced Hessian,  viz. 

GA -- Z T G Z .  

(C) Obtain an approximate  solution to the system of equations 

Z T G Z p A  = - - z T g  (20) 

by solving the sys tem 

GApA = -- gA. 

(D) Compute  the search direction p = ZpA. 

h = [ - -  ~V T I 0]g = gs - WTg~ = gs - s T " J T .  (17) 

The form of equation (16) suggests that 

[ - W  r I 0]G (18) 

can be regarded as a '°reduced" Hessian and h = [--WT I 0]g a reduced 

gradient, with (16) giving a Newton step in the independent variables AXs. Note 

that Ilhll = 0 becomes  a necessary condition for a stationary point on the current 
set of active constraints,  which, if the reduced Hessian is nonsingular, implies 

that Ilax~ll = o.  
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(E) Perform a iinesearch to find an approximation to a*,  where 

f (x  + ,~*p) = min f (x  + ap). 
o~ 

{x +ap feasible} 

Apart from having full column rank, eq. (19) is (algebraically) the only 
constraint on Z and thus Z may take several forms. The particular Z cor- 
responding to our own procedure is of the form 

,m 
Z : = | I | } s  (21) 

L 0 ] } n - m - s .  

This is a convenient  representat ion which we will refer to for exposition 
purposes in later sections, but we emphasize that computationally we work only 
with S and a triangular (LU) factorization of B. The matrix Z itself is never 
computed. 

For many good reasons Gill and Murray [25] advocate a Z whose columns are 
orthonormal (ZTZ = I). The principal advantage is that transformation by such a 
Z does not introduce unnecessary ill-conditioning into the reduced problem (see 
steps A through D above, in particular equation (20)). The approach has been 
implemented in programs described by Gill, Murray and Picken (e.g. [27]), in 
which Z is stored explicitly as a dense matrix. Extension to large sparse linear 
constraints would be possible via an LDV factorization (see Gill, Murray and 
Saunders [29]) of the matrix [B S]: 

[B S] = [L O]DV 

where L is triangular, D is diagonal and DJ/2V is orthonormal,  with L and V 

being stored in product  form. However  if S has more than 1 or 2 columns, this 
factorization will always be substantially more dense than an LU factorization 
of B. Thus on the grounds of efficiency we proceed with the Z in (21). At the 

same time we are conscious (from the unwelcome appearance of B -1) that B 
must be kept as well-conditioned as possible. 

3. Implementation 

The basic ideas were presented in the previous section; their actual im- 
plementation in a computer  code requires considerably more effort. The code 
itself is a Fortran program called MINOS which is designed to be almost 
machine-independent and to operate primarily within main memory.  The central 
part of MINOS is an efficient implementation of the revised simplex method 
which incorporates several recent  advances in linear programming technology. 
These include: 
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(1) Fast  input of the constraint  data in standard MPS format  ~ u s i n g  hash 

tables (in particular, the method of Brent [6]) for storing row-names and distinct 
matrix coefficients. 

(2) Compac t  in-core storage of the constraint  matrix A using an elementary 
version of Kalan 's  super-sparseness  techniques [36]. 2 

(3) Upper  and lower bounds on all variables. 
(4) A version of Hel lerman and Rarick 's  "bump and spike" algorithm p4 [33] 

for determining a sparse L U  factorization of the basis matrix B. 3 

(5) Imbedding of non-spike columns of L within A. 
(6) Stable updating of the LU factors  of B by the method of Bartels and 

Golub [2, 3] as implemented by Saunders [52]. 

(7) An improved " C H U Z R "  procedure  for phase 1 of the simplex method,  as 
implemented by J.A. Tomlin, following ideas due to Rarick [48] and Conn [10]. 

For optimization of the reduced function we have implemented a quasi- 

Newton  procedure  using the factorization GA = RTR (R upper triangular) to 

approximate  ZTGZ. This parallels the methods described by Gill and Murray 

[21, 22], Gill, Murray and Pitfield [28] which are based on the Cholesky fac- 
torization GA = L D L  T (L lower tr iangular,D diagonal). Stable numerical methods 

based  on orthogonal t ransformat ions  are used for modifying R during uncon- 

strained steps and for certain other modifications to R whenever  the basis 

matrices B and S change. (Operations on R rather than L and D are somewhat  

easier to implement  and involve little loss of efficiency in this context.) 
Another  module which is fundamental  to the success of the present  algorithm 

is an efficient and reliable linesearch. The particular routine used is a Fortran 
translation of Gill and Murray ' s  Algol 60 procedure  delinsearch, 4 which uses 

successive cubic interpolation with safeguards as described in [24]. This routine 

evaluates the object ive function and its gradient s imultaneously when required. 

We have left just cme parameter  available to the user to change at his/her 
discretion, namely,  eta (0 .0<  eta < 1.0) which controls the accuracy  of the 

search. This flexibility has proved to be very sat isfactory in practice. 

3.1. Summary of  procedure 

An outline of the optimization algorithm is given in this section; some of the 
finer points of implementat ion are discussed in later sections. 

1 This is the CONVERT data format described in user's manuals for the IBM systems MPS/360, 
MPSX and MPSX/370. 

2 This has been dispensed with in later versions of MINOS, since in a pure Fortran code it results 
in only moderate storage savings and considerable loss in execution speed. 

3 The block-triangular structure of B is currently being found using subroutines MC 13 and MC21 
from the Harwell Subroutine Library (Duff [14], Duff and Reid [151). Hellerman and Rarick's p3 [32] 
is then applied to each block. 

4 More recently implemented as Fortran subroutines LNSRCH and NEWPTC by Gill et al. [59]. 
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A s s u m e  we  have the fol lowing:  

(a) A feasible vec to r  x sat isfying [B S N]x  = b, l <- x <-  u .  

(b) The  co r re spond ing  func t ion  value f ( x )  and gradient  vec tor  g ( x ) =  
[gB gs gN] T. 

(c) The  number  of  superbas ic  variables,  s (0----- s -< n - m). 

(d) A fac tor iza t ion,  L U ,  of  the m x m basis matrix B. 

(e) A fac tor iza t ion ,  RTR, of  a quas i -Newton  approx imat ion  to the s × s matrix 

ZTGZ. (Note  that  G, Z and ZTGZ are never  actual ly  computed . )  

(f) A vec to r  rr sat isfying BT~ - = gB. 

(g) The  reduced-grad ien t  vec to r  h = gs - S T~r. 

(h) Small posi t ive c o n v e r g e n c e  to lerances  T O L R G  and T O L D J .  

Step 1. (Test  for  conve rgence  in the cur ren t  subspace) .  I f  ]]h]] > T O L R G  go to 

step 3. 

Step 2. ( " P R I C E " ,  i.e., es t imate  Lagrange  multipliers,  add one superbasic) .  
(a) Calcula te  I = gu - NTTr. 

(b) Select  A q l < - T O L D J  (Aq2> + T O L D J ) ,  the largest  e lements  of  I cor-  

r esponding  to variables at their lower.  (upper) bound.  If  none,  S T O P ;  the 

K u h n - T u c k e r  neces sa ry  condi t ions  for  an opt imal  solution are satisfied. 

(c) Otherwise~ 

(i) Choose  q = ql or q = q2 co r re spond ing  to IAq] = max(lAql [, Ixq21), 
(ii) add a o as a new co lumn of  S;  

(iii) add Aq as a new e lement  of  h ;  

(iv) add a suitable new co lumn to R. 

(d) Increase  s by  1. 

(Note:  M I N O S  also has a M U L T I P L E  P R I C E  opt ion which allows more  than 

one nonbas ic  variable to b e c o m e  superbasic .)  

Step 3. (Compute  direct ion of  search,  p = Zps). 

(a) Solve RTRps = - h .  

(b) Solve LUpB = - S p s .  

(c) Set p = s • 

Step 4. (Ratio test, " C H U Z R " ) .  

(a) Find am,x-> 0, the greates t  value of  a for  which  x + ~p is feasible.  

(b) If  C~max = 0 go to step 7. 

Step 5. (Linesearch) .  

(a) Find a, an approx imat ion  to c~*, where  

f ( x  + ~*p)=  min f ( x  + Op). 
0<0--<C~ma x 

(b) Change  x to x +  ap  and set f and g to their values at the new x. 
Step 6. (Compute  reduced  gradient,  /~ = ZTg). 
(a) Solve UTL'rrr = gB. 



50 B.A. Murtagh, M.A. Saunders/ Linearly constrained optimization 

(b) Compute  the new reduced gradient , /~ = gs - ST~r. 

(c) Modify R to reflect some variable-metric recursion on RTR, using a, ps 

and the change in reduced g r a d i e n t , / ~ - h .  

(d) Set h =/~. 

(e) If  a < Otma x go to step I. No new constraint  was encountered so we remain 
in the current  subspace.  

Step 7. (Change basis if necessary;  delete one superbasic).  Here  o~ = Ogrnax and 

for some p (0 < p --< m + s) a variable corresponding to the p-th column of [B S] 
has reached one of its bounds.  

(a) If a basic variable hit its bound ( 0 < p  -< m), 

(i) interchange the p-th and q-th columns of 

respectively,  where q is chosen to keep B nonsingular (this requires a vector  
~-p which satisfies urLr~rp = ep); 

(ii) modify L, U, R and ~ to reflect this change in B; 
(iii) compute  the new reduced gradient h = gs - sTy ' ;  

(iv) go to (c). 

(b) Otherwise,  a superbasic  variable hit its bound (m < p - <  m + s). Define 
q = p  - m .  

(c) Make the q-th variable in S nonbasic at the appropriate  bound, thus: 
(i) delete the q-th columns of 

(ii) restore R to triangular form. 

(d) Decrease  s by 1 and go to step 1. 

3.2. Work  per iteration 

The work involved in one pass through the above procedure is roughly equivalent 

to 
(a) one iteration of the revised simplex method on a linear program of 

dimensions m × n, plus 
(b) one iteration of a quas i -Newton algorithm on an unconstrained optimiza- 

tion problem of dimension s. 

Note  that the P R I C E  operation (step 2) is per formed only when I[hll is 
sufficiently small, which means an average of about once every 5 iterations. This 
is a typical f requency in commercial  LP systems using multiple pricing. The 
extra work involved in the quasi -Newton steps is somewhat  offset by the fact  
that a basis change (step 7(a)) occurs only occasionally,  so the growth of 
nonzeros in the LU factors  of B is minimal. Thus if s is of reasonable size and if 
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f (x )  and g(x) are inexpensive to compute ,  iterations on a large problem will 

proceed at about  the same time per iteration as if the problem were entirely 

linear. (The total number  of iterations required is, of course,  undetermined.)  

3.3. Updating the matrix factorizations 

As in the simplex method,  a stable factorization of the basis matrix B is 
important  for solving equations of the form By = b or BTz = c. Here  we use an 

implementat ion of the method of Bartels and Golub [2,3] for updating the 
factorizat ion B = LU.  Details are given in Saunders [52]. We normally re- 

factorize B every 50 iterations regardless of the number  of modifications tha t  

have been made to L and U. 

The remainder  of this section is devoted to the methods used for modifying R 
in the approximat ion RTR ~- ZTGZ whenever  x and/or Z change. The nota t ion/~ 

will be used to represent  R after any particular modification. To ensure stability, 

all modifications to R have been implemented using e lementary orthogonal 

matrices Qj.k (plane rotations) whose non-trivial e lements  are at the intersection 
of the j-th and k-th rows and columns, and are of the form 

[c  _ s ] ,  where c2+ S 2 =  1. 

3.3.I. Quasi -Newton updates 

Any of the usual updating formulas  (e.g., Davidon [13], Fletcher and Powell 

[18], Broyden [7]) can be used to account  for a nonzero change in the superbasic 
variables (step 6). The two we have exper imented with are: 

The Complementary D F P  formula 

C O M D F P  _l~Tl~ RTR 1 T 1 T 
- - y y  + h ~ s h h  • • ~_ + otyTps 

The Rank-one  Formula 

R A N K I :  /~T/~ = RTR + 1  aw Yps wwT' 

where y = / ~ -  h, the change in reduced gradient, and w = y + ah. 

The C O M D F P  formula  can be used on both constrained and unconstrained 

steps (a = amax and a < a . . . .  resp.) An al'ternative is to use RANK1 on con- 
strained steps as long as it results in a positive definite recursion,  otherwise 
COMDFP.  Systematic  testing may perhaps  revea l  a slight advantage for one 
strategy over  another,  but in the interest of simplicity we now use C O M D F P  in 
either case. 

If a = a m a x  and area× is very small it is possible that the computed  value of y 
will be meaningless.  Following the suggestion of M.J.D. Powell  (private corn- 
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munication) we allow for this by monitoring the change in directional derivative 
and modifying R only if 

hTps > 0.9h Tps. 

The same test is used even if a < amax. Since hVps < 0 ,  this means that R is 
modified if 

gT 
- -  P s  r / - = ~ <  0.9, 
In Psi 

which will normally be true if a value eta <0 .9  is given to the parameter  of 

procedure delinsearch,  which uses 171 -< eta as one criterion for a successful 
search. (Note that gyp = gTZp s = hVps.) The test also ensures that the COMDFP 
update will preserve positive definiteness. 

Both COMDFP and RANK1 are implemented by means of the following 

routines: 

R1ADD: I]~TII~ = R T R  + VI3 T, 

R 1 S U B :  ~ T / ~  = R T R  _ v v T .  

These use forward and backward sweeps of plane rotations respectively, as 
described in Saunders [51, Ch. 7], Gill, Golub, Murray and Saunders [20]. 

3.3.2. Bas i s  change (step (7(a)) 
Suppose that the p-th basic variable is interchanged with the qth superbasic 

variable. Once R has been updated to account for the move which is causing the 
basis change (step 6), a further "stat ic" update is required to allow for a 
corresponding change in the definition of Z. The relationship between the new 
null-space matrix and the old is given by 

= Z(I + eqV T) (22) 

where eq is the q-th unit vector and v is defined by the equations 

BT~'gp = ep, 

y = sT~'I'p, 

yq = yTeq, 

1 
v = - - -  (y + eq). 

Yq 

Derivation of this result is rather lengthy but the quantities involved are easily 
computed and they serve several purposes: 

(1) The j-th element of y, viz. 

Yi = yTej = ~ S e i  = eTpB-I(Sej) 

is the pivot element that would arise if the j-th column of S were selected for the 
basis change. Hence y can be used as a guide for determining q. Broadly 
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speaking, the condition of B will be preserved as well as possible if yq is the 

largest available pivot element (assuming the columns of S have similar norm). 
In practice it is reasonable to relax this condition slightly in favor of choosing a 
superbasic variable that is away from its bounds. Thus, with j ranging over the 
superbasic set, we define q by the following: 

Ymax = max lYJ[, 

d i = min{lxi - l i ] ,  ]x i - ufl} (for each j), 

dq = max{ 4 []yj]--- 0.1ymax}. 

This rule is numerically more reliable than that suggested by Abadie [1], which in 
the above notation is equivalent to maximizing [ys]di. 

(2) ~ can be used to update the vector  rr that is computed in step 6(a). (after 
the last move but before the current basis change). Thus 

g- = ~r + (/Tq/yq)~'p 

where /;q is the appropriate element of the reduced gradient/7 in step 6(b). This 
is the updating formula suggested by Tomlin [54] for use within the simplex 
method. Nonlinearity is irrelevant here since the basis change is simply a 
redefinition of Z. 

(3) 7rp can also be used to update the LU factors of B (Tomlin [54]). 
Conversely,  the updated LU factors of B can provide ~'p more cheaply than 
solving BTcgp ---- ep (Goldfarb [31]). 

The modification to R corresponding to eq. (22) is accomplished as follows: 

R1PROD: /~T/~ = (I + v e T ) R T R ( 1  + eqvT). 

If rq is the q-th column of R, this expression may be written 

/~T/~ = (RT+ v r T ) ( R  + rqvW). 

A partial backward sweep of plane rotations Oq,i ( J  = q - 1 . . . . .  1) reduces rq to a 
multiple of eq, filling in the q-th row of R. A multiple of v is added to this row, 
and then a partial forward sweep of rotations Qj,q (j  = 1 . . . . .  q - 1) restores R to 
triangular form. (We could use other methods designed for a general modifying 
matrix I + w v  T, but the method described takes full advantage of the special case 
w = eq. It also allows some rotations in the backward sweep to be skipped if the 
corresponding elements of rq are zero.) 

3.3.3.  R e m o v a l  o f  o n e  s u p e r b a s i c  v a r i a b l e  ( s t ep  (7c)) 
Removal of the q-th superbasic variable implies deletion of the corresponding 

column of R. The resulting upper-Hessenberg matrix is restored to triangular 
f o r m / ~  by a partial forward sweep of plane rotations Qjd+l. (J = q . . . . .  s - l): 

DELCOL:  Qs 1,s' '" Qq, q+l | q - t h  column = . 
Ldeleted 
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3.3.4. Addition of one superbasic variable (step 2(c)) 
When a vector aq is added to S the new null-space matrix is 

r-B-lao] 
; ~ = [ Z z ] ,  w h e r e z =  L ;s J. 

Following Gill and Murray ([25], pp. 76-77) we approximate the vector Gz by 
finite differences, thus: 

v - g ( x  + 6 z ) -  g ( x )  = G z  ÷ o( llzll2), 
6 

where 6 is a small step in the direction z, for example, 6 = ex/2/l[z[I. The following 

procedure can then be used to generate a new column for R: 

Solve RTr= ZTv, 
ADDCOL: Compute o- = zTv --Ilrl[ 2, o = Io-I 1/2, 

Take / ~ = [ R  r l .  
P 

(Note that z v is best computed as the last element of zTv rather than from z 
and v directly.) 

Comparison of 

and 

R T [R r [RTR ZTv] 
LvYz zTv J 

Z T FZTGZ ZTGz] 

shows that if RTR provides a good approximation to ZTGZ then eXt~ has some 
chance of being a useful approximation to ZTGZ. The main work involved here 
is in computing B-laq, the gradient vector g(x + 6z), and the reduction ZTv. This 
work is essentially wasted if the expression for ~r is not positive, which may 

happen for many reasons, e.g., if z~TGZ is not positive definite at the current 
point, if R is a poor approximation, or if R is very ill-conditioned. In such cases 
we set r = 0 and take p to be either (zTv) 1]2 o r  L0 ,  thus: 

/ ~ = [ R  0p]. (23) 

One advantage, at least, is that the subsequent search direction will move the 
new superbasic variable Xq away from its bound, so there is no danger of cyc l ing  
o n  Xq. 

With many problems the condition ~ -< 0 occurs only occasionally or not at all. 
Computing r and p as shown then leads to significantly fewer iterations than if 
(23) were used all the time. On the other hand, cr > 0 is not a sufficient condition 
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for success. In particular if the current  point is near a singularity in g(x) the 

difference approximat ion to Gz is unlikely to be good. (An example is when f (x )  

has terms of the form xi logxj  and the constraints include bounds such as 
xj -> 10 10.) In such cases,  r and p prove  to be consistently very large, resulting in 

an R which is much more ill-conditioned than R. Subsequent  iterations make 
little progress until the associated quasi -Newton updates restore the condition of 

/~. In contrast,  use of (23) with p = 1.0 gives rapid progress.  

Let  dm,× and drain be the largest and smallest diagonals of R. As a heuristic 
means of detecting the above situation we monitor  Hvl[ and resort  to (23) 

whenever  ]lvl[ is significantly larger than dmax or  smaller than drain. (As a side 
benefit, the expense  of computing ZXv and r is then avoided.) A final similar test 
is made on p. 

In contrast  to all previous discussion, the A D D C O L  procedure  just described 

embodies  a discernible level of ad hoc strategy. H o w e v e r  our experience with it 
has been good in general, and the combined use of R1PROD, D E L C O L  and 

A D D C O L  certainly retains more information than resetting /~ = I at every 
change to the se t  of active constraints.  

3.4. Convergence tests 

Another  area in which strategy plays an important  practical role is in deciding 

when to stop optimizing in the current  subspace and consider moving away f rom 

one of the active constraints.  Here  we must  enlarge on the use of T O L R G  in 
Section 3.1; recall that in step 1 of the algorithm, T O L R G  was tested to 

determine if it was time to est imate Lagrange multipliers (reduced costs,  A) and 
add one more superbasic variable. 

Suppose that after  a particular iteration we have 

AXs = the change in the superbasic variables,  

Af  = the change in f, 

~r = the new pricing vector,  

h = ZTg, the new reduced gradient, 

Ex, e¢, T O L R G ,  Eg = positive scalars, 

e = machine precision, 

and let Ti be a set of tests (with values true or false) defined as follows: 

TI: ][AXsl[ ~ (~  + 6~/2)(1 + I]xsl[), 

T2: [Af] ~ (~t ÷ ~)(1 + Ill), 

T3: [[hll--< T O L R G ,  
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In place of the simple test 

i f  T3 then compute  A, 

the following combined test is used: 

if (T~ and T2 and T3) o r  T4 then compute  A. 

The general form of this test follows that used in the algorithm lcmna of Gill, 

Murray and Picken [27], in which the scalars identified here by Ex, Ei, T O L R G  
and E~ are fixed at certain " loose"  values initially and are then reset  to "t ight"  

values once it appears  that the optimal set of active constraints has been 

identified. Use of ex and E I, in this way is justified in the sense that it seems 
reasonable to remain on the present  set of active constraints as long as 

significant progress is being made. Use of E~ in T4 allows for the possibility that 
the last step, though significant, may have moved  x very close to an opt imum in 

the current  subspace (e.g., the quasi -Newton procedure should achieve this 
regularly if f ( x )  is quadratic). 

In adopting the above strategy we have found it beneficial to vary T O L R G  

dynamically.  In the current  version of MINOS this is done as follows. Suppose 

that the "bes t "  Lagrange multiplier at some stage is Aq = gq-~-Taq. If the 

corresponding variable xq becomes superbasic,  the reduced gradient for the 
expanded subspace will be 

Now recall f rom eq. (14) that unless h is reasonably small, even one further 

iteration could change ~- and hence Aq significantly. Therefore  as a safeguard 
(which is admittedly heuristic) we accept  )t o and move into the new subspace 

only if Ilh[l~-< 0 91Aql, which implies 

IIhll  <- 0 911 il  

We then reset  T O L R G  for the new subspace to be 

T O L R G  = n llt;ll  
where r/g E (0, 1) is a parameter  which is available to the user to set at his own 
will (and peril!). A typical value is ~Tg = 0.2 and its function is analogous to that 
of the parameter  eta in procedure  delinsearch. For  example  a small value of ~/g 
allows the user to insist on an accurate  optimization within each subspace.  

4. Use of first and second derivatives 

In the discussion so far, and in the existing implementat ion,  we have assumed 
that both f ( x )  and its gradient g(x) are available via a user-writ ten subroutine. 
We do not store the matrix Z explicitly and we make no use of the Hessian 
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matrix G(x) .  (Instead we maintain a quasi-Newton approximation to the reduced 

Hessian, ZT GZ.) 

Some discussion of potential alternatives is in order. The principal factor  here 

is the expense of transforming even one vector  by Z or Z T. In fact, if the 
constraint matrix A has many rows, most of the work per iteration lies in 
computing p = Zps and h = ZTg. (These calculations are analogous to the 
FTRAN and BTRAN operations in linear programming.) 

(1) When g is not available it would often be practical to form an approxima- 
tion ~ using finite differences along the coordinate directions, e.g., 

~j = f ( x  + Bei) - f ( x )  .~ gJ. 

(The number of ~s's to be computed this way is equal to the number of nonlinear 
variables.) Just one transformation with Z T is then required, viz. h--~ ZTff. For 
greater accuracy,  central differences may be used, at the cost of extra function 

calculations. 
(2) An alternative that is normally viable would be to difference f ( x )  along the 

directions zj: 

f~s : f ( x  + 8z i )  - f ( x )  ~. z T g  : hi 
6 

where zi = Zei, j = 1 . . . . .  s. Unfortunately  this approach is not practical for large 
problems, since storage limitations prevent  saving all s vectors zi, and the work 
involved rules out recomputing them when required. 

(3) If g(x) and perhaps G(x)  are available, the system of equations 

ZTGZps = - - Z T g  (24) 

could sometimes be treated by a modified Newton method (Gill and Murray [23], 
Gill, Murray and Picken [27]). This involves either computing Z T G Z  directly: 

Z T G Z  = [zTGzi] 

or differencing g(x)  thus: 

g(x + ~zi) - g(x) ~_ Vei, 
v i  = (~ 

Z T G Z  ~ I ( Z T V  + VTZ).  

However  the need for the vectors z i again presents severe difficulties for large 
problems. 

(4) If G is large and sparse, eq. (24) could sometimes be solved iteratively by 
the method of conjugate gradients (e.g., see Gill and Murray ([25], p. 133)). 
Storage is minimal since the method avoids forming the matrix Z v G Z  or any 
approximation to it. However  if Z has s columns the method would typically 
require O(s) products of the form ZT(G(Zv) ) .  
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(5) A final (more promising) alternative is to abandon eq. (24) and to generate 
a search direction by a nonlinear conjugate-gradient  type method such as that  of 

Fletcher and Reeves  [19] (e.g., see Gill and Murray ([25], p. 134)). This takes the 
form 

(a) / ; = - - z T ~  

(b) if restart  then ps = - h  

else Os = - h  + tips 

(c) p = Z~s 

where ps, ps are the previous and current  search directions for the superbasics.  
Several methods have been suggested for determining the scalar/3, e.g., 

Fletcher and Reeves  [19]: /3 = 1[/~[12/Hhl[2; 
Polak and Ribiere [46]: /3 =/~T(/~_ h)/[[hll2; 

Perry [45]: /3 = /;T(/;_ h - a p S ) / p T ( h -  h). 

In MINOS,  one of these methods is used if, at a particular iteration, the number  

of superbasics s is larger than the dimension specified for the matrix R. A restart  

occurs whenever  the set of active constraints changes; also every  s + 1 iterations 
in the (rare) event  that more than s consecutive steps are unconstrained. More 

refined restart  procedures  (e.g., Powell  [47]) will require future investigation. In 

the present  environment  the above formulas  for /3 have all per formed rather 

similarly (though seldomly as well as quasi-Newton).  An example  is given in 
Subsection 5.2.4. 

To summarize:  the reduced-gradient  approach allows maximum efficiency in 

dealing with large sparse linear constraints,  but at the same time it alters our 

perspect ive on fhe relative merits of Newton,  quas i -Newton and conjugate 

gradient methods for handling the nonlinear objective.  Even if the exact Hessian 
matrix were available (unless it were of very special form) it seems that we 

could not afford to use it. In this context  we find that quasi -Newton methods 
take on a new and unexpected importance.  The storage required for the Hessian 

approximat ion is often modera te  even when there are many linear or nonlinear 
variables, as long as the total number  of superbasic  variables is of order 200 

(say) or less. Otherwise,  a conjugate-gradient  method remains the only viable 

alternative. 

4.1. Quadrat ic  programs  

The above s tatements  do not hold if G happens to be a constant  matrix. In this 
case the relation 

RTR = z T G z  (25) 

can often be maintained exact ly without recomputing Z T G Z  every iteration. 
Such a specialization has been described by Gill and Murray [26], along with the 
measures  required to allow for z T G z  being indefinite. The present  quasi- 
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Newton  algorithm could conceivably be specialized as follows: 

(1) Initialize R at the start  of a run to satisfy (25). (This is trivial if there are 

no superbasics;  it may not be possible for an arbitrary set of superbasics since 

ZTGZ could be indefinite.) 
(2) In procedure  A D D C O L  (Subsection .3.3.4) compute  the vector  v = Gz 

directly rather than by differencing the gradient. 

(3) Suppress the quasi -Newton updates to R (COMDFP and RANK1 in 

Subsection 3.3.1). 
H o w e v e r  it is worth  noting that the difference approximat ion to v = Gz will be 

essentially exact,  so that if (25) ever  holds at any stage then A D D C O L  will 

maintain (25) a lmost  exactly when a column is added to Z. A step a = 1.0 along 

the next search direction will then move  x to the new subspace minimum. Now 

it is easily verified that the subsequent  quas i -Newton updates will cause no net 

change to R (ignoring slight rounding error in the case of COMDFP) .  The scene 
is therefore  set for  another  exact  minimization during the next iteration. 

The above  sequence will be broken if a constraint  forces some step a to be 

less than 1.0. The quasi -Newton updates will then alter R, (25) will cease to hold 
and the next subspace minimization may require more than one iteration. In 

certain applications this could be undesirable,  but more generally the robustness  

and self-correcting propert ies  of quas i -Newton methods offer compensat ing 

advantages  including the ability to start with any matrix R (such as I). Suffice to 

say that the general algorithm comes close to being " ideal"  on quadratic 
programs,  without undue inefficiency or any specialized code. 

5. Computational experience 

Although the prime application of this research is to large-scaie linear pro- 

grams with a nonlinear object ive function, we have endeavored to at tack a 

comprehens ive  range of problems to aid development  of the algorithm. It is 

unfor tunate  that large-scale nonlinear problems are not widely reported in the 
literature, so that many of the results discussed here refer  to problems which are 

solely within the authors '  own purview. A brief description of each problem is 
given. Fuller details of constraint  data, starting points, etc. must  be left to a 
future report.  

Three of the starting options provided in MINOS are as follows: 

(1) (CRASH) A triangular basis matrix is extracted f rom the matrix A, without 
regard to feasibility or optimality. The number  of superbasic variables is set to 
zero. 

(2) (Initialization of nonlinears) The user specifies values for any number  of 
the nonlinear variables. These are made superbasic.  CRASH is then applied to 
the linear variables in A. 

(3) (Restart) A previously-saved bit-map is loaded (specifying the state of all 
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variables), along with values for any superbasic variables. This allows con- 
tinuation of a previous run, or an advanced start on a different but related 
problem (for example the bounds l -< x -< u may be changed). 

Options 2 and 3 normally reduce run time considerably, but the results 
reported here were obtained using the "cold start" option 1 unless otherwise 
stated. A normal phase 1 simplex procedure was used to obtain an initial feasible 

solution. 

5.1. Description of test problems 

(1) Colville No. I. This is problem no. 1 in the Colville series of test problems 
[9]. The objective is a cubic function of 5 variables. 

(2) Colville No. 7. This is a quartic function of 16 variables. 
(3) Chemical Equilibrium Problem. This particular example of the chemical 

equilibrium problem was obtained from Himmelblau [34], problem 6. The 

objective is of the form 

(Note. Slight corrections were made to the constraint data in [34, p. 401]. The 
group of coefficients {-1, -2 ,  -3 ,  -4} in column 13 was moved to column 14, and 
a similar group in column 12 was moved to column 13.) 

(4) Weapon Assignment Problem. This problem appeared originally in 
Bracken and McCormick's  book on nonlinear programming applications [5], and 
more recently in Himmelblau [34], problem 23. The objective function is 

aSiJ - 1 f ( x )  = ui ,, 
j=l 

with unknowns xii -> 0. We have ignored the requirement that the xij be integers. 
(5) Structures Optimization (Q.P.). This is a series of quadratic programming 

problems in structures design [58]. 
(6) Oil Refinery Investment Model. This is typical of many linear programming 

based oil refinery models, but has the added feature that nonlinear returns to 
scale of capital equipment costs are defined explicitly. The particular problem 
cited in the results has 15 nonlinear variables of this kind. 

(7) Energy Submodel. A related research project  on the development  of a 

national energy model [43] has given rise to a fairly complex submodel of the 
electricity sector. The 24 nonlinear variables are mainly the capacities of the 
different types of generating equipment. 

(8) Expanded Energy System Model. An expanded model which covers all 
aspects of energy production and distribution on a national level has been 
developed [53]. This is a medium-scale linear program with 91 nonlinear 
variables in the objective; again these are mainly nonlinear returns to scale of 
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capital equipment costs of the form 

91 

cix~ ~ with 0 < pi < 1 (around 0.6 to 0.7). 
i=1 

(9) Energy Model RS8. This is a !6-period energy model which was for- 
mulated from the outset  as a nonlinear programming problem (see Manne 
[38, 39]). The objective is of the form 

16 a ±  + 
;_~3x;y] linear terms 

with one pair of nonlinear variables xi, yi for each time period (those for the first 
two periods being known). This was the first large problem available to us and is 
of interest for several reasons. In particular it provides a comparison with a 
(considerably larger) linear approximation to the problem, in which each term 
ai/x;y~ was discretized over  a two-dimensional grid. Further details are given in 

Subsection 5.2.2. 
(10) Energy Model ETA (Manne [40]). This is a further development  of the 

previous model. The objective is the same as in RS8 with the addition of ~1;6-i z~ 
for 16 variables zi, 

5.2. Results 

The results summarized in Table 1 were obtained on a Burroughs B6700 
computer  using single-precision arithmetic (e ~- 10-11). The standard time ratios 
quoted are relative to the processor time required for a standard timing program 
given in Colvilte [9]. The standard time for unoptimized B6700 Fortran is 83.07 
seconds. 

The results in Table 2 onwards were obtained using double precision arith- 
metic on an IBM 370/168 (~ ~ 10-15). The standard time for this machine with the 

IBM Fortran IV (H extended) compiler with full optimization is 3.92 seconds. A 
fairly accurate line-search was normally used (eta =0.01) and the quantity 

Ilhll/[l~'ll w a s  reduced to 10 -6 or less at optimality. 

5.2.1. The chemical equilibrium problem (problem 3) 
This example provided useful experience in dealing with logarithmic sin- 

gularities in g(x). The objective consists of functions of the form 

f : ~i  xigi' 

whose gradient components  are 

gi = c; + In xi 
~ x j  

1 
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If  some xi is zero, the corresponding term in f may be correct ly p rogrammed as 
(xigi) = 0. However ,  gi itself is then analytically minus infinity (unless all xi = 0), 

and any particular numerical  value given to it in the gradient subroutine will 

result in a discontinuity in gi as x~ moves  (even slightly) away from zero. To 
avoid this difficulty we ran the problem with a uniform lower bound e~ ~ 10 -k on 
all variables,  for various values of k in the range 4 to 10. (The problem is 

infeasible with x i -  10-3.) Results are summarized in Table 3, where each run 
continued f rom the run before using starting option 3. The minimal change in 

f ( x )  is typical of dual geometr ic  programs,  but values xj = 10 -6 and x i = 10 -1° 

(say) have very different physical interpretations and therefore  warrant  more 

than the usual degree of resolution. 

Table 3 
Solution of problem 3 with various bounds xg -> e~ 

Lo-bound No. of Evaluations a Estimate of b 
ek superbasics f(x) Iterations a of f, g ~(RTR) 

10 4 10 -1910.366249932 46 130 6 x 105 
10 5 14 -1910.381531984 21 75 5 x 106 
10 6 17 -1910.382772060 22 72 1 x 108 
10 7 19 -1910.382872190 22 88 1 x 109 
10 8 23 -1910.382880402 22 90 6 X 10 7 

10 ~9 24 --1910.382881101 22 90 4 X 108 
10 -I° 24 -1910.382881161 5 27 8 N 107 

160 572 

a Additional to previous run. 
b A lower bound on the condition number of the reduced Hessian approximation RTR is the 

square of the ratio of the largest and smallest diagonals of R. 

In Table 4 we list the largest solution value x13 and the 8 smallest values in the 

order by which they became superbasic.  The most  significant variation is in x45. 
Most values have stabilized by the time k reaches 10. 

For  interest,  the last row of Table 4 shows the values obtained by the program 
SUMT as reported by Himmelblau  [34]. For  the 8 smallest x i the two results 

differ in all significant figures. (This may be due to differences in the constraint  

data, errors in satisfying the general constraints,  or simply different machine 
precisions.) 

Note  that when xi is small the diagonal elements  of the Hess ian  matrix are 
Ogi/Oxj = O(1/xj). H o w e v e r  these large elements  affect the r e d u c e d  Hessian only 
when xj is basic or superbasic.  The safest  s trategy for these problems therefore  
appears  to be the following: 

(a) Solve the problem with relatively large lower bounds,  e.g., xi-> 10 -4. A 
near-optimal object ive value will be obtained quickly because  the reduced 
Hessian remains reasonably well-conditioned. 
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(b) Reduce the lower bounds, perhaps in stages, to O(E 1/2) or O(E2/3). There 

will be essentially no further  basis changes, and in roughly descending order the 

small x s will leave their bounds one by one to become superbasic. 
Solution of problem 3 with x i >- 10 -4 followed by x s >- 10 -1° required a total of 103 
iterations and 452 function/gradient evaluations as shown in Table 2. Solution 
with x s >-10 10 directly required 188 iterations and 886 evaluations, primarily 
because the Hessian approximation became very ill-conditioned before a near- 
optimal point was reached. 

As a natural precaution against rounding error the linesearch procedure 
del insearch avoids evaluating f ( x + a p )  with values of a that are very close 
together. On the IBM 370/168 this prevented resolution below 10 -~°, although for 
this special case f ( x )  could easily be evaluated using higher precision arithmetic. 
The limiting factor would then become the condition of the reduced Hessian. 

5.2.2. Energy  model  R S 8  

Problem 9a in Table 2 refers to the original linearized version of the energy 
model, in which each term of the form 

a 

f ( x ,  y) = xy2 

was approximated over a 6 × 6 grid. It has twice as many columns and matrix 
coefficients as the nonlinear version 9b. Note that construction of the small but 
reasonably fine grid required good prior estimates of the optimal values for the 
14 (x, y)  pairs. 

Run 9b is included to illustrate the rather poor performance that could be 
encountered during early "de-bugging" of a nonlinear problem. Some relevant 
facts follow. 

(a) The bounds on nonlinear variables were conservative in the sense that the 
lower bounds were far removed from the optimal solution values and there were 
no upper bounds. 

(b) No attempt was made to initialize the nonlinears at reasonable values 
between their bounds. 

(c) The y variables proved to be badly scaled. 
To enlarge on the last point, the Hessian matrix of f ( x ,  y) above is 

G(x,  y) = =x-~y 4 y y x 
x X/~x x/~x 

and it follows from the diagonal elements of the triangular factor that G has a 
condition number K(G) > -- y2/2x2. Now the optimal values for  the x and y 
variables are all O(1) and O(100) respectively,  which might normally be con- 
sidered well-scaled; however  it means that K(G) is at least O(104), which in this 
case is unnecessarily large. Replacing each y by a variable ; = y/100 gave a 
significant improvement  as shown by run 9c in Table 2. 
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5.2.3. Energy model ETA 
It  is in runs  10a-10c tha t  the  rea l  benef i t s  f r om a non l inea r  op t imize r  b e c o m e  

appa ren t .  This  is an e x a m p l e  of  the  m o d e l - b u i l d e r ' s  s t a n d a r d  m o d e  of  o p e r a t i o n  

w h e r e i n  n u m e r o u s  runs  are  m a d e  on a s e q u e n c e  of  c lose ly  r e l a t ed  p r o b l e m s  wi th  

the  so lu t ion  f rom one  run  p rov id ing  a s ta r t ing  po in t  for  the  next .  H e r e ,  p r o b l e m  

10a (the ba se  case)  was  so lved  f rom a cold  s ta r t  wi th  ce r ta in  va r i ab le s  f ixed at  

ze ro ;  for  run  10b the  b o u n d s  were  r e l a x e d  on 16 of  these  va r i ab le s ,  and  for  run 

10c a fu r the r  10 va r i ab le s  were  f reed .  (In this  pa r t i cu l a r  s e q u e n c e  the  s ta r t ing  

so lu t ions  for  10b and  10c were  c lea r ly  feas ib le .  This  is de s i r ab l e  bu t  not  

essen t ia l . )  

C o m p a r e d  to so lv ing  l inea r i zed  a p p r o x i m a t i o n s  by  s t a n d a r d  l inear  p r o g r a m -  

ming,  some  of  the  obv ious  a d v a n t a g e s  are :  

(1) r e d u c e d  p r o b l e m  s ize;  

(2) r e d u c e d  v o l u m e  of  o u t p u t  (in the  a b s e n c e  of  a r e p o r t  wr i te r ) ;  

(3) ab i l i ty  to p r e p a r e  d a t a  for  s eve ra l  runs  in a d v a n c e ,  s ince  the re  are  no grid 

va r i ab le s  to be m o v e d  or  ref ined;  

(4) the  so lu t ion  o b t a i n e d  ac tua l ly  so lves  the  c o r r e c t  p r o b l e m .  

5.2.4. Comparison of quasi-Newton and conjugate gradients 
The  w e a p o n  a s s i g n m e n t  p r o b l e m  (no. 4) was  c h o s e n  here  as a r e a s o n a b l y  

smal l  bu t  non t r iv ia l  e x a m p l e .  A b o u t  60 changes  in the  ac t ive  cons t r a in t  se t  o c c u r  

dur ing  the i t e ra t ions .  

The  p a r a m e t e r s  be ing  va r i ed  are  

r / =  l i ne sea rch  a c c u r a c y  t o l e r a n c e  (eta in Sec t ion  3); 

rig = the  t o l e r a n c e  for  m i n i m i z a t i o n  wi thin  each  s u b s p a c e  (see S u b s e c t i o n  3.4). 

Reca l l  tha t  smal l  va lues  of  these  p a r a m e t e r s  mean  a c c u r a t e  min imiza t ion .  F o r  

Tab le  5 we set  rig = 0.5 and c o m p a r e d  the no rma l  q u a s i - N e w t o n  a lgo r i thm wi th  

each  of  the  c o n j u g a t e  g r ad i en t  a lgor i thms  for  va r ious  va lues  of  ri. W e  find tha t  

q u a s i - N e w t o n  is c o n s i s t e n t l y  supe r io r  and  is qui te  r o b u s t  wi th  r e s p e c t  to 

d imin i sh ing  l i ne sea r ch  a c c u r a c y ,  in c o n t r a s t  to the  con juga t e  g rad ien t  (cg) 

Table 5 
Iterations and function + gradient evaluations for the weapon assignment prob- 
lem; "O~ = 0.5; various linesearch tolerances ~/ 

quasi-Newton 

0.001 123 375 
0.01 139 255 
0.l 122 281 
0.2 137 300 
0.3 148 291 
0.4 156 289 
0.5 153 242 
0.9 207 256 

Fletcher-Reeves Polak-Ribi~re Perry 

226 840 222 806 198 713 
223 728 237 770 259 849 
227 671 238 709 228 665 
250 721 252 749 218 578 
239 648 248 688 307 814 
282 742 296 853 309 762 
275 695 394 1079 612 1411 
694 987 >999 >2748 818 968 
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a lgor i thms .  U n f o r t u n a t e l y  the re  is no d i sce rn ib l e  t r end  tha t  s ingles  out  one  cg 

a lgo r i thm ove r  ano the r .  

F o r  Tab le  6 the  s ame  runs  we re  m a d e  wi th  ~/g = 0.01. (A more  a c c u r a t e  

s u b s p a c e  m i n i m i z a t i o n  m a k e s  the  s e q u e n c e  of  c o n s t r a i n t  changes  more  con-  

s i s ten t  b e t w e e n  runs.)  This  s m o o t h e d  ou t  the  i t e ra t ion  and  f u n c t i o n - e v a l u a t i o n  

coun t s ,  bu t  aga in  the re  is no e v i d e n c e  to f a v o r  any  pa r t i cu l a r  cg a lgor i thm.  

Table 6 
Iterations and function + gradient evaluations for the weapon assignment problem; 
n~ = 0.01 (more accurate minimization within each subspace) 

quasi-Newton Fletcher-Reeves Polak-Ribi~re Perry 

0.001 220 615 
0.01 219 548 
0.1 209 461 
0.2 218 445 
0.3 229 411 
0.4 262 441 
0.5 262 377 
0.9 288 345 

493 1628 440 1514 440 1495 
498 1520 471 1520 466 1476 
560 1597 508 1461 530 1568 
582 1589 531 1517 585 1626 
612 1557 634 1752 611 1625 
748 1831 691 1821 752 1788 
691 1633 818 1993 894 1974 

>999 > 1855 >999 > 1658 >999 >1156 

To i l lus t ra te  tha t  the  cg m e t h o d s  are  no t  to be d i s c a r d e d  i m m e d i a t e l y ,  in 

Fig.  1 we  have  p lo t t ed  the  va lue  of  f (x )  aga ins t  i t e r a t ion  n u m b e r  for  the  

s e c o n d  row and  first two co lumns  of  bo th  Tab les  5 and 6. Thus  a r e a s o n a b l y  

a c c u r a t e  l i ne sea r ch  was  used  for  all cases  (~ /=  0.01). C u r v e s  1 and  2 c o m p a r e  

q u a s i - N e w t o n  wi th  F l e t c h e r - R e e v e s  us ing ~/g = 0.5, and  cu rves  3 and 4 do the 

same  wi th  ~/g = 0.01. 

The  first two  cu rves  show s m o o t h  p r o g r e s s  for  bo th  m e t h o d s .  N o t e  tha t  

a l t h o u g h  the  cg m e t h o d  lags beh ind  it has  e s sen t i a l l y  ident i f ied  the  final se t  of  

ac t ive  cons t r a in t s  b y  the  t ime the  q u a s i - N e w t o n  m e t h o d  c o n v e r g e s  ( i t e ra t ion  

139). The  s t e p - f u n c t i o n  shape  of  cu rves  3 and 4 i l lus t ra tes  the  w o r k  tha t  is 

w a s t e d  in conve rg ing  to min ima  wi th in  each  subspace .  O t h e r w i s e  t hese  cu rves  

e f f ec t ive ly  p l a c e  a magn i fy ing  glass  on the tail  end  of  the  o the r  runs .  The  

t e rmina l  c o n v e r g e n c e  of  the  cg m e t h o d  is c l ea r ly  v e r y  s low and it is he re  tha t  

be t t e r  r e s t a r t  p r o c e d u r e s  such  as in Powe l l  [47] should  p r o v e  to be  m o s t  

va luab le .  

6. Comparison with other algorithms 

M a n y  of  the  ideas  d i s c u s s e d  here  were  e i ther  impl ic i t  in or  an t i c ipa t ed  by  the  

w o r k  of  W o l f e  [56, 57], F a u r e  and H u a r d  [16] and  M c C o r m i c k  [41, 42]. H o w e v e r  

the re  have  s ince  been  such  s ignif icant  a d v a n c e s  in i m p l e m e n t a t i o n  t echn iques  

for  the  n u m e r i c a l  m e t h o d s  i n v o l v e d  tha t  the re  is l i t t le  po in t  in mak ing  de ta i l ed  

c o m p a r i s o n s .  A l g o r i t h m i c a l l y ,  one  i m p o r t a n t  d i f fe rence  is our  e m p h a s i s  on 
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keeping the number of superbasic variables as small as possible and changing 
that number by a small amount  (usually 1) each i tera t ion:  With the quasi- 

Newton approach, this strategy retains maximum information about the reduced 
Hessian. Even though the proof  of convergence [41] for the variable-reduction 
method depended on regular resetting of the reduced Hessian approximation, we 
never set R = I except  at the start of a run or in the rare event  that the linesearch 
fails to find an improved point (in which case both R and the true reduced 
Hessian are normally very ill-conditioned). Zig-zagging is controlled effectively by 

the tolerance ~g and the logic described in Subsection 3.4. Rates of convergence 
within each subspace follow from analogous proofs for unconstrained 
algorithms. 

Since the present algorithm possesses superlinear convergence properties and 
can handle rather arbitrary sized problems, it should be competitive with other 
algorithms designed specifically for  quadratic programming (e.g., Wolfe [55], 
Beale [4], Cottle [11], Lemke [37]). In particular a comparison with Beale's 
method would be relevant,  since it is reported that his method is efficient for 
problems which have a small number of quadratic terms. If there are m a n y  

quadratic terms and if the optimal solution has most of the variables away from 
their bounds, then a sparse-matrix implementation of one of the complemen- 
tarity methods will be preferable (e.g., Tomlin's implementation [60] of Lemke 's  
method). 

A final comment  on problems which have a large sparse set of general 
constraints Ax->-b  in relatively few variables (thus A is m × n with m > n). 
Ideally, methods designed specifically for this case u s e  an active constraint 
strategy and avoid transforming the whole of A each iteration (e.g., the version 
of the reduced-gradient algorithm in Wolfe [57], and the implementation of 
Buckley [8]). The improved efficiency of these methods is analogous to the 
benefit that might be realized in the purely linear case if the dual simplex method 
were applied to the dual linear program. Nevertheless,  given the use of sparse- 
matrix techniques, solution by the present (standard form) method will be quite 
efficient unless m ~> n. In any event,  with n moderate by assumption, this is one 
class of problems where the number of superbasic variables (and hence the 
dimension of the reduced Hessian) will always remain manageably small. 

7. Conclusion 

Our primary aim has been to combine the simplex algorithm with quasi- 
Newton techniques in an efficient and reliable computer  code for solving large, 
linearly constrained nonlinear programs. The full potential of conjugate-gradient 

5 In the original reduced-gradient algorithm the set of superbasics was effectively redefined each 
iteration as being the current set plus those nonbasic variables whose reduced costs were of the 
correct sign. 
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m e t h o d s  in this  c o n t e x t  r ema ins  to be e x p l o r e d ,  bu t  the  n e c e s s a r y  f r a m e w o r k  

now exis t s .  This  f r a m e w o r k  will a lso  a c c o m m o d a t e  ex t ens ion  to p r o b l e m s  wi th  a 

m o d e r a t e  n u m b e r  of  non l inea r  cons t r a in t s  (e.g.,  Jain,  L a s d o n  and  S a u n d e r s  [35]). 

In  the  m e a n t i m e  the code  is app l i cab l e  to an i m p o r t a n t  c lass  of  p r o b l e m s ,  and  it 

shou ld  p rov ide  a new d i m e n s i o n  of  u t i l i ty  to an a l r e a d y  subs tan t i a l  b o d y  of  

l a rge - sca le  l inear  p r o g r a m m i n g  mode ls .  
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