Mathematical Pfogramming 14 (1978) 41-72.
North-Holland Publishing Company

LARGE-SCALE LINEARLY CONSTRAINED OPTIMIZATION*

B.A. MURTAGH

University of New South Wales, Sydney, Australia

M.A. SAUNDERS

DSIR, Wellington, New Zealand
Stanford University, Stanford, CA, U.S.A.

Received 27 September 1976
Revised manuscript received 11 July 1977

An algorithm for solving large-scale r.onlinear programs with linear constraints is presented.
The method combines efficient sparse-matrix techniques as in the revised simplex method
with stable quasi-Newton methods for handling the nonlinearities. A general-purpose produc-
tion code (MINOS) is described, along with computational experience on a wide variety of
problems.

Key words: Large-scale Systems, Linear Constraints, Linear Programming, Nonlinear
Programming, Optimization, Quasi-Newton Method, Reduced-gradient Method, Simplex
Method, Sparse Matrix, Variable-metric Method.

1. Introduction

This paper describes our efforts to develop a nonlinear programming algorithm
for problems characterized by a large sparse set of linear constraints and a
significant degree of nonlinearity in the objective function. It has been our
experience that many linear programming problems are inordinately large
because they are attempting to approximate, by piecewise linearization, what is
essentially a nonlinear problem. It also appears that many real-life problems are
such that only a small percentage of the variables are involved nonlinearly in the
objective function. Thus we are led to consider problems which have the
following standard form:

minimize F(x) = f(x™) + ¢"x, (M
subject to Ax = b, (2
I=x=u 3)

where A is m X n, m = n. We partition x into a linear portion x* and a nonlinear

* This research was supported by the U.S. Office of Naval Research (Contract N00014-75-C-0267),
the National Science Foundation (Grants MCS71-03341 A04, DCR75-04544), the U.S. Energy
Research and Development Administration (Contract E(04-3)-326 PA #18), the Victoria University
of Wellington, New Zealand, and the Department of Scientific and Industrial Research Wellington,
New Zealand.

41

42 B.A. Murtagh, M.A. Saunders| Linearly constrained optimization

portion x":

xN
x=[%]
The components of x™ will normally be called the nonlinear variables. Note that
A and ¢ operate on all variables x. In some cases the part of ¢"x involving xN
may be incorporated into f(x"); in other cases ¢ may be zero. We assume that
the function f(x") is continuously differentiable in the feasible region, with
gradient

ViGN = g(x™),

and we assume that both f and g can be computed at any feasible point x".

The research work reported here was stimulated by some of the deficiencies in
the algorithms of Murtagh and Sargent [44, 50] and Goldfarb [30], especially
when applied to large-scale systems. The resulting algorithm is related to the
reduced-gradient method of Wolfe [56] and the variable-reduction method of
McCormick [41,42]. It also draws much from the unconstrained and linearly-
constrained optimization methods of Gill and Murray [21, 22, 25].

In essence the algorithm is an extension of the revised simplex method
(Dantzig [12]). To use some of the associated terminology, it might be described
as an extension which permits more than m variables to be basic. Because of the
close ties with linear programming (LP) we have been able to incorporate into
our implementation many of the recent advances in LP technology. The result is
a computer program which has many of the capabilities of an efficient LP code
and is also able to deal with nonlinear terms with the power of a quasi-Newton
procedure.

1.1. Notation

Partitioning x and F(x) into linear and nonlinear terms is of considerable
practical importance; for descriptive purposes, however, it is convenient to
denote F(x) and VF(x) simply by f(x) and g(x).

With a few conventional exceptions, we use upper-case letters for matrices,
lower-case for vectors and Greek lower-case for scalars. The quantity € >0
represents the precision of floating-point arithmetic.

2. Basis of the method

2.1. Basic solutions; justification for standard form

Before proceeding to the nonlinear problem, we need to introduce some linear
programming background. In particular, equations (1)—(3) with f(x") =0 are the
standard form for stating linecar programs and for solving them in practical

B.A. Murtagh, M.A. Saunders| Linearly constrained optimization 43

implementations of the simplex method. A basic solution is characterized by
having at most m ‘‘basic” variables lying between their bounds while the
remaining n—m ‘“nonbasic” variables are equal to one bound or other. An
associated square basis matrix B is drawn from the columns of the constraint
matrix A, and as the simplex method proceeds the columns of B are replaced
one at a time.

Note that it is assumed in the standard form that A and x contain a full
identity matrix and a full set of slack variables, respectively. (General equality
and inequality constraints are accommodated by placing suitable upper and
lower bounds on the slacks.) There are many practical reasons for retaining the
standard form here. Full justification would require much implementation
background, but very briefly, a sparse triangular factorization of B can be
maintained more easily if columns (but not rows) of B are altered. Further,
although the total number of variables is apparently greater, it is very easy to
take advantage of the unit vectors associated with slacks, whenever B is
re-factorized.

2.2. Superbasic variables

One virtue of the concept of basic solutions is the emphasis thereby given to
the upper and lower bounds, I = x < u. It is misleading to regard these as ‘‘sparse
constraints’”; more importantly, they serve directly to eliminate a large percen-
tage of the variables. The simplex method is therefore free to focus its attention
on transforming (factorizing) just B, rather than the whole of A. (When B is
large and sparse, this is problem enough.)

With nonlinear problems we cannot expect an optimal point to be a basic
solution. However, if the number of nonlinear variables is small, it seems
reasonable to suppose that an optimal solution will be “nearly’” basic. Thus, as a
simple generalization we introduce the notion of superbasic variables and
partition the set of general constraints (2) as follows:

m s n-m-s
XB
Ax = B S N xs |=b. 4
XN

basics super- nonbasics
basics

The matrix B is square and nonsingular as in the simplex method, S is m X s
with 0=s=pn—m, and N is the remaining columns of A. The associated
variables xp, x5, xy are called the basics, superbasics and nonbasics respec-
tively. Both basics and superbasics are free to vary between their bounds. The

44 B.A. Murtagh, M.A. Saunders/| Linearly constrained optimization

name is chosen to highlight the superbasics’ role as “driving force’’; they may be
moved in any direction at all (preferably one that improves the objective value),
and the basics are then obliged to change in a definite way to maintain feasibility
with respect to the constraints Ax = b.

Our expectation that solutions will often be “nearly’ basic is confirmed by the
following theorem:

Theorem 1. Suppose a nonlinear program has t variables occurring nonlinearly
(in either the objective or the constraints). An optimal solution exists in which the
number of superbasic variables s satisfies s <t.

Proof (due to A. Jain). Let the nonlinear variables be fixed at their optimal
values. The remaining problem is a linear program for which a basic solution
exists (s =0). The result follows trivially if the nonlinear variables are now
regarded as superbasic in the original problem. (At first sight s = ¢, but if any of
the nonlinear variables are actually on a bound we can label them nonbasic, and
then s <t.)

2.3. Derivation of method

We will assume that f(x) can be expanded in a Taylor’s series with remainder
of second order:

f(x+A4x) = f(x) + g(x)TAx + 3Ax"G(x + yAx)Ax (5)

where 0 =y =<1, and G(x + yAx) is the Hessian matrix of second partial deriva-
tives evaluated at some point between x and x + Ax. Note that G is a constant
matrix if f(x) is a quadratic function.

Let us partition Ax and g(x) corresponding to the partitioning of A.

If f(x) were truly quadratic, we could obtain a constrained stationary point at
x + Ax by requiring two properties of the step Ax:

Property 1.
AXB
&5 V] axs| =0 ©)
0 0 I
AxN

l.e., the step remains on the surface given by the intersection of the active

constraints.
Property 2.

8B AxB BT 0
g |+ G| Axs |=| ST 0 [f\‘] (7
8N AxN NT I

B.A. Murtagh, M.A. Saunders| Linearly constrained optimization 45

i.e., the gradient at x + Ax (given by the left hand-side of (7)) is orthogonal to the
surface of active constraints and is therefore expressible as a linear combination
of the active constraint normals.

For a more general function f(x), the step Ax may not lead directly to a
stationary point, but we shall use Properties 1 and 2 to determine a feasible
descent direction.

From (6) we have:

Axy =0, 8)
and

Axp = — WAxg,)]
where

W=RB"'S. (10)
Thus,

Ax = [I"V}Axs.
0

Equation (7) simplifies when multiplied by the matrix

I 00
-WT T 0] (11)
0 0 I

First it provides an expression for estimates of the Lagrange multipliers for the
general constraints:

B'u=gs+[1 0 O]Gl: F/}Axg. (12)
0

Note that when [|Axs|| = 0 (which will mean x is stationary) we have
BT =gy _ (13)

in which case u is analogous to the pricing vector s in the revised simplex
method. (From now on we shall denote the solution of (13) by #.) Next we have
from (7) that

-W
A=gyv—NTu+[0 0 I]G{ I :,Axs (14)
0
and again when |Axg|| = 0 this equation reduces to
A=gyv—N'm (15

-which is analogous to the vector of reduced costs in linear programming.
The third result from equation (7), following pre-multiplication by the matrix

46 B.A. Murtagh, M.A. Saunders| Linearly constrained optimization

(11), is an expression for the appropriate step:

[-W'T101G| I |[Axs=-h (16)
0
where
h=[-W'10lg=gs— Wigg=gs—S"m (17)

The form of equation (16) suggests that

W' 1 O]G[[(18)
0

can be regarded as a “reduced” Hessian and h=[-W"' I 0lg a reduced
gradient, with (16) giving a Newton step in the independent variables Axg. Note
that ||| = 0 becomes a necessary condition for a stationary point on the current
set of active constraints, which, if the reduced Hessian is nonsingular, implies
that ||Axs|| = 0.

2.4. Summary

Recently, Gill and Murray [25] have considered a class of algorithms in which
the search direction along the surface of active constraints is characterized as
being in the range of a matrix Z which is orthogonal to the matrix of constraint
normals. Thus, if Ax = b is the current set of n — s active constraints, Z is an
n X s matrix such that

AZ =0. (19)

This characterization may be used to describe several published algorithms,
which are discussed and compared in [25] as well as in the review papers by
Fletcher [17] and Sargent [49].

In the notation of [25], the main steps to be performed at each iteration are as
follows. (They generate a feasible descent direction p.)

(A) Compute the reduced gradient g, = Z"g.
(B) Form some approximation to the reduced Hessian, viz.

Ga=272"GZ.
(C) Obtain an approximate solution to the system of equations
Z'GZp,=—-2"¢ (20)
by solving the system
Gapa = —ga.
(D) Compute the search direction p = Zp,.

B.A. Murtagh, M.A. Saunders| Linearly constrained optimization 47

(E) Perform a iinesearch to find an approximation to a*, where

f(x+a*p)= min f(x+ap).

o
{x+ap feasible}

Apart from having full column rank, eq. (19) is (algebraically) the only
constraint on Z and thus Z may take several forms. The particular Z cor-
responding to our own procedure is of the form

- —B7'Sim
z=| 1 1=1 1 s (21)
0 0 n—m-—s.

This is a convenient representation which we will refer to for exposition
purposes in later sections, but we emphasize that computationally we work only
with S and a triangular (LU) factorization of B. The matrix Z itself is never
computed.

For many good reasons Gill and Murray [25] advocate a Z whose columns are
orthonormal (Z7.Z =1). The principal advantage is that transformation by such a
Z does not introduce unnecessary ill-conditioning into the reduced problem (see
steps A through D above, in particular equation (20)). The approach has been
implemented in programs described by Gill, Murray and Picken (e.g. [27]), in
which Z is stored explicitly as a dense matrix. Extension to large sparse linear
constraints would be possible via an LDV factorization (see Gill, Murray and
Saunders [29]) of the matrix [B S]:

[B S]=[L 0]DV

where L is triangular, D is diagonal and D"V is orthonormal, with L and V
being stored in product form. However if S has more than 1 or 2 columns, this
factorization will always be substantially more dense than an LU factorization
of B. Thus on the grounds of efficiency we proceed with the Z in (21). At the
same time we are conscious (from the unwelcome appearance of B™') that B
must be kept as well-conditioned as possible.

3. Implementation

The basic ideas were presented in the previous section; their actual im-
plementation in a computer code requires considerably more effort. The code
itself is a Fortran program called MINOS which is designed to be almost
machine-independent and to operate primarily within main memory. The central
part of MINOS is an efficient implementation of the revised simplex method
which incorporates several recent advances in linear programming technology.
These include:

48 B.A. Murtagh, M.A. Saunders| Linearly constrained optimization

(1) Fast input of the constraint data in standard MPS format' using hash
tables (in particular, the method of Brent [6]) for storing row-names and distinct
matrix coefficients.

(2) Compact in-core storage of the constraint matrix A using an elementary
version of Kalan’s super-sparseness techniques [36].

(3) Upper and lower bounds on all variables.

(4) A version of Hellerman and Rarick’s “bump and spike” algorithm P* [33]
for determining a sparse LU factorization of the basis matrix B.}

(5) Imbedding of non-spike columns of L within A.

(6) Stable updating of the LU factors of B by the method of Bartels and
Golub [2, 3] as implemented by Saunders [52].

(7) An improved “CHUZR” procedure for phase 1 of the simplex method, as
implemented by J.A. Tomlin, following ideas due to Rarick [48] and Conn [10].

For optimization of the reduced function we have implemented a quasi-
Newton procedure using the factorization G, = R"R (R upper triangular) to
approximate Z*GZ. This parallels the methods described by Gill and Murray
[21,22], Gill, Murray and Pitfield [28] which are based on the Cholesky fac-
torization G4 = LDL" (L lower triangular,D diagonal). Stable numerical methods
based on orthogonal transformations are used for modifying R during uncon-
strained steps and for certain other modifications to R whenever the basis
matrices B and S change. (Operations on R rather than L and D are somewhat
easier to implement and involve little loss of efficiency in this context.)

Another module which is fundamental to the success of the present algorithm
is an efficient and reliable linesearch. The particular routine used is a Fortran
translation of Gill and Murray’s Algol 60 procedure delinsearch,* which uses
successive cubic interpolation with safeguards as described in [24]. This routine
evaluates the objective function and its gradient simultaneously when required.
We have left just one parameter available to the user to change at his/her
discretion, namely, eta (0.0 < eta <1.0) which controls the accuracy of the
search. This flexibility has proved to be very satisfactory in practice.

3.1. Summary of procedure

An outline of the optimization algorithm is given in this section; some of the
finer points of implementation are discussed in later sections.

" This is the CONVERT data format described in user’s manuals for the IBM systems MPS/360,
MPSX and MPSX/370.

% This has been dispensed with in later versions of MINOS, since in a pure Fortran code it results
in only moderate storage savings and considerable loss in execution speed.

*The block-triangular structure of B is currently being found using subroutines MC13 and MC21
from the Harwell Subroutine Library (Duff [14], Duff and Reid [15)). Hellerman and Rarick’s P* [32]
is then applied to each block.

* More recently implemented as Fortran subroutines LNSRCH and NEWPTC by Gill et al. [59].

B.A. Murtagh, M.A. Saunders| Linearly constrained optimization 49

Assume we have the following:

(a) A feasible vector x satisfying [B S N]x=b, I<x=u.

(b) The corresponding function value f(x) and gradient vector g(x)=
(gs gs gn]”

(¢) The number of superbasic variables, s (0=<s=<n —m).

(d) A factorization, LU, of the m X m basis matrix B.

(e) A factorization, R'R, of a quasi-Newton approximation to the s X s matrix
Z'GZ. (Note that G, Z and Z"GZ are never actually computed.)

(f) A vector 4 satisfying B"m = g;.

(g) The reduced-gradient vector h = gs— S'7.

(h) Small positive convergence tolerances TOLRG and TOLDJ.

Step 1. (Test for convergence in the current subspace). If ||| > TOLRG go to
step 3.

Step 2. (“PRICE”, i.e., estimate Lagrange multipliers, add one superbasic).

(a) Calculate A = gy — N7 »

{b) Select A, <—-TOLDJ (A, >+TOLDJ), the largest elements of A cor-
responding to variables at their lower. (upper) bound. If none, STOP; the
Kuhn-Tucker necessary conditions for an optimal solution are satisfied.

(c) Otherwise,

(i) Choose q = q; or q = g, corresponding to |A,] = max(|Ay|, |Ag]);
(ii) add a, as a new column of S;
(iii) add A, as a new element of h;
(iv) add a suitable new column to R.

(d) Increase s by 1.

(Note: MINOS also has a MULTIPLE PRICE option which allows more than
one nonbasic variable to become superbasic.)

Step 3. (Compute direction of search, p = Zps).

(2) Solve R"Rps = —h.

(b) Solve LLUpp = —Sps.

PB
(c) Setp=|ps|
0

Step 4. (Ratio test, “CHUZR™).

(a) Find ap., =0, the greatest value of a for which x + ap is feasible.
(b) If amax =0 go to step 7.

Step 5. (Linesearch).

(a) Find a, an approximation to a*, where

f(x+a*p)= min f(x+ 6p).
0<f=apay
(b) Change x to x+ ap and set f and g to their values at the new x.
Step 6. (Compute reduced gradient, h = Z7g).
(a) Solve UL % = g

50 B.A. Murtagh, M.A. Saunders| Linearly constrained optimization

(b) Compute the new reduced gradient, k = g5 — ST

(c) Modify R to reflect some variable-metric recursion on R'R, using e, ps
and the change in reduced gradient, i — h.

(d) Set h = h.

(e) If @ < apy, g0 to step 1. No new constraint was encountered so we remain
in the current subspace.

Step 7. (Change basis if necessary; delete one superbasic). Here @ = o, and
for some p (0 <p =m + 5) a variable corresponding to the p-th column of [B S]
has reached one of its bounds.

(a) If a basic variable hit its bound (0 < p < m),

(i) interchange the p-th and g-th columns of

[l o [

respectively, where q is chosen to keep B nonsingular (this requires a vector
m, which satisfies U'L"m, = ¢,);
(i) modify L, U, R and = to reflect this change in B;
(iii) compute the new reduced gradient h = gs — S™w;
(iv) go to (c). :
(b) Otherwise, a superbasic variable hit its bound (m <p =<m + s). Define
q=p-m.
(c) Make the g-th variable in .S nonbasic at the appropriate bound, thus:
(i) delete the g-th columns of

L] o [5e]

(ii) restore R to triangular form.
(d) Decrease s by 1 and go to step 1.

3.2. Work per iteration

The work involved in one pass through the above procedure is roughly equivalent
to

(a) one iteration of the revised simplex method on a linear program of
dimensions m X n, plus

(b) one iteration of a quasi-Newton algorithm on an unconstrained optimiza-
tion problem of dimension s.

Note that the PRICE operation (step 2) is performed only when [k| is
sufficiently small, which means an average of about once every S iterations. This
is a typical frequency in commercial LP systems using multiple pricing. The
extra work involved in the quasi-Newton steps is somewhat offset by the fact
that a basis change (step 7(a)) occurs only occasionally, so the growth of
nonzeros in the LU factors of B is minimal. Thus if s is of reasonable size and if

B.A. Murtagh, M.A. Saunders| Linearly constrained optimization 51

f(x) and g{(x) are inexpensive to compute, iterations on a large problem will
proceed at about the same time per iteration as if the problem were entirely
linear. (The total number of iterations required is, of course, undetermined.)

3.3. Updating the matrix factorizations

As in the simplex method, a stable factorization of the basis matrix B is
important for solving equations of the form By = b or B"z = ¢. Here we use an
implementation of the method of Bartels and Golub [2,3] for updating the
factorization B = LU. Details are given in Saunders [52]. We normally re-
factorize B every 50 iterations regardless of the number of modifications that
have been made to L and U.

The remainder of this section is devoted to the methods used for modifying R
in the approximation RTR ~ Z"GZ whenever x and/or Z change. The notation R
will be used to represent R after any particular modification. To ensure stability,
all modifications to R have been implemented using elementary orthogonal
matrices Qjy (plane rotations) whose non-trivial elements are at the intersection
of the j-th and k-th rows and columns, and are of the form

c s
[] where ¢*+s2=1.
s —c

3.3.1. Quasi-Newton updates

Any of the usual updating formulas (e.g., Davidon [13], Fletcher and Powell
[18], Broyden [7]) can be used to account for a nonzero change in the superbasic
variables (step 6). The two we have experimented with are:

The Complementary DFP formula

COMDFP: R'R = R'R+—— yy"+—— ha™.

ay'ps h'ps

The Rank-one Formula

RANKI: R'R=R'R +—— ww,
aw Ps
where y = h — h, the change in reduced gradient, and w = y + ah.

The COMDFP formula can be used on both constrained and unconstrained
steps (@ = @max and @ < ey, resp.) An alternative is to use RANK1 on con-
strained steps as long as it results in a positive definite recursion, otherwise
COMDFP. Systematic testing may perhaps reveal a slight advantage for one
strategy over another, but in the interest of simplicity we now use COMDFP in
either case.

If @ = amax and amay is very small it is possible that the computed value of y
will be meaningless. Following the suggestion of M.J.D. Powell (private com-

B.A. Murtagh, M.A. Saunders/ Linearly constrained optimization 52

munication) we allow for this by monitoring the change in directional derivative
and modifying R only if

h"ps> 0.9k ps.

The same test is used even if @ < am.. Since h'pg <0, this means that R is
modified if
_—h'ps

- lh PS|

< 0.9,

which will normally be true if a value eta <0.9 is given to the parameter of
procedure delinsearch, which uses |n|<eta as one criterion for a successful
search. (Note that g"p = g"Zps = h"ps.) The test also ensures that the COMDFP
update will preserve positive definiteness.

Both COMDFP and RANK1 are implemented by means of the following
routines:

R1ADD: R™R=R"R + v0",
R1SUB: R™R =R'R - vo™.

These use forward and backward sweeps of plane rotations respectively, as
described in Saunders [51, Ch. 7], Gill, Golub, Murray and Saunders [20].

3.3.2. Basis change (step (7(a))

Suppose that the p-th basic variable is interchanged with the gth superbasic
variable. Once R has been updated to account for the move which is causing the
basis change (step 6), a further ‘static” update is required to allow for a
corresponding change in the definition of Z The relationship between the new
null-space matrix and the old is given by

Z=Z(1+ep") (22)

where e, is the g-th unit vector and v is defined by the equations

T _
B'm, = e,
_ QT
y=S8m,
_ T
Yo=Y €

1
v=——(y+e,).
yq(y)

Derivation of this result is rather lengthy but the quantities involved are easily
computed and they serve several purposes:
(1) The j-th element of y, viz.
yi=y'e;=) Se; = e, B '(Se;)

is the pivot element that would arise if the j-th column of S were selected for the
basis change. Hence y can be used as a guide for determining ¢g. Broadly

B.A. Murtagh, M.A. Saunders| Linearly constrained optimization 53

speaking, the condition of B will be preserved as well as possible if y, is the
largest available pivot element (assuming the columns of S have similar norm).
In practice it is reasonable to relax this condition slightly in favor of choosing a
superbasic variable that is away from its bounds. Thus, with j ranging over the
superbasic set, we define g by the following:

Ymax = max ijL
d; = min{|x; — I, |x; — w} (for each j),
dq = Hﬂax{dj l Iy]l = 0'1ymax}'

This rule is numerically more reliable than that suggested by Abadie [1], which in
the above notation is equivalent to maximizing |y;|d;.

(2) @, can be used to update the vector & that is computed in step 6(a). (after
the last move but before the current basis change). Thus

T=w+ (Eq/yq)ﬂ,,

where h, is the appropriate element of the reduced gradient i in step 6(b). This
is the updating formula suggested by Tomlin [54] for use within the simplex
method. Nonlinearity is irrelevant here since the basis change is simply a
redefinition of Z.

(3) =, can also be used to update the LU factors of B (Tomlin [54]).
Conversely, the updated LU factors of B can provide @, more cheaply than
solving B"@, = ¢, (Goldfarb [31]).

The modification to R corresponding to eq. (22) is accomplished as follows:

RIPROD: R"R = (I+ ve])R"R(I + ¢,v").
If r, is the g-th column of R, this expression may be written
R™R =R+ vr))(R + ro").

A partial backward sweep of plane rotations Q,; (j =g —1, ..., 1) reduces r, to a
multiple of e, filling in the g-th row of R. A multiple of v is added to this row,
and then a partial forward sweep of rotations Q,, (j =1, ..., g — 1) restores R to
triangular form. (We could use other methods designed for a general modifying
matrix I+ wo”, but the method described takes full advantage of the special case
w = ¢,. It also allows some rotations in the backward sweep to be skipped if the
corresponding elements of r, are zero.)

3.3.3. Removal of one superbasic variable (step (7¢))

Removal of the g-th superbasic variable implies deletion of the corresponding
column of R. The resulting upper-Hessenberg matrix is restored to triangular
form R by a partial forward sweep of plane rotations Qiin.(G=¢,...,s—1)

R with

DELCOL: Q1 - Qggu1 [q—th coluan = [R]
0
deleted

54 B.A. Murtagh, M.A. Saunders| Linearly constrained optimization

3.3.4. Addition of one superbasic variable (step 2(c))
When a vector a, is added to S the new null-space matrix is

B ~B'a,
Z =17 z], where z= &
0

Following Gill and Murray ([25], pp. 76-77) we approximate the vector Gz by
finite differences, thus:

0= g(x + 5;)_ g(x) — GZ + O(SHZ”z),
where & is a small step in the direction z, for example, 8 = €"?/||z||. The following
procedure can then be used to generate a new column for R:

Solve R'r=Z"y,
ADDCOL: | Compute o =z"v —||r|’ p = |o|"%

Take R = [R r].
p

(Note that z v is best computed as the last element of Z"p rather than from z
and » directly.)
Comparison of

=1 R” R r R'™R Z™»
T = =
R'R [rT p][p] [DTZ z'v]

T T T

7°GZ = [fT]G[Z 2] = [ZngZZ fTGGzZ]

shows that if R™R provides a good approximation to Z'GZ then R'R has some
chance of being a useful approximation to Z*GZ. The main work involved here
is in computing B 'a,, the gradient vector g(x + 8z), and the reduction Z . This
work is essentially wasted if the expression for o is not positive, which may
happen for many reasons, e.g., if Z'GZ is not positive definite at the current
point, if R is a poor approximation, or if R is very ill-conditioned. In such cases
we set r =0 and take p to be either (z"v)"? or 1.0, thus:

R= [R 2]. (23)

and

One advantage, at least, is that the subsequent search direction will move the
new superbasic variable x, away from its bound, so there is no danger of cycling
on X,

With many problems the condition o =0 occurs only occasionally or not at all.
Computing r and p as shown then leads to significantly fewer iterations than if
(23) were used all the time. On the other hand, o > 0 is not a sufficient condition

B.A. Murtagh, M.A. Saunders| Linearly constrained optimization 55

for success. In particular if the current point is near a singularity in g(x) the
difference approximation to Gz is unlikely to be good. (An example is when f(x)
has terms of the form x;logx; and the constraints include bounds such as
x; = 107"%) In such cases, r and p prove to be consistently very large, resulting in
an R which is much more ill-conditioned than R. Subsequent iterations make
little progress until the associated quasi-Newton updates restore the condition of
R. In contrast, use of (23) with p = 1.0 gives rapid progress.

Let dg., and d;, be the largest and smallest diagonals of R. As a heuristic
means of detecting the above situation we monitor ||¢| and resort to (23)
whenever |v|| is significantly larger than d.. or smaller than d... (As a side
benefit, the expense of computing Z v and r is then avoided.) A final similar test
is made on p.

In contrast to all previous discussion, the ADDCOL procedure just described
embodies a discernible level of ad hoc strategy. However our experience with it
has been good in general, and the combined use of RIPROD, DELCOL and
ADDCOL certainly retains more information than resetting R =1 at every
change to the set of active constraints.

3.4. Convergence tests

Another area in which strategy plays an important practical role is in deciding
when to stop optimizing in the current subspace and consider moving away from
one of the active constraints. Here we must enlarge on the use of TOLRG in
Section 3.1; recall that in step 1 of the algorithm, TOLRG was tested to
determine if it was time to estimate Lagrange multipliers (reduced costs, A) and
add one more superbasic variable.

Suppose that after a particular iteration we have

Axs = the change in the superbasic variables,
Af = the change in f,
ar = the new pricing vector,
h = Z"g, the new reduced gradient,
€, €5, TOLRG, ¢, = positive scalars,

€ = machine precision,

and let T; be a set of tests (with values true or false) defined as follows:

T [Axs] =< (e + €)1 + |xs])),
T,: |Af] = (& + €)1 +[f]),
Ts: |k < TOLRG,

Ta: k]l = elar].

B.A. Murtagh, M.A. Saunders| Linearly constrained optimization 56

In place of the simple test
if T then compute A,
the following combined test is used:
if (T and T, and T;) or T4 then compute A.

The general form of this test follows that used in the algorithm [cmna of Gill,
Murray and Picken [27], in which the scalars identified here by e,, €, TOLRG
and €, are fixed at certain “loose” values initially and are then reset to “‘tight”
values once it appears that the optimal set of active constraints has been
identified. Use of €, and ¢ in this way is justified in the sense that it seems
reasonable to remain on the present set of active constraints as long as
significant progress is being made. Use of €, in T, allows for the possibility that
the last step, though significant, may have moved x very close to an optimum in
the current subspace (e.g., the quasi-Newton procedure should achieve this
regularly if f(x) is quadratic).

In adopting the above strategy we have found it beneficial to vary TOLRG
dynamically. In the current version of MINOS this is done as follows. Suppose
that the “best” Lagrange multiplier at some stage is A, =g, — @ 'a, If the
corresponding variable x, becomes superbasic, the reduced gradient for the
expanded subspace will be

(1)

Now recall from eq. (14) that unless h is reasonably small, even one further
iteration could change 7 and hence A, significantly. Therefore as a safeguard
(which is admittedly heuristic) we accept A, and move into the new subspace
only if ||h].= 0.9|A,], which implies

]l = 0.9]}
We then reset TOLRG for the new subspace to be
TOLRG = n,|hl.

where 1, € (0, 1) is a parameter which is available to the user to set at his own
will (and peril!). A typical value is n, = 0.2 and its function is analogous to that
of the parameter eta in procedure delinsearch. For example a small value of n,
allows the user to insist on an accurate optimization within each subspace.

4. Use of first and second derivatives
In the discussion so far, and in the existing implementation, we have assumed

that both f(x) and its gradient g(x) are available via a user-written subroutine.
We do not store the matrix Z explicitly and we make no use of the Hessian

B.A. Murtagh, M.A. Saunders| Linearly constrained optimization 57

matrix G(x). (Instead we maintain a quasi-Newton approximation to the reduced
Hessian, Z'GZ.)

Some discussion of potential alternatives is in order. The principal factor here
is the expense of transforming even one vector by Z or Z'. In fact, if the
constraint matrix A has many rows, most of the work per iteration lies in
computing p =Zps and h=Z"g. (These calculations are analogous to the
FTRAN and BTRAN operations in linear programming.)

(1) When g is not available it would often be practical to form an approxima-
tion ¢ using finite differences along the coordinate directions, e.g.,

&= flx+ 8? —fx) _ 2

(The number of g;’s to be computed this way is equal to the number of nonlinear
variables.) Just one transformation with Z" is then required, viz. h = Z"g. For
greater accuracy, central differences may be used, at the cost of extra function
calculations.

(2) An alternative that is normally viable would be to difference f(x) along the
directions z:

B = flxe+ 52) —fx) Tg=h

where z; = Ze;, j = 1, ..., s. Unfortunately this approach is not practical for large
problems, since storage limitations prevent saving all s vectors z, and the work
involved rules out recomputing them when required.

(3) If g(x) and perhaps G(x) are available, the system of equations

Z'GZps=—-7"¢g ' (24

could sometimes be treated by a modified Newton method (Gill and Murray [23],
Gill, Murray and Picken [27]). This involves either computing Z'GZ directly:

Z'GZ = [ziTsz]
or differencing g(x) thus:

0 = glx+ 82;) —g(x) _ Ve,

Z'GZ =2V + V'Z).

However the need for the vectors z; again presents severe difficulties for large
problems.

(4) If G is large and sparse, eq. (24) could sometimes be solved iteratively by
the method of conjugate gradients (e.g., see Gill and Murray ([25], p. 133)).
Storage is minimal since the method avoids forming the matrix Z'GZ or any
approximation to it. However if Z has s columns the method would typically
require O(s) products of the form Z'(G(Zv)).

58 B.A. Murtagh, M.A. Saunders| Linearly constrained optimization

(5) A final (more promising) alternative is to abandon eq. (24) and to generate
a search direction by a nonlinear conjugate-gradient type method such as that of
Fletcher and Reeves [19] (e.g., see Gill and Murray ([25], p. 134)). This takes the
form

@ h=-Z"g

(b) if restart then ps=—h

else ps = —h + Bps

(c) p=2Zps
where ps, ps are the previous and current search directions for the superbasics.
Several methods have been suggested for determining the scalar 8, e.g.,

Fletcher and Reeves [19]: B = |[h|Y/R|’;
Polak and Ribiere [46]: B =h"(h - h)/|n|*
Perry [45]: B=h"(h—h—aps)/pih — h).

In MINOS, one of these methods is used if, at a particular iteration, the number
of superbasics s is larger than the dimension specified for the matrix R. A restart
occurs whenever the set of active constraints changes; also every s + 1 iterations
in the (rare) event that more than s consecutive steps are unconstrained. More
refined restart procedures (e.g., Powell [47]) will require future investigation. In
the present environment the above formulas for B have all performed rather
similarly (though seldomly as well as quasi-Newton). An example is given in
Subsection 5.2.4.

To summarize: the reduced-gradient approach allows maximum efficiency in
dealing with large sparse linear constraints, but at the same time it alters our
perspéctive on the relative merits of Newton, quasi-Newton and conjugate
gradient methods for handling the nonlinear objective. Even if the exact Hessian
matrix were available (unless it were of very special form) it seems that we
could not afford to use it. In this context we find that quasi-Newton methods
take on a new and unexpected importance. The storage required for the Hessian
approximation is often moderate even when there are many linear or nonlinear
variables, as long as the total number of superbasic variables is of order 200
(say) or less. Otherwise, a conjugate-gradient method remains the only viable
alternative.

4.1. Quadratic programs

The above statements do not hold if G happens to be a constant matrix. In this
case the relation

R'R=7"Gz (25)

can often be maintained exactly without recomputing Z'GZ every iteration.
Such a specialization has been described by Gill and Murray [26], along with the
measures required to allow for Z'GZ being indefinite. The present quasi-

B.A. Murtagh, M.A. Saunders| Linearly constrained optimization 59

Newton algorithm could conceivably be specialized as follows:

(1) Initialize R at the start of a run to satisfy (25). (This is trivial if there are
no superbasics; it may not be possible for an arbitrary set of superbasics since
Z"GZ could be indefinite.)

(2) In procedure ADDCOL (Subsection 3.3.4) compute the vector v =Gz -
directly rather than by differencing the gradient.

(3) Suppress the quasi-Newton updates to R (COMDFP and RANKI1 in

Subsection 3.3.1).
However it is worth noting that the difference approximation to » = Gz will be
essentially exact, so that if (25) ever holds at any stage then ADDCOL will
maintain (25) almost exactly when a column is added to Z. A step a = 1.0 along
the next search direction will then move x to the new subspace minimum. Now
it is easily verified that the subsequent quasi-Newton updates will cause no net
change to R (ignoring slight rounding error in the case of COMDFP). The scene
is therefore set for another exact minimization during the next iteration.

The above sequence will be broken if a constraint forces some step a to be
less than 1.0. The quasi-Newton updates will then alter R, (25) will cease to hold
and the next subspace minimization may require more than one iteration. In
certain applications this could be undesirable, but more generally the robustness
and self-correcting properties of quasi-Newton methods offer compensating
advantages including the ability to start with any matrix R (such as I). Suffice to
say that the general algorithm comes close to being “ideal” on quadratic
programs, without undue inefficiency or any specialized code.

5. Computational experience

Although the prime application of this research is to large-scale linear pro-
grams with a nonlinear objective function, we have endeavored to attack a
comprehensive range of problems to aid development of the algorithm. It is
unfortunate that large-scale nonlinear problems are not widely reported in the
literature, so that many of the results discussed here refer to problems which are
solely within the authors’ own purview. A brief description of each problem is
given. Fuller details of constraint data, starting points, etc. must be left to a
future report.

Three of the starting options provided in MINOS are as follows:

(1) (CRASH) A triangular basis matrix is extracted from the matrix A, without
regard to feasibility or optimality. The number of superbasic variables is set to
Zero.

(2) (Initialization of nonlinears) The user specifies values for any number of
the nonlinear variables. These are made superbasic. CRASH is then applied to
the linear variables in A.

(3) (Restart) A previously-saved bit-map is loaded (specifying the state of all

60 B.A. Murtagh, M.A. Saunders| Linearly constrained optimization

variables), along with values for any superbasic variables. This allows con-
tinuation of a previous run, or an advanced start on a different but related
problem (for example the bounds ! = x =< u may be changed).

Options 2 and 3 normally reduce run time considerably, but the results
reported here were obtained using the ‘“‘cold start” option 1 unless otherwise
stated. A normal phase 1 simplex procedure was used to obtain an initial feasible
solution.

5.1. Description of test problems

(1) Colville No. 1. This is problem no. 1 in the Colville series of test problems
[9]. The objective is a cubic function of 5 variables.

(2) Colville No. 7. This is a quartic function of -16 variables.

(3) Chemical Equilibrium Problem. This particular example of the chemical
equilibrium problem was obtained from Himmelblau [34], problem 6. The
objective is of the form

flx)= ; [Z xjk<cjk + 1n<xjk/ Z xik))]-
(Note. Slight corrections were made to the constraint data in [34, p. 401]. The
group of coefficients {—1, -2, —3, —4} in column 13 was moved to column 14, and
a similar group in column 12 was moved to column 13.)

(4) Weapon Assignment Problem. This problem appeared originally in
Bracken and McCormick’s book on nonlinear programming applications [5], and
more recently in Himmelblau [34], problem 23. The objective function is

20 5
fo)= 3 uf[]ap—1)
with unknowns x; = 0. We have ignored the requirement that the x; be integers.

(5) Structures Optimization (Q.P.). This is a series of quadratic programming
problems in structures design [58].

(6) Oil Refinery Investment Model. This is typical of many linear programming
based oil refinery models, but has the added feature that nonlinear returns to
scale of capital equipment costs are defined explicitly. The particular problem
cited in the results has 15 nonlinear variables of this kind.

(7) Energy Submodel. A related research project on the development of a
national energy model [43] has given rise to a fairly complex submodel of the
electricity sector. The 24 nonlinear variables are mainly the capacities of the
different types of generating equipment.

(8) Expanded Energy System Model. An expanded model which covers all
aspects of energy production and distribution on a national level has been
developed [53]. This is a medium-scale linecar program with 91 nonlinear
variables in the objective; again these are mainly nonlinear returns to scale of

B.A. Murtagh, M.A. Saunders(Linearly constrained optimization 61
capital equipment costs of the form
91
z cxfi with 0 < p; <1 (around 0.6 to 0.7).
i=1

(9) Energy Model RSS8. This is a 16-period energy model which was for-
mulated from the outset as a nonlinear programming problem (see Manne
[38, 39]). The objective is of the form

5 4.
> —L5+ linear terms

i=3 ALYi
with one pair of nonlinear variables x;, y; for each time period (those for the first
two periods being known). This was the first large problem available to us and is
of interest for several reasons. In particular it provides a comparison with a
(considerably larger) linear approximation to the problem, in which each term
aix;y? was discretized over a two-dimensional grid. Further details are given in
Subsection 5.2.2.
(10) Energy Model ETA (Manne [40]). This is a further development of the
previous model. The objective is the same as in RS8 with the addition of 21-6:1 z}
for 16 variables z;,

5.2. Results

The results summarized in Table 1 were obtained on a Burroughs B6700
computer using single-precision arithmetic (e ~ 10™""). The standard time ratios
quoted are relative to the processor time required for a standard timing program
given in Colville {9]. The standard time for unoptimized B6700 Fortran is 83.07
seconds.

The results in Table 2 onwards were obtained using double precision arith-
metic on an IBM 370/168 (e =~ 10™"). The standard time for this machine with the
IBM Fortran IV (H extended) compiler with full optimization is 3.92 seconds. A
fairly accurate line-search was normally used (eta =0.01) and the quantity
|k|/|l7|| was reduced to 107° or less at optimality.

5.2.1. The chemical equilibrium problem (problem 3)
This example provided useful experience in dealing with logarithmic sin-
gularities in g(x). The objective consists of functions of the form

f= Z Xigi>
i
whose gradient components are

X
gi=c+In)

2 %

1

B.A. Murtagh, M.A. Saunders| Linearly constrained optimization

62

"qo1 woiy Jelsal ‘HLOdel = SANNOY “VIA =001 'Pa[Bos “1Iels pjod ‘8SY = 96
"e(] woiy 1reIsar ‘g JONCO = SANNOd ‘V.ILd =401 "HEls plod ‘gSy =46
‘3Ie1s oo "GNONZO = SANNOY ‘V.1d =*®01 "pIzLIRAUN ‘BSU =6 .
69 6'9¢ 9T 06 05t 144 615C 6L9 0Z¢ 201
194 SL1 6C 0LS 9¢¢ 144 615C 6L9 0Z¢ q01
144! 9°9¢ L 89L1 86 124 615C 6L9 0Z¢ B0l
£'1e 9'¢8 1< 798¢ L6t 8¢ e 1€9 vie 26
$0¢ 611 1T 9esy Le0T 8¢ x4y 1¢9 483 46
8 £ee G 0 6£8 0 081+ rEll 95t B6
99°0 9C 81 393 6¢l 001 Lyl 001 4! 14
vLO 6C 14 [4%% £01 194 66 194 91 £
onel ("$09s8) soiseqradns ()8 (x)f suoneral] sa[qeLea SJUDWI suwnjo) SMOY L ou
oun ow g, jo "ou Jo JeQUIUON 0IZUON wa[qoid
plepuels [eury suonenjeAyq
89T/0L€ I u0 01-6 ‘P—¢ Swi[qord jo wonnjog
[4{CLND
‘SuoneId) | aseyd sepn[ouj ,
8¥'9 £'8¢¢ 0 S1¢ 8t 16 yov1 Y44 vie 8
150 ey 0 L £01 (4 1409 00C $6 L
70 £0°LE 13 oy 08 Sl 678 £8 vL 9
910 Ly'el 6S 1T IC 8L (414 8L 61 Y
SLOO 1¢9 St ¢l ¢l [4% ¥88 [4% Ll q¢
6100 91 i4! 8 8 14 0¥ 124 01 39
8¢°0 0¢'8y 81 96¢ tel 001 Lyl 001 4! ¥
810°0 0¢°1 £ 91 ST 91 08 91 8 [4
800°0 £9°0 I 6 8 s Ly S 01 1
onel (*s098) soiseqladns (x)&8(x)f LSuUonReId] S9qBLIBA SjudWd suwnjo) SMOY ou
awi} awifp, Jo rou Jo IBQUIUON OIZUON wapqoid
piepuel§ eulg suoneneag

00,94 sySnoung uo g~ ‘z—[swajqoid Jo uonnjos

I 21qeL

B.A. Murtagh, M.A. Saunders| Linearly constrained optimization 63

If some x; is zero, the corresponding term in f may be correctly programmed as
(x;g)) = 0. However, g; itself is then analytically minus infinity (unless all x; = 0),
and any particular numerical value given to it in the gradient subroutine will
result in a discontinuity in g; as x; moves (even slightly) away from zero. To
avoid this difficulty we ran the problem with a uniform lower bound € = 10 on
all variables, for various values of k in the range 4 to 10. (The problem is
infeasible with x; = 10".) Results are summarized in Table 3, where each run
continued from the run before using starting option 3. The minimal change in
f(x) is typical of dual geometric programs, but values x; = 10°° and x; = 107"
(say) have very different physical interpretations and therefore warrant more
than the usual degree of resolution.

Table 3
Solution of problem 3 with various bounds x; = ¢

Lo-bound No. of Evaluations?® Estimate of?

€ superbasics f(x) Iterations® of f, g x(R"R)
107* 10 -1910.366249932 46 130 6x10°
107 14 —1910.381531984 21 75 5% 10°
107 17 ~1910.382772060 22 72 1% 108
1077 19 —1910.382872190 22 88 1x10°
107 23 —1910.382880402 22 90 6x 107
107° 24 —1910.382881101 22 90 4x108
107" 24 —1910.382881161 5 27 8% 10’

160 572

* Additional to previous run.
® A lower bound on the condition number of the reduced Hessian approximation R'R is the
square of the ratio of the largest and smallest diagonals of R.

In Table 4 we list the largest solution value x,; and the 8 smallest values in the
order by which they became superbasic. The most significant variation is in Xx.s.
Most values have stabilized by the time k reaches 10.

For interest, the last row of Table 4 shows the values obtained by the program
SUMT as reported by Himmelblau [34]. For the 8 smallest x; the two results
differ in all significant figures. (This may be due to differences in the constraint
data, errors in satisfying the general constraints, or simply different machine
precisions.)

Note that when x; is small the diagonal elements of the Hessian matrix are
dgilax; = O(1/x;). However these large elements affect the reduced Hessian only
when x; is basic or superbasic. The safest strategy for these problems therefore
appears to be the following:

(a) Solve the problem with relatively large lower bounds, e.g., x;=10"". A
near-optimal objective value will be obtained quickly because the reduced
Hessian remains reasonably well-conditioned.

B.A. Murtagh, M.A. Saunders| Linearly constrained optimization

64

9-29p5°] 00 9-9¥9C°¢ 9-2701°¢ 9-2v6L°C 9-2Lev'E 9-21p¥°C 9-29LY°C i 44 IINNS
6-279¢°C 6-2C9V°S 8-2860°C 8-21v¢'C 8-980L°¢ L-2ee01 L-2T61Y 679T9Y°¢ 92194044 0-01
6-29TY'C 672551 8-2691°C 8-21¥TC 8-280L'¢ L-2¢€0°1 L-2T61'Y 672¢6V'L SPoevi vy 601
8-2160°1 8-270¢°C 8-21v¢°C 8-280L°¢ L-2¢£0] L-2T61Y 8-2209'C yroevi vy 301
L-2ge0'1 L-2T61 Y L-219C°C oLyl vy 01
9-219T°C Prax34044 9-01
§-2L62°T 90¢c6eT vy <01
P-267T'C 110960V »01

Am,ﬁﬁ Am,mv\v Am,m_kv Am,wkv AN,J\V Am.:RV Aw,mv\v Q..Nx.v AN,&Q 13

1Z oy 143 (44 8 8¢ 6 197 €1=1 x

> punoq 9jeurdordde oyl Je d1sequou Sem X ueow saLue yuelg ‘¢ W[qold J0J SONfeA UOHN[OS PIIDIIS

¥ 21qvL

B.A. Murtagh, M.A. Saunders| Linearly constrained optimization 65

(b) Reduce the lower bounds, perhaps in stages, to O(e'?) or O(e??). There

will be essentially no further basis changes, and in roughly descending order the
small x; will leave their bounds one by one to become superbasic.
Solution of problem 3 with x; = 107 followed by x; = 107" required a total of 103
iterations and 452 function/gradient evaluations as shown in Table 2. Solution
with x; = 107" directly required 188 iterations and 886 evaluations, primarily
because the Hessian approximation became very ill-conditioned before a near-
optimal point was reached.

As a natural precaution against rounding error the linesearch procedure
delinsearch avoids evaluating f(x + ap) with values of « that are very close
together. On the IBM 370/168 this prevented resolution below 107", although for
this special case f(x) could easily be evaluated using higher precision arithmetic.
The limiting factor would then become the condition of the reduced Hessian.

5.2.2. Energy model RS§
Problem 9a in Table 2 refers to the original linearized version of the energy
model, in which each term of the form

f(x, y)=}%

was approximated over a 6 X 6 grid. It has twice as many columns and matrix
coefficients as the nonlinear version 9b. Note that construction of the small but
reasonably fine grid required good prior estimates of the optimal values for the
14 (x, y) pairs.

Run 9b is included to illustrate the rather poor performance that could be
encountered during early ‘“‘de-bugging” of a nonlinear problem. Some relevant
facts follow.

(a) The bounds on nonlinear variables were conservative in the sense that the
lower bounds were far removed from the optimal solution values and there were
no upper bounds.

(b) No attempt was made to initialize the nonlinears at reasonable values
between their bounds.

(¢) The y variables proved to be badly scaled.

To enlarge on the last point, the Hessian matrix of f(x, y) above is

ol IR et VAN | R
OCytlxy 3x2] xPytlx V2x V2x
and it follows from the diagonal elements of the triangular factor that G has a
condition number «(G)= y*2x>. Now the optimal values for the x and y
variables are all O(1) and O(100) respectively, which might normally be con-
sidered weil-scaled; however it means that x(G) is at least O(10%, which in this

case is unnecessarily large. Replacing each y by a variable j = y/100 gave a
significant improvement as shown by run 9¢ in Table 2.

Gx,y)=

66 B.A. Murtagh, M.A. Saunders| Linearly constrained optimization

5.2.3. Energy model ETA

It is in runs 10a-10c that the real benefits from a nonlinear optimizer become
apparent. This is an example of the model-builder’s standard mode of operation
wherein numerous runs are made on a sequence of closely related problems with
the solution from one run providing a starting point for the next. Here, problem
10a (the base case) was solved from a cold start with certain variables fixed at
zero; for run 10b the bounds were relaxed on 16 of these variables, and for run
10¢ a further 10 variables were freed. (In this particular sequence the starting
solutions for 10b and 10c were clearly feasible. This is desirable but not
essential.)

Compared to solving linearized approximations by standard linear program-
ming, some of the obvious advantages are:

(1) reduced problem size;

(2) reduced volume of output (in the absence of a report writer);

(3) ability to prepare data for several runs in advance, since there are no grid
variables to be moved or refined;

(4) the solution obtained actually solves the correct problem.

5.2.4. Comparison of quasi-Newton and conjugate gradients

The weapon assignment problem (no. 4) was chosen here as a reasonably
small but nontrivial example. About 60 changes in the active constraint set occur
during the iterations.

The parameters being varied are

n = linesearch accuracy tolerance (eta in Section 3);

7, = the tolerance for minimization within each subspace (see Subsection 3.4).
Recall that small values of these parameters mean accurate minimization. For
Table 5 we set n, = 0.5 and compared the normal quasi-Newton algorithm with
each of the conjugate gradient algorithms for various values of n. We find that
quasi-Newton is consistently superior and is quite robust with respect to
diminishing linesearch accuracy, in contrast to the conjugate gradient (cg)

Table 5
Iterations and function + gradient evaluations for the weapon assignment prob-
lem; n, =0.5; various linesearch tolerances n

7 quasi-Newton Fletcher-Reeves Polak-Ribiere Perry
0.001 123 375 226 840 222 806 198 713
0.01 139 255 223 728 237 770 259 849
0.1 122 281 227 671 238 709 228 665
0.2 137 300 250 721 252 749 218 578
0.3 148 291 239 648 248 688 307 814
0.4 156 289 282 742 296 853 309 762
0.5 153 242 275 695 394 1079 612 1411
0.9 207 256 694 987 >999 >2748 818 968

B.A. Murtagh, M.A. Saunders| Linearly constrained optimization 67

algorithms. Unfortunately there is no discernible trend that singles out one cg
algorithm over another.

For Table 6 the same runs were made with n, =0.01. (A more accurate
subspace minimization makes the sequence of constraint changes more con-
sistent between runs.) This smoothed out the iteration and function-evaluation
counts, but again there is no evidence to favor any particular cg algorithm.

Table 6
Iterations and function + gradient evaluations for the weapon assignment problem;
1, = 0.01 (more accurate minimization within each subspace)

n quasi-Newton Fletcher-Reeves Polak-Ribiere Perry
0.001 220 615 493 1628 440 1514 440 1495
0.01 219 548 498 1520 471 1520 466 1476
0.1 209 461 560 1597 508 1461 530 1568
0.2 218 445 582 1589 531 1517 585 1626
0.3 229 411 612 1557 634 1752 611 1625
0.4 262 441 748 1831 691 1821 752 1788
0.5 262 377 691 1633 818 1993 894 1974
0.9 288 345 >999 >1855 >999 >1658 >999 >1156

To illustrate that the cg methods are not to be discarded immediately, in
Fig. 1 we have plotted the value of f(x) against iteration number for the
second row and first two columns of both Tables 5 and 6. Thus a reasonably
accurate linesearch was used for all cases (n =0.01). Curves 1 and 2 compare
quasi-Newton with Fletcher-Reeves using n, = 0.5, and curves 3 and 4 do the
same with 5, = 0.01.

The first two curves show smooth progress for both methods. Note that
although the cg method lags behind it has essentially identified the final set of
active constraints by the time the quasi-Newton method converges (iteration
139). The step-function shape of curves 3 and 4 illustrates the work that is
wasted in converging to minima within each subspace. Otherwise these curves
effectively place a magnifying glass on the tail end of the other runs. The -
terminal convergence of the cg method is clearly very slow and it is here that
better restart procedures such as in Powell [47] should prove to be most
valuable.

6. Comparison with other algorithms

Many of the ideas discussed here were either implicit in or anticipated by the
work of Wolfe [56, 57], Faure and Huard [16] and McCormick [41, 42]. However
there have since been such significant advances in implementation techniques
for the numerical methods involved that there is little point in making detailed
comparisons. Algorithmically, one important difference is our emphasis on

B.A. Murtagh, M.A. Saunders| Linearly constrained optimization

68

(YsIeasaulf ajeInooe) 190 =4
Bursn ‘ws|qouad juswusisse uodeom 3y} 10§ JOqINU uonwIaN jsureSe parjold s1 anpea A1)OJ[QQ) *(soA99Yy
—13y219]q) siuaipess arednfuod pue (diQ Arejuawaldwos) uoyman-isenb jo uostredwo) | ‘814

002 o]} 001
T

0 0

(uoRezILIUIL aoedSQNS 81RINDOE) 100=5u

go=6u

(8G69G-GELI- =(X)} fewndQ)

SoASRY-OYORY = ———— (B

UOMENISEND) = —————— ()

sorOY- YR = —=———— (D)

vomepseny — ——— @

¥ 0081 —

)

'

0041~

0031 —

00S1—

oopi—

00et—

00¢1—

B.A. Murtagh, M.A. Saunders| Linearly constrained optimization 69

keeping the number of superbasic variables as small as possible and changing
that number by a small amount (usually 1) each iteration.® With the quasi-
Newton approach, this strategy retains maximum information about the reduced
Hessian. Even though the proof of convergence [41] for the variable-reduction
method depended on regular resetting of the reduced Hessian approximation, we
never set R = I except at the start of a run or in the rare event that the linesearch
fails to find an improved point (in which case both R and the true reduced
Hessian are normally very ill-conditioned). Zig-zagging is controlled effectively by
the tolerance 7, and the logic described in Subsection 3.4. Rates of convergence
within each subspace follow from analogous proofs for unconstrained
algorithms.

Since the present algorithm possesses superlinear convergence properties and
can handle rather arbitrary sized problems, it should be competitive with other
algorithms designed specifically for quadratic programming (e.g., Wolfe [55],
Beale [4], Cottle [11], Lemke [37]). In particular a comparison with Beale’s
method would be relevant, since it is reported that his method is efficient for
problems which have a small number of quadratic terms. If there are many
quadratic terms and if the optimal solution has most of the variables away from
their bounds, then a sparse-matrix implementation of one of the complemen-
tarity methods will be preferable (e.g., Tomlin’s implementation [60] of Lemke’s
method).

A final comment on problems which have a large sparse set of general
constraints Ax = b in relatively few variables (thus A is m X n with m > n).
Ideally, methods designed specifically for this case use an active constraint
strategy and avoid transforming the whole of A each iteration (e.g., the version
of the reduced-gradient algorithm in Wolfe [57], and the implementation of
Buckley [8]). The improved efficiency of these methods is analogous to the
benefit that might be realized in the purely linear case if the dual simplex method
were applied to the dual linear program. Nevertheless, given the use of sparse-
matrix techniques, solution by the present (standard form) method will be quite
efficient unless m > n. In any event, with n moderate by assumption, this is one
class of problems where the number of superbasic variables (and hence the
dimension of the reduced Hessian) will always remain manageably small.

7. Conclusion

Our primary aim has been to combine the simplex algorithm with quasi-
Newton techniques in an efficient and reliable computer code for solving large,
linearly constrained nonlinear programs. The full potential of conjugate-gradient

5
In the original reduced-gradient algorithm the set of superbasics was effectively redefined each
iteration as being the current set plus those nonbasic variables whose reduced costs were of the
correct sign.

70 B.A. Murtagh, M. A. Saunders| Linearly constrained optimization

methods in this context remains to be explored, but the necessary framework
now exists. This framework will also accommodate extension to problems with a
moderate number of nonlinear constraints (e.g., Jain, Lasdon and Saunders [35]).
In the meantime the code is applicable to an important class of problems, and it
should provide a new dimension of utility to an already substantial body of
large-scale linear programming models.

Acknowledgment

Work of this nature is necessarily a gathering together of methods and ideas
from many sources. Where possible we have acknowledged the contribution of
others within the text, and we wish to thank the individuals concerned. We are
also grateful to J. Abadie, S.J. Byrne, A. Jain, L.S. Lasdon, A.S. Manne, J.A.
Tomlin and M.H. Wright for assistance in various ways. In particular our thanks
go to P.E. Gill and W. Murray for providing their linesearch procedure and for
their valuable comments on the draft. Revision suggestions by the referees and
by C.C. Paige are also gratefully acknowledged.

References

[1] J. Abadie, “Application of the GRG algorithm to optimal control problems”, in: J. Abadie, ed.,
Integer and nonlinear programming (North-Holland, Amsterdam, 1970) pp. 191-211.

[2] R.H. Bartels, ““A stabilization of the simplex method”, Numerische Mathematik 16 (1971)
414-434.

[3] R.H. Bartels and G.H. Golub, “The simplex method of linear programming using LU decom-
position”, Communications of ACM 12 (1969) 266-268.

[4] EM.L. Beale, “Numerical methods”, in: J. Abadie, ed., Nonlinear programming (North-
Holland, Amsterdam, 1967) pp. 132-205.

[51 J. Bracken and G.P. McCormick, Selected applications of nonlinear programming (Wiley, New
York, 1968).

{6] R.P. Brent, “Reducing the retrieval time of scatter storage techniques”, Communications of
ACM 16 (1973) 105-109.

[7]1 C.G. Broyden, “Quasi-Newton methods”, in: W. Murray, ed., Numerical methods for un-
constrained optimization (Academic Press, New York, 1972) pp. 87-106.

[8] A. Buckley, “An alternate implementation of Goldfarb’s minimization algorithm”, Mathematical
Programming 8 (1975) 207-231.

[9] A.R. Colville, “A comparative study on nonlinear programming codes”, IBM New York
Scientific Center Report 320-2949 (1968).

[10] A.R. Conn, “Linear programming via a non-differentiable penalty function”, SIAM Journal of
Numerical Analysis 13 (1) (1976) 145-154.

{11] R.W. Cottle, “The principal pivoting method of quadratic programming”, in: G.B. Dantzig and
A.F. Veinott, Jr., eds., Mathematics of the decision sciences, Part 1 (American Mathematical
Society, 1968) pp. 144-162.

[12) G.B. Dantzig, Linear programming and extensions (Princeton University Press, NJ, 1963).

{13] W.C. Davidon, “Variable metric method for minimization””, AEC Research and Development
Report ANL-5990 (1959).

[14] 1.S. Duff, **On algorithms for obtaining a maximum transversal’, to appear.

B.A. Murtagh, M.A. Saunders| Linearly constrained optimization 71

[15] 1.S. Duff and J.K. Reid, “An implementation of Tarjan’s algorithm for the block trian-
gularization of a matrix’”, AERE Report C.S.S. 29 (1976), Harwell, England.

[16] P. Faure and P. Huard, ‘“Resolution de programmes mathematiques a fonction nonlineaire par la
methode du gradient reduit”, Revue Francaise de Recherche Operationelle 36 (1965) 167-206.

[17] R. Fletcher, ‘“Minimizing general functions subject to linear constraints”, in: F.A. Lootsma, ed.,
Numerical methods for nonlinear optimization (Academic Press, London and New York, 1972)
pp. 279-296.

[18] R. Fletcher and M.J.D. Powell, “A rapidly convergent descent method for minimization”,
Computer Journal 6 (1963) 163-168.

[19] R. Fletcher and C.M. Reeves, “Function minimization by conjugate gradients”, Computer
Journal 7 (1964) 149-154.

[20] P.E. Gill, G.H. Golub, W. Murray and M.A. Saunders, ‘“Methods for modifying matrix
factorizations”, Mathematics of Computation 28 (1974) 505-535.

[21] P.E. Gill and W. Murray, ‘“Quasi-Newton methods for unconstrained optimization™, Journal of
Institute of Mathematics and its Applications 9 (1972) 91-108.

[22] P.E. Gill and W. Murray, “Quasi-Newton methods for linearly constrained optimization’,
Report NAC 32 (1973), National Physical Laboratory, Teddington.

[23] P.E. Gill and W. Murray, “Newton-type methods for unconstrained and linearly constrained
optimization”, Mathematical Programming 7 (1974) 311-350.

[24] P.E. Gill and W. Murray, ““Safeguarded steplength algorithms for optimization using descent
methods”, Report NAC 37 (1974), National Physical Laboratory, Teddington.

[25] P.E..Gill and W. Murray, eds., Numerical methods for constrained optimization (Academic
Press, London, 1974).

[26] P.E. Gill and W. Murray, “Linearly constrained optimization including quadratic and linear
programming”, in: Jacobs and Scriven, eds., Modern numerical analysis (Academic Press,
London, 1977), Proceedings of conference on “State of the art of numerical analysis”,
University of York (April 1976).

[27]1 P.E. Gill, W. Murray and S.M. Picken, “The implementation of two modified Newton
algorithms for linearly constrained optimization” (to appear).

[28] P.E. Gill, W. Murray and R.A. Pitfield, “The implementation of two revised quasi-Newton
algorithms for unconstrained optimization”, Report NAC 11 (1972), National Physical Labora-
tory, Teddington.

[29] P.E. Gill, W. Murray and M.A. Saunders, “Methods for computing and modifying the LDV
factors of a matrix™, Mathematics of Computation 29 (1975) 1051-1077.

[30] D. Goldfarb, “Extension of Davidon’s variable metric method to maximization under linear
inequality and equality constraints”, SIAM Journal of Applied Mathematics 17 (1969) 739-764.

[31] D. Goldfarb, “On the Bartels-Golub decomposition for linear programming bases””, AERE
Report C.S.S. 18 (1975), Harwell, England.

{32] E. Hellerman and D.C. Rarick, “Reinversion with the preassigned pivot procedure”, Mathema-
tical Programming 1 (1971) 195-216.

(33] E. Hellerman and D.C. Rarick, “The partitioned preassigned pivot procedure”, in: D.J. Rose
and R.A. Willoughby, eds., Sparse matrices and their applications (Plenum Press, New York,
1972) pp. 67-76.

[34] D.M. Himmelblau, Applied nonlinear programming (McGraw-Hill, New York, 1972).

[35] A. Jain, L.S. Lasdon and M.A. Saunders, ““An in-core nonlinear mathematical programming
system for large sparse nonlinear programs”, presented at ORSA/TIMS joint national meeting,
Miami, Florida (November, 1976).

[36] J.E. Kalan, “Aspects of large-scale in-core linear programming”, Proceedings of ACM con-
ference, Chicago (1971) 304-313.

[37] C.E. Lemke, “Bimatrix equilibrium points and mathematical programming”, Management
Science 11 (1965) 681-689.

[38] A.S. Manne, “Waiting for the breeder”, The review of economic studies symposium (1974)
47-65.

[39] A.S. Manne, “U.S. options for a transition from oil and gas to synthetic fuels”, presented at the
World Congress of the Econometric Society, Toronto (August 1975).

72 B.A. Murtagh, M.A. Saunders| Linearly constrained optimization

[40] A.S. Manne, “ETA: a model for Energy Technology Assessment”, Bell Journal of Economics
(Autumn 1976) 381-406.

[41] G.P. McCormick, “The variable-reduction method for nonlinear programming”, Management
Science 17 (3) (1970) 146-160.

[42] G.P. McCormick, ““A second order method for the linearly constrained nonlinear programming
problem”, in: J.B. Rosen, O.L. Mangasarian and K. Ritter, eds., Nonlinear programming
(Academic Press, New York, 1970) pp. 207-243.

[43] B.A. Murtagh and P.D. Lucas, “The modelling of energy production and consumption in New
Zealand”, IBM (N.Z.) 5 (1975) 3-6.

[44] B.A. Murtagh and R-W.H. Sargent, “A constrained minimization method with quadratic
convergence”, in: R. Fletcher, ed., Optimization (Academic Press, New York, 1969) pp.
215-246.

[45] A. Perry, “An improved conjugate gradient algorithm”, Technical note (March 1976), Dept. of
Decision Sciences, Graduate School of Management, Northwestern Unijversity, Evanston,
Illinois.

[46] E. Polak, Computational methods in optimization: a unified approach (Academic Press, New
York, 1971).

[47] M.J. D. Powell, “‘Restart procedures for the conjugate gradient method”, AERE Report C.S.S.
24 (1975), Harwell, England.

[48] D.C. Rarick, An improved pivot row selection procedure, implemented in the mathemati-
cal programming system MPS III, Management Science Systems, Rockville, MA, U.S.A.

{49] R.W.H. Sargent, “Reduced-gradient and projection methods for nonlinear programming”, in:
P.E. Gill and W. Murray, eds., Numerical methods for constrained optimization (Academic
Press, London, 1974) pp. 149-174.

[50] R.W. Sargent and B.A. Murtagh, “‘Projection methods for nonlinear programming”, Mathema-
tical Programming 4 (1973) 245-268.

[51] M.A. Saunders, “‘Large-scale linear programming using the Cholesky factorization”, Report
STAN-CS-72-252 (1972), Computer Science Dept., Stanford University, Stanford, CA, U.S.A.

[52] M.A. Saunders, “A fast, stable implementation of the simplex method using Bartels-Golub
updating”, in: J.R. Bunch and D.J. Rose, eds., Sparse Matrix Computations (Academic Press,
New York, 1976) pp. 213-226.

(53] B.R. Smith, P.D. Lucas and B.A. Murtagh, “The development of a New Zealand energy
model”, N.Z. Operational Research 4 (2) (1976) 101-117.

[541 J.A. Tomlin, “On pricing and backward transformation in linear programming”’, Mathematical
Programming 6 (1974) 42-47.

[55] P. Wolfe, “The simplex method for quadratic programming”, Econometrica 27 (1959) 382-398.

[56] P. Wolfe, “The reduced gradient method”, unpublished manuscript, The RAND Corporation
(June 1962).

[57]1 P. Wolfe, “Methods of nonlinear programming”, in: J. Abadie, ed., Nonlinear programming
(North-Holland, Amsterdam, 1967) pp. 97-131.

[58] M.J. Wood, ““The February 1975 state of BUILD”, Ministry of Works and Development report
(February 1975), Wellington, New Zealand.

[59] P.E. Gill, W. Murray, S.M. Picken, H.M. Barber and M.H. Wright, Subroutine LNSRCH, NPL
Algorithms Library, Reference No. E4/16/0/Fortran/02/76 (February 1976).

[60] J.A. Tomlin, “Robust implementation of Lemke’s method for the linear complementarity
problem”, Technical Report SOL 76-24, Systems Optimization Laboratory, Stanford University
(September 1976).

