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ON THE LIMITED MEMORY BFGS METHOD FOR

LARGE SCALE OPTIMIZATION

by

Dong C� Liu and Jorge Nocedal

ABSTRACT

We study the numerical performance of a limited memory quasi�Newton method

for large scale optimization� which we call the L�BFGS method� We compare its

performance with that of the method developed by Buckley and LeNir �����	� which

combines cyles of BFGS steps and conjugate direction steps� Our numerical tests

indicate that the L�BFGS method is faster than the method of Buckley and LeNir�

and is better able to use additional storage to accelerate convergence� We show that

the L�BFGS method can be greatly accelerated by means of a simple scaling� We then

compare the L�BFGSmethod with the partitioned quasi�Newton method of Griewank

and Toint ����
a	� The results show that� for some problems� the partitioned quasi�

Newton method is clearly superior to the L�BFGS method� However we �nd that

for other problems the L�BFGS method is very competitive due to its low iteration

cost� We also study the convergence properties of the L�BFGS method� and prove

global convergence on uniformly convex problems�

Key words� large scale nonlinear optimization� limited memory methods� partitioned
quasi�Newton method� conjugate gradient method	

Abbreviated title� Limited memory BFGS	

�� Introduction�

We consider the minimization of a smooth nonlinear function f � Rn � R�

min f�x�� �����

in the case where the number of variables n is large� and where analytic expressions
for the function f and the gradient g are available	 Among the most useful methods
for solving this problems are� �i� Newton�s method and variations of it� see for example
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Steihaug ������� O�Leary ����
�� Toint ������ and Nash ������� �ii� the partitioned quasi�
Newton method of Griewank and Toint ����
a�� �iii� the conjugate gradient method� see
for example Fletcher ����
� and Gill� Murray and Wright ������� �iv� limited memory
quasi�Newton methods	

This paper is devoted to the study of limited memory quasi�Newton methods for large
scale optimization	 These methods can be seen as extensions of the conjugate gradient
method� in which additional storage is used to accelerate convergence	 They are suitable
for large scale problems because the amount of storage required by the algorithms �and
thus the cost of the iteration� can be controlled by the user	 Alternatively� limited
memory methods can be viewed as implementations of quasi�Newton methods� in which
storage is restricted	 Their simplicity is one of their main appeals� they do not require
knowledge of the sparsity structure of the Hessian� or knowledge of the separability of the
objective function� and as we will see in this paper� they can be very simple to program	

Limited memory methods originated with the work of Perry ������ and Shanno
�����b�� and were subsequently developed and analyzed by Buckley ������� Nazareth
������� Nocedal ����
�� Shanno �����a�� Gill and Murray ������� and Buckley and LeNir
������	 Numerical tests performed during the last ten years on medium size problems
have shown that limited memory methods require substantially fewer function evalua�
tions than the conjugate gradient method� even when little additional storage is added	
However little is known regarding the relative performance of these methods with respect
to Newton�s method or the partitioned quasi�Newton algorithm� when solving large prob�
lems	 Moreover� since the study by Gill and Murray ������� there have been no attempts
to compare the various limited memory methods with each other� and it is therefore not
known which is their most e�ective implementation	

In this paper we present and analyze the results of extensive numerical tests of two
limited memory methods and of the partitioned quasi�Newton algorithm	 We compare
the combined CG�QN method of Buckley and LeNir ������ as implemented in Buckley
and LeNir ������� the limited memory BFGS method described by Nocedal ����
�� and
the partitioned quasi�Newton method� as implemented by Toint �����b�	 The results
indicate that the limited memory BFGS method �L�BFGS� is superior to the method
of Buckley and LeNir	 They also show that for many problems the partitioned quasi�
Newton method is extremely e�ective� and is superior to the limited memory methods	
However we �nd that for other problems the L�BFGS method is very competitive� in
terms of cpu time� with the partitioned quasi�Newton method	

We brie�y review the methods to be tested in x
� where we also describe the problems
used in our experiments	 In x� we present results that indicate that the limited memory
BFGS method is faster than the method of Buckley and LeNir ������� and is better able to
use additional storage to accelerate convergence	 In x� we explore ways of improving the
performance of the L�BFGS method� by choosing suitable diagonal scalings� and study
its behavior on very large problems �where the number of variables is in the thousands�	
In x� we compare the L�BFGS method with two well�known conjugate gradient methods�
paying particular attention to execution times	 In x� we compare the L�BFGS method
and the partitioned quasi�Newton method� and in x� we give a convergence analysis of






the L�BFGS method	
While this work was in progress we became aware that Gilbert and Lemar�echal ������

had performed experiments that are similar to some of the ones reported here	 They used
a newer implementation by Buckley ������ of the Buckley�LeNir method� this new code is
more e�cient than the ACM TOMS code of Buckley and LeNir ������ used in our tests	
Gilbert and Lemar�echal�s implementation of the L�BFGS method is almost identical to
ours	 They conclude that the L�BFGS method performs better than Buckley�s new code�
but the di�erences are less pronounced than the ones reported in this paper	

Our L�BFGS code will be made available through the Harwell library under the name
VA��	

�� Preliminaries

We begin by brie�y reviewing the methods tested in this paper	
The method of Buckley and LeNir combines cycles of BFGS and conjugate gradient

steps	 It starts by performing the usual BFGS method� but stores the corrections to
the initial matrix separately to avoid using O�n�� storage	 When the available storage
is used up� the current BFGS matrix is used as a �xed preconditioner� and the method
performs preconditioned conjugate gradient steps	 These steps are continued until the
criterion of Powell ������ indicates that a restart is desirable� all BFGS corrections are
then discarded and the method performs a restart	 This begins a new BFGS cycle	

To understand some of the details of this method one must note that Powell�s restart
criterion is based on the fact that� when the objective function is quadratic and the
line search is exact� the gradients are orthogonal	 Therefore to use Powell restarts� it is
necessary that the line search be exact for quadratic objective functions� which means
that the line search algorithm must perform at least one interpolation	 This is expensive
in terms of function evaluations� and some alternatives are discussed by Buckley and
LeNir ������	

The method of Buckley and LeNir generalizes an earlier algorithm of Shanno �����b��
by allowing additional storage to be used� and is regarded as an e�ective method� see
Dennis and Schnabel ������ and Toint ������	

The limited memory BFGS method �L�BFGS� is described by Nocedal ����
�� where
it is called the SQN method	 It is almost identical in its implementation to the well known
BFGS method	 The only di�erence is in the matrix update� the BFGS corrections are
stored separately� and when the available storage is used up� the oldest correction is
deleted to make space for the new one	 All subsequent iterations are of this form� one
correction is deleted and a new one inserted	 Another description of the method� which
will be useful in this paper� is as follows	 The user speci�es the number m of BFGS
corrections that are to be kept� and provides a sparse symmetric and positive de�nite
matrix H�� which approximates the inverse Hessian of f 	 During the �rst m iterations
the method is identical to the BFGS method	 For k � m � Hk is obtained by applying
m BFGS updates to H� using information from the m previous iterations	
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To give a precise description of the L�BFGS method we �rst need to introduce some
notation	 The iterates will be denoted by xk� and we de�ne sk � xk�� � xk and yk �
gk�� � gk	 The method uses the inverse BFGS formula in the form

Hk�� � V T
k HkVk � �ksks

T
k � �
���

where �k � ��yTk sk� and
Vk � I � �kyks

T
k �

see Dennis and Schnabel ������	

Algorithm ��� �L�BFGS Method�

��� Choose x�� m� 
 � �� � ��
� �� � � � �� and a symmetric and positive de�nite
starting matrix H�	 Set k � 
	

�
� Compute
dk � �Hkgk� �
�
�

xk�� � xk � �kdk� �
���

where �k satis�es the Wolfe conditions�

f�xk � �kdk� � f�xk� � ���kg
T
k dk� �
	��

g�xk � �kdk�Tdk � �gTk dk� �
	��

�We always try the steplength �k � � �rst�	

��� Let �m � minfk�m� �g	 Update H� �m� � times using the pairs fyj � sjg
k
j�k� �m� i	e	

let

Hk�� �
�
V T
k � � �V T

k� �m

�
H� �Vk� �m � � �Vk�

� �k� �m

�
V T
k � � �V T

k� �m��

�
sk� �ms

T
k� �m �Vk� �m�� � � �Vk�

� �k� �m��

�
V T
k � � �V T

k� �m��

�
sk� �m��s

T
k� �m�� �Vk� �m�� � � �Vk�

			

� �ksks
T
k � �
	��

��� Set k �� k � � and go to 
	

We note that the matrices Hk are not formed explicitly� but the �m � � previous
values of yj and sj are stored separately	 There is an e�cient formula� due to Strang�
for computing the product Hkgk� see Nocedal ����
�	 Note that this algorithm is very
simple to program� it is similar in length and complexity to a BFGS code that uses the
inverse formula	
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This implementation of the L�BFGS method coincides with the one given in Nocedal
����
�� except for one detail� the line search is not forced to perform at least one cubic
interpolation� but the unit steplegth is always tried �rst� and if it satis�es the Wolfe
conditions� it is accepted	 Our aim is that the limited memory method resemble BFGS
as much as possible� and we disregard quadratic termination properties� which are not
very meaningful� in general� for large dimensional problems	

The partitioned quasi�Newton method of Griewank and Toint assumes that the ob�
jective function has the form

f�x� �
neX
i��

fi�x�� �
���

where each of the ne element functions fi depends only on a few variables �more generally�
it assumes that the Hessian matrix of each element function has a low rank compared
with n�	 The method updates an approximation Bi

k to the Hessian of each element
function using the BFGS or SR� formulas	 These small dense matrices� which often
contain excellent curvature information� can be assembled to de�ne an approximation
to the Hessian of f 	 The step is determined by an inexact linear conjugate gradient
iteration� and a trust region is kept to safeguard the length of the step	

The partitioned quasi�Newton method �PQN� requires that the user supply detailed
information about the objective function� and is particularly e�ective if the correct range
of the Hessian of each element function is known	 Since in many practical applications the
objective function is of the form �
	��� and since it is often possible to supply the correct
range information� the method is of great practical value	 For a complete description of
this algorithm� and for an analysis of its convergence properties see Griewank and Toint
����
a�� ����
b�� ������� and Griewank ������	 The tests of the PQN method reported
in this paper were performed with the Harwell routine VE
� written by Toint �����b�	

��� The Test Problems

The evaluation of optimization algorithms on large scale test problems is more di�cult
than in the small dimensional case	 When the number of variables is very large �in the
hundreds or thousands�� the computational e�ort of the iteration sometimes dominates
the cost of evaluating the function and gradient	 However there are also many practical
large scale problems for which the function evaluation is exceedingly expensive	 In most
of our test problems the function evaluation is inexpensive	 We therefore report both the
number of function and gradient evaluations and the time required by the various parts
of the algorithms	 Using this information we will try to identify the classes of problems
for which a particular method is e�ective	

We have used the following �� test problems with dimensions ranging from �� to
�
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Problem Problem
s name Reference

� Penalty I Gill and Murray ������
� Trigonometric Mor�e et al� ������
� Extended Rosenbrock Mor�e et al� ������

 Extended Powell Mor�e et al� ������
	 Tridiagonal Buckley and LeNir ������
� QOR Toint ������
� GOR Toint ������
� PSP Toint ������
� Tridiagonal Toint �����a�
�� Linear Minimum Surface Toint �����a�
�� Extended ENGVL� Toint �����a�
�� Matrix Square Root �
�� Matrix Square Root �
�
 Extended Freudenstein and Roth Toint �����a�
�	 Sparse Matrix Square Root
�� u�ts� Gilbert and Lemar�echal ������

Table �� Set of test problems

Problems �
� �� and ��� and the starting points used for them� are described in Liu
and Nocedal ������	 They derive from the problem of determining the square root of a
given matrix A� i	e	 �nding a matrix B such that B� � A	 For all the other problems we
used the standard starting points given in the references	 All the runs reported in this
paper were terminated when

kgkk � �
�� � max��� kxkk�� �
���

where k � k denotes the Euclidean norm	 We require low accuracy in the solution because
this is common in practical applications	

Since we have performed a very large number of tests� we describe the results fully
in an accompanying report �Liu and Nocedal �������	 In this paper we present only rep�
resentative samples and summaries of these results� and the interested reader is referred
to that report for a detailed description of all the tests performed	 We should note that
all the comments and conclusions made in this paper are based on data presented here
and in the accompanying report	

�� Comparison with the method of Buckley and LeNir

In this section we compare the method of Buckley and LeNir �B�L� with the L�BFGS
method	 In both methods the user speci�es the amount of storage to be used� by giving
a number m� which determines the number of matrix updates that can be stored	 When
m � �� the method of Buckley and LeNir reduces to Shanno�s method� and when m � �
both methods are identical to the BFGS method	 For a given value of m� the two methods
require roughly the same amount of storage� but the L�BFGS method requires slightly
less arithmetic work per iteration than the B�L method �as implemented by Buckley and
LeNir �������	
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In both codes the line search is terminated when �
	�� and

jg�xk � �kdk�Tdkj � ��gTk dk �����

are satis�ed ���	�� is stronger than �
	��� which is useful in practice�	 We use the values
�� � �
�	 and � � 
��� which are recommended by Buckley and LeNir ������� and
are also used by Nocedal ����
�	 All other parameters in the code of Buckley and
LeNir were set to their default values� and therefore the method was tested precisely as
they recommend	 For the L�BFGS method we use a line search routine based on cubic
interpolation� developed by J	 Mor�e	

In Table 
 we give the amount of storage required by the two limited memory methods
for various values of m and n� and compare it to the storage required by the BFGS
method	 For example� for a problem with �
 variables� if m� �� ��
 locations are
required by each limited memory method	

nnm 	 � �	 BFGS

	� ��� ��
 ���� �
�	
��� ���� ���
 ���� 	�	�
���� ����� ����
 ����� 	��	��

Table �� Storage locations

The tests described below were made on a SUN ���
 in double�precision arithmetic�
for which the unit roundo� is approximately �
��
	 For each run we veri�ed that both
methods converged to the same solution point	 We tested three methods� ��� The com�
bined CG�QN method of Buckley and LeNir ������ using analytical gradients� �
� the
L�BFGS method� ��� the BFGS method� using the line search routine of J	 Mor�e	

The initial Hessian approximation was always the identity matrix� and after one
iteration was completed� all methods update 	�I instead of I � where

	� � yT� s��ky�k
�� ���
�

This is a simple and e�ective way of introducing a scale in the algorithm� see Shanno
and Phua ������	

In the following tables� P denotes the problem number� N the number of variables
and m the number of updates allowed	 The results are reported in the form

number of iterations�number of function evaluations
iteration time�function time�total time

where �iteration time� includes the time needed to generate the search direction� perform
the line search and test convergence� but excludes the time to evaluate the function and
gradient	 For all methods the number of gradient evaluations equals the number of
function evaluations	

In Table � we compare the performance of the two limited memory methods when
m������	 Results for m��� are given in Table �� where the runs for the BFGS method
are also included for comparison	

�



Buckley�LeNir L�BFGS
P N m�	 m�� m�� m�	 m�� m��

� ���� ����� ����� ����	 
	�		 

�	
 

�	

�
�
����� ���
����� �	�
����� �
�������
 ���������� ��	�����
�

� ���� 
����� 

��
 
	��� 	��	� 		�	� 	��	�
��
���	��
� ����������	 �����	����� ��	�����	�� ������
���� �����������


 ��� 	����� 
	��� ����� ������� �
��� 	����
������
 ������� ���
��� �	����� 
��	�
� �������

	 ��� ����
� ����
	 ����
	 ��
���� �����
� �������
	������	 �������� �������
 
���
�	� 		�����	 	�������

� 	� �����	 ������ ������ ������
 �
���	� �	���	�
�	�
���� ���
���� ���

��� �	�	���	 �	�
���	 ���
����

�� ��� �����
� ������� �����
� ������� ������
 �������
	������ 	
���	� 	

���� 	������ ������� �������
���� �
�� ��	� ��
� ���	 ����

�� ���� �
�
� �	�

 ���
� ���
� �	�
� �
�
�
		������ ��������� ����	���� ��������	� �����	���
 �����	����

�� ��� ����
�� ��	�
�� ��	�
	� �	
���� �
	��	� �
���	�
����	������ ��	�	�	���� ����	������ ����
	���� �����
���	� �����
�����

Table �� Comparison of the two limited memory methods for m�	����� In each box� the two num�
bers in the top represent iterations�function�evaluations� and the three numbers below give iteration�
time�function�time�total�time�

Buckley�LeNir L�BFGS BFGS
P N m��	 m��	

� ���� ����
 

�	
 

�	

��
�	
���� ����������

� ���� 	����� 	
�	� 	
�	�
�����������	 �����	���	�


 ��� 
���� 
��	� 
��
	
�
����� �������

	 ��� ����
� ������
 �����
���������
 ������	

� 	� �
���
� ������� �������
����
����� 	�������

�� ��� �����
� �		��		 �
�����
���������
�� ��
�	����	��

�� ���� ���
� ����	 ����	
����	���
 ����������

�� ��� ����
�
 ������� ������	
����	������ �����������

Table 
� Limited memory methods using m��	� and the BFGS method�

Tables � and � give only a small sample of our results� but it is representative of what
we have observed �see Liu and Nocedal �������	 We see that the BFGS method usually
requires the fewest function calls� and that for some problems� L�BFGS approaches the
performance of the BFGS method	 For other problems� however� there remains a gap
in terms of function calls� between the BFGS and L�BFGS	 In Table � we summarize
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the performance of the two limited memory methods on our whole set of problems� as
measured by the number of function evaluations	 We give the number of wins� i	e the
number of runs for which a method required fewer function calls than the other one	

Method m�� m�	 m�� m�� m��	 Total

B�L �� �� 	 
 � ��
L�BFGS �� �� �
 �� �� ���

Table 	� Number of wins on the whole set of problems�

We see from these results that the L�BFGS method usually requires fewer function
calls than the method of Buckley and LeNir �B�L�	 This is also true if we consider only
problems with a very large number of variables �n � �


�	 Only for m�� are the two
methods comparable� and we see that as m increases� the di�erences between the two
become large	 To investigate the reason for this� we measure in Tables � and � the e�ect of
increasing the storage	 We de�ne �speed�up� to be the ratio NFUN�m����NFUN�m����
where NFUN�m�s� denotes the number of function evaluations needed when m�s	 Thus
if the speed�up is near � the method does not gain much from additional storage� whereas
a large number means a substantial improvement	 In the tables we give the number of
test problems for which a certain speed�up was obtained	

	

��




� �

�� � ��� ��	 ��� Speed�up

Number

of

Problems

Table �� Speed�up� NFUN����NFUN���� for B�L method�

�



�

��

�

�
	

� � � � � �

�� � ��� ��� ��� ��
 ��	 ��� ��� ��	 
�� Speed�up

Number

of

Problems

Table �� Speed�up� NFUN����NFUN���� for L�BFGS method�

The method of Buckley and LeNir gives little or no speed�up in most of the problems	
This is very disappointing because m�� represents a substantial increase in storage	
�The picture is only a slightly better if we de�ne speed�up as NFUN����NFUN�����	 In
contrast� the L�BFGS method gives a substantial speed�up in �
� of the problems	 We
have observed that the L�BFGS method usually reduces the number of function calls
as storage is increased� and that this property is true both for medium size and large
problems �Liu and Nocedal �������	 These observations agree with the experience of
Gilbert and Lemar�echal ������	

In our view the method of Buckley and LeNir is not able to use increased storage ef�
fectively for the following reason	 During the CG cycle� the method uses all m corrections
to de�ne the preconditioner	 However the restarts are usually performed after only a few
iterations of this cycle� and the m corrections are discarded to begin the BFGS cycle	
The average number of corrections used during the BFGS cycle is only �m � ���
� since
corrections are added one by one	 Indeed� what may be particularly detrimental to the
algorithm is that the �rst two or three iterations of the BFGS cycle use a small amount
of information	 We should add that the relatively accurate line searches performed by
the implementation of Buckley and Lenir ������ also contribute to the ine�ciency of the
method �this� however� has been corrected in a recent update of the method� see Buckley
�������	

In practice we would rarely wish to use m greater than ��	 However it is interesting
to observe the behavior of the L�BFGS method when storage is increased beyond this
point	 In Table � we give the results of using the L�BFGS method with m���� 
�� �
	

Again we see that the number of function calls usually decreases with m� but the gain
is not dramatic	 The problems given in Table � are of medium size� but similar results
where obtained when the number of variables was large �n � �


�	

So far we have concentrated only on the number of function calls� but as we have
mentioned earlier� there are practical large scale problems for which the function and gra�
dient evaluation is inexpensive	 We will therefore now consider the number of iterations
and the total amount of time required by the two limited memory methods	
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L�BFGS
P N m��	 m��	 m�
�


 ��� 
��	� 
��
	 
��
	
������� ������� 
����
	

	 ��� ������
 ������	 �����

������	 �������

 ����	����

� 	� ������� ������	 ������

	������� ��������� �����
��
�

�� ��� 
��
� 
��
� 
��
�
������
� ������	� 
���
�		

�� ��� ����� ����� �����
������� ���
��� �
�
���

�� ��� ������� ��	��
� �������
����������� ������	�
�� 
�������	
�

Table �� The L�BFGS method with a large amount of storage�

From Tables � and � we see that the method of Buckley and LeNir usually requires fewer
iterations� when using cpu time as a measure� there is no clear winner	 We therefore
cannot conclude that the L�BFGS method� as implemented so far� is superior to the
method of Buckley and LeNir for problems in which the function evaluation is cheap	
However there is a simple way to improve the L�BFGS method in this case	

First� we note that the reason Buckley and LeNir�s method requires fewer iterations
is that it performs a more accurate line search	 The implementation recommended by
Buckley and LeNir ������� i	e	 the one obtained by setting all parameters to their default
values� ensures that at least one cubic interpolation is applied at every iteration of the
algorithm� which usually results in a very good estimate of the one dimensional minimizer	
It is therefore natural to perform a more accurate line search in the L�BFGS method in
order to decrease the number of iterations	 In Table � we give the results for the L�BFGS
method� when the line search is forced to perform at least one cubic interpolation	

L�BFGS
P N m�	 m�� P N m�	 m��

� ���� ���
� ���
� � 	� �����	 ������

	������ �������� �	�	���� �	�	����

� ���� 

��� 

��� �� ��� ����
�� ����

�
����	������ ����	������ ��������
� �����
�����

�� ���� ���
� ����� �� ��� �����
� �	�����
�������� ��������� 	����������� ���������
��

Table �� L�BFGS method with a more accurate line search�

For most problems the number of iterations is markedly reduced �compare Tables �
and ��	 We now compare this implementation of the L�BFGS method with the method
of Buckley and LeNir� and for simplicity we will use total cpu time as a measure	 In
Table �
 we give the number of wins� i	e the number of runs for which a method required
less time than the other one� on our whole set of problems	

��



Method m�	 m�� Total

B�L 	 � ��

L�BFGS �
 �
 
�

Table ��� Number of wins � counting total time

This Table shows that the L�BFGS method is faster on most of the problems	 Fur�
thermore an examination of the results given in Liu and Nocedal ������ shows that the
di�erences are very substantial in many cases	 We conclude from these experiments that
the L�BFGS method should have two options� �i� when the function and gradient eval�
uation is expensive� the method should perform an inaccurate line search� like the one
described earlier in this section� �ii� otherwise it should perform a more accurate line
search� by forcing at least one interpolation� or by using a small value for the parameter
� in ��	��	

For the rest of the paper we will consider only the L�BFGS method� since we have
seen that it outperforms the method of Buckley and LeNir	

�� Scaling the L�BFGS method

It is known that simple scalings of the variables can improve the performance of
quasi�Newton methods on small problems	 It is� for example� common practice to scale
the initial inverse Hessian approximation in the BFGS method by means of formula ��	
�	
For large problems scaling becomes much more important� see Beale ������� Griewank
and Toint ����
a� and Gill and Murray ������	 Indeed� Griewank and Toint report that
a simple scaling can dramatically reduce the number of iterations of their partitioned
quasi�Newton method in some problems	 We have observed that this is also the case
when using limited memory methods� as we shall discuss in this section	

In the basic implementation of the L�BFGS method given in Algorithm 
	�� the initial
matrix H�� or its scaled version 	�H�� is carried throughout the iterations	 So far we have
assumed only that H� is sparse� and in our test we have set it to the identity matrix	 The
choice of H� clearly in�uences the behavior of the method� and a natural question is how
best to choose it	 If the objective function is mildly nonlinear and if the diagonal entries of
the Hessian are all positive� an excellent choice would be to let H� be the diagonal of the
inverse Hessian matrix at x�	 In general� however� it is preferable to change this matrix
as we proceed� so that it incorporates more up�to�date information	 Let us therefore

replace the matrix H� in �
	�� by H
���
k � and consider strategies for computing this matrix

at every step	
One simple idea is to use the scaling ��	
� at each iteration and set

H
���
k � 	kH�� �����

where 	k � yTk sk�kykk
�	 Another possibility is to try to �nd a diagonal matrix that

approximately satis�es the secant equation with respect to the last m steps	 Let xk be
the current iterate� and assume that k � m	 We �nd the diagonal matrix Dk which
minimizes

�




kDkYk�� � Sk��kF � ���
�

where k�kF denotes the Frobenius norm� and Yk�� � �yk��� � � � � yk�m � Sk�� � �sk��� � � � � sk�m 	
The solution is Dk 	 diag�dik� where

dik �
sik��y

i
k�� � � � �� sik�my

i
k�m

�yik���� � � � �� �yik�m��
� i � �� ���� n� �����

Since an element dik can be negative or very close to zero� we use the following safeguard�
formula ��	�� is used only if the denominator in ��	�� is greater than �
���� and if all the
diagonal elements satisfy dik 
 ��
��	k� �
�	k � otherwise we set dik � 	k	

We have tested the L�BFGS method using the following scalings	

Scaling M� � H
���
k � H� �no scaling�	

Scaling M
 � H
���
k � 	�H� �only initial scaling�	

Scaling M� � H
���
k � 	kH�	

Scaling M� � Same as M� during the �rst m iterations	 For k � m� H
���
k � Dk� see

��	��	

In Table �� we give the performance of these scalings on a few selected problems	
H� was set to the identity matrix� and the method used m � �	 The results were also
obtained on a SUN ���
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Table ��� The L�BFGS method with di�erent scalings� when m � 	�

Note the dramatic reduction of function evaluations given by M� and M�� with respect
to M�	 We have ranked the performance of the four scalings on each of our test problems�
and tallied the rankings for all the problems	 The result of such a tally is presented in
Tables �
 and ��	
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Table ��� Relative performance of scaling methods�
counting function calls� on all problems� when m�	�

M� M� M� M


Best 
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�nd � � � �
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Worst � � � �

Table ��� Relative performance of scaling methods�
counting cpu time� on all problems� when m�	�

We can see from these tables that M� and M� are the most e�ective scalings	 We
performed the same tests using m � � corrections and the results are very similar	
M� seldom required safeguarding� this was needed in only about �� of the iterations	
Our numerical experience appears to indicate that these two scalings are comparable in
e�ciency� and therefore M� should be preferred since it is less expensive to implement	

There are many other strategies for dynamically computing scalings	 Gill and Murray
������ have suggested a scaling based on recurring the diagonal of the Hessian approxi�
mation produced by the direct BFGS formula	 In our tests this formula performed well
sometimes� but was very ine�cient in many problems	 Its behavior seemed erratic� even
if one included the safeguards suggested by Gill and Murray� and therefore we do not
report these results	 It may be very fruitful to study other dynamic scaling strategies
! perhaps this is one of the most important topics of future research in large scale
optimization	

���� Solving Very Large Problems

The largest problems considered so far have �


 variables	 To be able to perform
a complete set of tests with larger problems� we had to use a more powerful machine
than the SUN ���
	 In Table �� we describe the performance of the L�BFGS method
on problems with �


 and �



 variables� using the Alliant FX�� at Argonne Na�
tional Laboratory	 Double precision arithmetic in this machine has a unit round�o� of
approximately �
��
	 The results are reported in the form�

number of iterations�number of function evaluations
total time

We see that increasing the storage beyond m � � has little e�ect on the number of
function evaluations� in most of the problems	 An improvement is more noticeable if one
uses scalings M� or M
� but the change is still small	 We have observed� in general� that
when solving very large problems� increasing the storage from m � � or m � � gives only
a
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Table �
� L�BFGS method with scaling strategy M��

marginal improvement of performance	 Gilbert and Lemar�echal ������ report similar
results	 The reason for this is not clear to us	 Note� from Table ��� that in all problems
the number of iterations needed for convergence is much smaller than the dimension n	
In fact� for several problems the number of iterations is a small multiple of m� which
would lead one to believe that the value of m is signi�cant	 We feel that an explanation
of this requires further research	

�� Comparison with conjugate gradient methods�

At this point it is reasonable to ask whether the L�BFGS method� using a scaling such
as M�� is faster in terms of cpu time than some of the well�known conjugate gradient
methods	 We tested three methods� ��� the algorithm CONMIN developed by Shanno
and Phua ����
�� �
� the conjugate gradient method �CG� using the Polak�Ribi"ere for�
mula �see for example Powell �������� restarting every n steps� and with �� � �
�	 and
� � 
�� in �
	�� and ��	��� ��� the L�BFGS method M�� for which we tried both accurate
and inaccurate line searches	 By an accurate line search we mean one in which at least
one interpolation was forced� an inaccurate line search does not enforce it	 The results
are presented in the form

number of iterations�number of function evaluations
iteration time�function time�total time
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L�BFGS �M��
P N CONMIN CG Normal Line Search Accurate Line Search
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Table �	� CONMIN� CG and L�BFGS methods�

The next two tables summarize the results of Table ��	 The performance in terms of
function calls is as expected� L�BFGS with inaccurate line search is best� CONMIN is
second and CG is worst	

L�BFGS �M��
CONMIN CG Normal Accurate

m�� m�	 m�� m�	

Best � � � �� � �

�nd � � �� � � �
�rd �� � � � � �

th � � � � 
 �

	th 	 
 � � � 	
Worst � �	 � � � �

Table ��� Relative performance of CONMIN� CG and L�BFGS methods� counting function calls�

L�BFGS �M��
CONMIN CG Normal Accurate

m�� m�	 m�� m�	

Best � � �� � 
 �
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�rd � � 
 � 	 	

th 
 � � 
 	 �

	th 
 � � � � �
Worst �� � � 	 � �

Table ��� Relative performance of CONMIN� CG and L�BFGS methods� counting cpu time�

Some of the timing results of Table �� are very surprising	 The CG method is in
general faster than CONMIN	 The best timings of L�BFGS are obtained when m��� in
this case its performance is only slighlty better than that of the CG method	

Examining the results of Table �� closely we observe that in most of our problems the
function and gradient evaluation is inexpensive� which explains why the times of CG are
good in spite of its large number of function evaluations	 However for a few problems�
notably problem ��� the function and gradient are very expensive to compute	 We see
that in this case the L�BFGS method with an inaccurate line search is much better than
CG	

We conclude that the L�BFGS method performs well in comparison with the two
conjugate gradient methods� both for expensive and inexpensive objective functions	
We also conclude that for large problems with inexpensive functions the simple CG
method can still be considered among the best methods available to date	 Based on our
experience we recommend to the user of Harwell code VA��� which implements the M�
L�BFGS method� to use low storage and accurate line searches� when function evaluation
is inexpensive� and to set � � m � � and use an inaccurate line search when the function
is expensive	

��



�� Comparison with the partitioned quasi�Newton method

We now compare the performance of the L�BFGS method with that of the partitioned
quasi�Newton method �PQN� of Griewank and Toint� which is also designed for solving
large problems	 The PQN method is described in detail in Griewank and Toint �������
and the code VE
� implementing it has been published by Toint �����b�	 We will only
discuss one feature of the algorithm that is important in practice	

Suppose that one of the element functions in �
	�� is of the form

fi�x� � �x� � x��
� � x���

Even though fi depends on three variables� the rank of its Hessian matrix is only two	
One can introduce the linear transformation of variables y� � x� � x�� y� � x�� so that
this element function depends on only two variables	 In VE
� the user must specify the
element function� and is given the option of providing a rule for reducing the number of
variables on which this function depends	 Two of our test problems allow for a variable
reduction� and since we believe that in some cases the user may not wish �or may not be
able� to supply the variable reduction rule� we tested the PQN method with and without
this option	

Two choices for the starting matrix were used in the PQN method� the identity matrix
scaled at the end of the �rst iteration by the dual of ��	
�� 
 � yT� s��ks�k

�� �B� � 
I��
and the Hessian matrix at x�� estimated by �nite di�erences �Bdiff �	 The L�BFGS
method was run using the scaling M�� storing m � � corrections	 Stg stands for the
amount of storage required by each method� �it� denotes the number of iterations� and
nf the number of function�gradient calls	 We report three times� iteration�time�function�
time�total�time	 The runs were performed on a SUN ���
	

In Table �� we compare the two methods on two problems that allow for variable
reduction� and take advantage of this in the PQN method	

PQN L�BFGS
P N B� � �I B� � Bdiff

Stg it�nf time it�nf time Stg it�nf time
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Table ��� Partitioned quasi�Newton method with variable reduction� and L�BFGS method with M�

scaling and m � 	�

��



In these two problems the PQN method is vastly superior� in terms of function eval�
uations� to the L�BFGS method	 We see that the additional information supplied to the
PQN method has been used very e�ectively	 Note that the storage requirements of the
two methods are similar	 In terms of cpu time the advantage of PQN is less dramatic�
PQN is much faster for problem �� but the two methods have comparable times for the
linear minimum surface problem �problem �
�	

Table �� compares the two methods on several other problems	 We include the two
problems used in Table ��� but this time the PQN method did not use variable reduction	

PQN L�BFGS
P N B� � �I B� � Bdiff

Stg it�nf time it�nf time Stg it�nf time
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Table ��� PQN and L�BFGS on several other problems�

The L�BFGS method is very competitive in these problems� in terms of computing
time	 Even though it usually requires more iterations� this is o� set by the low cost of
computing the search direction	 On the other hand� in terms of function evaluations�
the PQN method is clearly the winner	 Problem �
 does not really belong in this Table
because its Hessian matrix is dense� and therefore it is not suitable for the PQN method	
We have included it� however� to show what happens when a problem like this is solved
by the PQN method� the results are very poor	 This problem has an objective function
that may appear at �rst to be partially separable� and it requires some attention to notice
that the Hessian matrix is� in fact� dense	

��



To analyze these results further� we give in Table 

 more information about the test
problems	 The number of element functions is denoted by ne	 The number of variables
entering into the element functions is nve� and nve�vr is the number obtained after
applying variable reduction	 Using the results of Table ��� we give the average time
required to perform an iteration �it�time�	 For the PQN method we have used the results
corresponding to B� � 
I � and we recall that the L�BFGS method used scaling M� and
m � �	

P N ne nve nve�vr PQN L�BFGS
it�time it�time

� ��� 	� � � �
� ���

� ���� 	�� � � 	�	� ����

 ��� �� 
 
 ��
 ���

 ���� ��� 
 
 ��		 ��	�

� ��� ��� � � ���� ��

� ���� ���� � � ���� ����
�� ��� ��� 
 � ���
 ���

�� ��� ��� 
 � 
���� ����
�� ��� �� � � ���� ���
�� ���� ��� � � ��	 ���

�
 ��� �� � � ��� ��

�
 ���� ��� � � ��
� ���
�	 ��� ��
 	 	 
�
� ��	

�	 ���� ���
 	 	 ����	 ����

Table ��� Separability of the objective functions� and average iteration time�

The iteration time of the L�BFGS method is� of course� quite predictable �it is a
function of n�	 We observe large variations in the iteration time of PQN� for most
problems it is 
 to � times larger than that of L�BFGS	 However for problem �
 �minimum
surface problem without variable reduction� and problem �� �sparse matrix square root
problem� the PQN iteration time is �
 to �� times that of L�BFGS	

The PQN method usually requires less storage than L�BFGS with m � �� except for
problem ��� where PQN requires twice as much storage	 Note that in this problem the
element functions depend on � variables	 It thus appears from these results that the PQN
method becomes less attractive when the number of variables entering into the element
functions is greater than � or �	

	� Convergence Analysis

In this section we show that the limited memory BFGS method is globally convergent
on uniformly convex problems� and that its rate of convergence is R�linear	 These results
are easy to establish after noting that all Hessian approximations Hk are obtained by
updating a bounded matrix m times using the BFGS formula	 Because we prefer to
analyze the direct BFGS formula� in what follows we assume that the algorithm updates
Bk # the inverse of Hk	







Algorithm ��� �General limited memory BFGS algorithm�	

��� Choose x�� m� 
 � �� � ��
� �� � � � �� and a symmetric and positive de�nite
starting matrix B�	 Set k � 
	

�
� Compute
dk � �B��

k gk� �����

xk�� � xk � �kdk� ���
�

where �k satis�es �
	�� and �
	��	

��� Let $m � minfk � �� mg� and de�ne a symmetric and positive de�nite matrix B
���
k 	

Choose a set of increasing integers Lk � fj�� ���� j 
m��g � f
� ���kg	 Update B
���
k $m

times using the pairs fyjl � sjlg

m��
l�� � i	e	 for l � 
� ���� $m� � compute

B
�l���
k � B

�l�
k �

B
�l�
k sjlsjl

TB
�l�
k

sjl
TB

�l�
k sjl

�
yjlyjl

T

yjl
Tsjl

� �����

Set Bk�� � B
� 
m�
k � k �� k � �� and go to �
�	

There are many possible choices of B
���
k in step ��� as discussed in x�	 For example

we could have B
���
k � B�� or B

���
k � B��	k	 We will assume only that the sequence

of matrices B
���
k � and the sequence of their inverses� are bounded	 Since the elements

of Lk de�ned in step ��� form an increasing sequence� Algorithm �	� is identical to the
BFGS method when k � m	 For k � m� Lk can be chosen without this monotonicity
restriction� but this may not be advantageous in practice	 Note that Algorithms 
	� and
�	� are mathematically equivalent	 In our code we implement Algorithm 
	� because it
allows us to avoid storing a matrix� Algorithm �	� is given only for the purposes of the
analysis	

We make the following assumptions about the objective function	 The matrix of
second derivatives of f will be denoted by G	

Assumptions ���

��� The objective function f is twice continuously di�erentiable	

�
� The level set D � fx 
 Rn � f�x� � f�x��g is convex	

��� There exist positive constants M� and M� such that

M�kzk
� � zTG�x�z �M�kzk

� �����

for all z 
 Rn and all x 
 D	 Note that this implies that f has a unique minimizer
x� in D	


�



Theorem ��� Let x� be a starting point for which f satis�es Assumptions ���� and as�

sume that the matrices B
���
k are chosen so that fkB

���
k kg and fkB

���
k

��
kg are bounded�

Then for any positive de�nite B�� Algorithm ��� generates a sequence fxkg which con�

verges to x�� Moreover there is a constant 
 � r � � such that

fk � f� � rk�f� � f� � �����

which implies that fxkg converges R�linearly�

Proof� If we de�ne

Gk �
Z �

�
G�xk � �sk�d�� �����

then
yk � Gksk � �����

Thus ��	�� and ��	�� give

M�kskk
� � yTk sk �M�kskk

�� �����

and
kykk�

yTk sk
�

sTkG
�
ksk

sTkGksk
�M�� �����

Let tr�B� denote the trace of B	 Then from ��	��� ��	�� and the boundedness of

fkB
���
k kg

tr�Bk��� � tr�B
���
k � �


m��X
l��

kyjlk
�

yjl
Tsjl

� tr�B
���
k � � $mM�

� M�� ��	�
�

for some positive constant M�	 There is also a simple expression for the determinant �see
Pearson ������ or Powell �������

det�Bk��� � det�B
���
k �


m��Y
l��

yjl
T sjl

sjl
TB

�l�
k sjl

� det�B
���
k �


m��Y
l��

yjl
T sjl

sjl
Tsjl

sjl
Tsjl

sjl
TB

�l�
k sjl

� ��	���

Since by ��	�
� the largest eigenvalue of B
�l�
k is also less than M�� we have� using ��	��

and the boundedness of fkB
���
k

��
kg�

det�Bk��� � det�B
���
k �

�
M�

M�

� 
m

� M	� ��	�
�

for some positive constant M		 Therefore from ��	�
� and ��	�
� we conclude that there







is a constant � � 
 such that

cos 
k 	
sTkBksk

kskkkBkskk
� �� ������

One can show that the line search conditions �
	����
	�� and Assumptions �	� imply that
there is a constant c � 
 such that

f�xk���� f�x�� � ��� c cos� 
k��f�xk�� f�x����

see for example Powell ������	 Using ��	��� we obtain ��	��	
From ��	��

�



M�kxk � x�k

� � fk � f��

which together with ��	�� implies kxk�x�k � rk���
�f��f���M� 
���� so that the sequence

fxkg is R�linearly convergent also	
�

It is possible to prove this result for several other line search strategies� including
backtracking� by adapting the arguments of Byrd and Nocedal ������� see the proof of
their Theorem �	�	 Note from ��	��� ��	�� and ��	�� that M� � 	k � M�	 Thus the
L�BFGS method using strategy M� satis�es the conditions of Theorem �	�	

One can implement the method of Buckley and LeNir so that it is n�step quadratically
convergent on general problems� which implies an R�superlinear rate of convergence	 The
L�BFGS method does not have this property� and R�linear convergence is the best we
can expect	 Finally we note that the algorithms of Shanno and Phua and Buckley and
LeNir are special cases of Algorithm �	�� if we let the integer m vary at each iteration in
the interval ��� mmax � where mmax is the maximum number of corrections allowed �see
Buckley and LeNir �������	 Therefore Theorem �	� applies also to these two methods	


� Final Remarks

Our tests indicate that a simple implementation of the L�BFGS method performs
better than the code of Buckley and LeNir ������� and that the L�BFGS method can
be greatly improved by means of a simple dynamic scaling� such as M�	 Our tests have
convinced us that the partitioned quasi�Newton method of Griewank and Toint is an
excellent method for large scale optimization	 It is highly recommended if the user is
able and willing to supply the information on the objective function that the method
requires� and it is particularly e�ective when the element functions depend on a small
number of variables �less than � or �� say�	 The L�BFGS method is appealing for several
reasons� it is very simple to implement� it requires only function and gradient values #
and no other information on the problem # and it can be faster than the partitioned
quasi�Newton method on problems where the element functions depend on more than �
or � variables	 In addition� the L�BFGS method appears to be preferable to PQN for
large problems in which the Hessian matrix is not very sparse� or for problems in which
the information on the separablity of the objective function is di�cult to obtain	


�



Our tests also indicate that L�BFGS with dynamic scalings performs better than the
CONMIN code of Shanno and Phua ����
� and than the standard conjugate gradient
method �CG�� except in one case� for large problems with inexpensive functions� CG is
competitive with L�BFGS	
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