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1. INTRODUCTION

The definitions and notations given here are from [ô]. Let 

G ■ (ViE') be a finite, undirected, loopless graph with weights ci on 

vertices u^eF. A vertex packing (u.p) is a subset P£F for which

VijVj&P implies (vi3Vj)e.E. The weight c(P) of a v.p is defined as

There is no loss of generality in assuming that Cj>0c(P) = £ cj.
Vj%P J

for all VjeV, and that there is no isolated vertex in G (i-e. a vertex

with no edge adjacent to).

Determining a maximum weighted v.p. may be formulated as the

integer program:
Max cX

s.t.
CFP)

AX 4 lm

in which m = Iffl, lm ~ (2,...,!) is an m-vector of I’s and A is the mxn 

edge-vertex incidence matrix of G.

• • • fVh

Relaxing the integrality constraints to X ^ 0n3 gives the v.p linear

program (VLP).

By the transformation:

(1-2)U = lm- X
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we obtain the integer program:

Mïn oU

{CP) s.t. AU > 1m

ui = 0,1 ; i = 1,2,. . .,n

This problem is the one of finding a minimum weighted covering of 

edges by nodes (cf.[l]); here we simply call it the covering problem. 

Let (CLP) be the linear relaxation of (CP); by (1-1), we obtain (CLP)

from(VLP).

It is a well-known result that any basic feasible solution to (VLP) 

or (CLP) is (0, 1/2, 1)-valued: this was indicated by Lorentzen [5] as 

a simple consequence of the work of E. Johnson [4] ; indeed the dual of 

(CLP) is:
Max lm Y

(MLP) s.t. Y A 4 c

> 0 ; j = 1,2, .. .,my3

which is the linear relaxation of the c-matching problem (cf. [2])

Max lm Y

{MP) s.t. Y A 4 o

> 0,1 ; J = 1,2j ••• jTfly3

The interest of studying these linear relaxations is showed by these

following two results:

(i) (VLP) may be solved by a good algorithm: it is a result attri

buted by Nemhauser and Trotter [ô] to Edmonds and Pulleyblank 

that (VLP) is equivalent to solving a maximal flow problem on a
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related symmetric bipartite graph, twice the size of G.

(ii) an integer-valued variable in an optimal solution to (VLP)

may keep the same value in an optimal solution of (VP)

(cf. [6]).

This paper shows that there exists a unique maximum set of

variables that may be integer-valued in an optimal solution

to VLP; this result is shown in the section 2; in the section

3, we give a labeling procedure for determining this set using

a sensitivity analysis on the maximum flow in the bipartite

graph of Edmonds and Pulleyblank.

2. THE MAXIMUM SET OF INTEGER-VALUED VARIABLES

For Jeff”, define T(X) as the set of indices i [i = li2i...3n) such

that is integer.

Let xl and be two optimal solutions to (VLP) then there 

is an optimal solution X to (VLP) such that :

Lemma I.

J(J) = I(X1') U I{X2)

Because X^ and X2 are (1, 0, 1/2)-valued, the indices 

i (i = l3...3n) can be partionned in nine disjoint subsets (that may be

Proof:

empty) defined by:

= {£\x^=j and x2-k]
i, t

A0>-k

where j,fce{0,1/2,1}
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These subsets are given in Fig. I

Values of

1/201
a1,1/2a1301 a131Values

of
P*

A031/2a0300 A03l

1/2 Al/2y 0 Al/23l/2Al/231

Fig. 1

Let oCAj-^i/) denote the quantity E ai Xi.
ieA33k

Let a solution defined by:

1 if i * A2ti 

0 if i e AQ'Q 

1/2 otherwise

xZ ~-
i

then it is obvious that X^ is a feasible solution to (VLP); further-

7 9
more, since both X1 and X are optimal, we have:

oX1 > cX3 i.e c(ai3o) + oiAl32/2^ > °(A031) + o{-A03 1/2^ (2-2)

and oX^ > cX3 i.e (2-2)°(a031> + °(-Al/23l) > °(.a130') + °(a1/23o)

Adding (2-2) and (2-2) gives:

(2-3)a^Al3l/2) + °(A1/23T) > ctA03l/2) + °(Al/23
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Let now a solution defined by:

(x2 if •£ e I{X2)
i

4
Xi =

1 2
otherwise (i.e. if = 1/2)Xi

then is feasible (the reader may convince himself by inspection

using the grids of Fig. 2) and:

cX4 = oX2 + 1/2(c{A } - c(A ))
0,1/21*1/2

O

Since X is optimal, we have also:

(.2-4)a(-Al,l/2) 4 <3^A0,l/2)

Finally, let X^ a solution defined by:

if i e I^x1)

5
Xi = ,

2 if xl = 1/2)otherwise (i.e.xi

then is feasible and:

oXb = oX1 + l/2(e(A1/2ii) - o(Al/2,0^

Since is optimal. we have:

(2-5)a(A 1/2,1^ 4 °(A1/2,o')
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)
1/21/2 1/21 1 1 0 11

0 ! 0 1/2 1/2 1/200 1 0

1/2 1/2 ; 1/2 1/2 1/2 1/21/21 0
i

X1 x2 x3

0 1 1 1 11

0 01 0 0 0

1/21/2 01 0 1

x5x4

Fig. 2

f

From (2-3), {2-4) and (2-5), we get:

o{A^ j/g) = o{Aq^i/2) and then a{X^) = c(^2)

°^Al/2 = °(Al/2 (fi anci I1*1611 c(Z5) : o{xl).

Hence X4 and X5 are two optimal solutions to (VLP) such that:

and

I{X4) = I{X5) = UX1) U I{X2)

In their paper [6], Nemhauser and Trotter write "determine an optimum 

solution to (VLP) in which a maximal (but possibly not maximum) collection

of variables is integer-valued". Now we can show that the parenthetic

assertion is superfluous.
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There is a unique maximal subset of integer-valued 

variables yielding an optimum solution to (VLP).

THEOREM II.

let X^- and beProof: this theorem easily follows from Lemma 1:

two distinct optimum solutions to VLP, each one having a maximal subset 

of integer-valued variables. Then X^ (or X^) defined in the proof of

Lemma 1 is an optimum solution whose integer-valued collection contains 

both the ones of X^ and X^, and this is inconsistent with the hypothesis

of these subsets being maximal.

Such a collection may be call the maximum subset of integer-valued

variables.

ALGORITHM FOR DETERMINING ALL THE INTEGER-VALUED VARIABLES.3.

Nemhauser and Trotter propose an algorithm for determining the integer-

set Xj ~ 13

Xfc = 0 for all its adjacents Ufc G and solve (VLP) on the remaining

subgraph induced by Vj ~ V ~ ^ ^({yj}))-

cedure needs solving about n (VLP)-problems on subgraphs of G. 

derive a more efficient algorithm, we recall some results about the way

valued variables by checking each vertex Uj as follows:

The completion of this pro-

In order to

(VLP) may be solved.

Let V' be a copy of the vertex set V of G, in which y'6 7 corresponds 

Let W = V U V U {s,t}, where 8(resp.t) is an artificial source 

(resp.sink), and H = (W3 F3 5) a network whose arcs are:

to u G V.
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with capacity cj for all j

(_vj3v’i<) with infinite capacity for all edges (vjjVfc) e E

with capacity for all

LEMMA 3.

Let (S;S) be a minimum cut in H (recall that s e S, t e S) 

if vj e S and u'j e S 

if Vj e S and v'j e S 

otherwise

il

(3-DSet xj =10

1/2
V

then X is an optimum solution to (VLP).

this lemma is a corollary of the theorem of Edmonds and PulleyblankProof:

cited in [ô] .

minimum cut is indicated by Picard and Ratliff \j\ ; the value of a minimum 

cut is then 2o(_ln - X) .

The equivalence between (VP) in a bipartite graph and a

Solving the minimum cut problem of Lemma 3 may be done by the standard 

maximal-flow procedure of Ford and Fulkerson [3]. 

the arc (vj^vj/) in this maximal flow.

replace by + e and check the optimality of the current 

Taking e > 0 small enough reduces the standard Ford and Fulkerson

Let be the flow on 

We now test each vertex in the

following way:

solution.

labeling routine to the following:

Labeling procedure:

(1) Discarding: discard all the vertices e V, such that is 

integer-valued.
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choose an unscanned vertex U£ e V, label and 

go to step 3; if all the remaining vertices V-i of V are

C2) Initiating:

scanned, terminate.

(3) Direct labeling: label all the vertices such that there 

exists an edge e F and Vj is labeled.

(4) Test: if v^' is labeled, then is scanned and go to step (2).

label all the vertices v-^ such that there 

'i and fik
If there is no new labeling go to step (6), otherwise go to

(5) Reverse labeling:

exists a labeled vertex v > 0.

step (3).

(6) Solution modification: the set S of all labeled vertices, 

together with S, defines a cut {S, 3) in H. Redefine X by

(3-1) and go to step (1).

The labeling -procedure is a good algorithm for finding an 

optimum solution to (VLP) having the maximum set of integer-valued variables.

THEOREM TV.

the procedure needs at most n choices in the step (2); each labeling 

(steps 3 to 5)assigns at most 2n labels, hence it is a good algorithm.

Proof:

Let X* be a solution to (VLP) having the maximum set of integer-valued

variables.

Let X^ be the solution given by the algorithm;as in the proof of
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theorem 2, let be defined by

*1 =p| if i e I(X2)

\x\ otherwise

X^ is an optimum solution, with the maximum collection of integer-valued 

variables, containing all the integer-valued variables of X^ at the same 

It will be shown that X^ = X^:
3 2

Let be a vertex such that = 1 and = 1/2 and consider 

the solution X obtained in the application of the procedure 

just before was to be considered in the step (2).

J(J) £ J(J2) since the algorithm builds an increasing set of 

integer-valued variables, and x^ = 1/2.

by + e with e > 0 such that e < >

value.

(*)

We have

Suppose we replace

value of the current solution becomes cX + e/2, though the 

of X^ becomes oX + z: X is not optimal for these newvalue

weights.

The weight change leads to have the e extra amount of flow go 

along the arcs (s,ü^) and the standard Ford and

Fulkerson labeling routine may be used to find an augmenting 

path between and since e < > 0}, it is

If v^'is labeled, 

the value of the flow becomes 2o(ln - X) + z after the flow

reduced to the given labeling procedure.

this is a lower bound for the minimum cut and,conse-change;

quently cX + ^

(VLP); this is inconsistent with X^ being a solution to (VLP) with

is an upper bound for the value of any solution to

oX + z value.
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3 2
{ii") Let be a vertex with = 0 and

g
vertex Vj, adjacent to y^, such that Xj = 1 (otherwise,

3
since > 0, we could set x^ = 1/2); since all the integer-

= 1/2. There is a

valued variables of keep the same value in , having
2
. = 1/2.

2 *x . = 0 is impossible and then x. 
3 3

3 2v . such that x. = 1 and x.
3 3
in the part (i).

Having a vertex 

■j = 1/2 has been proved impossible

Application:

Consider the graph of Fig. 3, with weights a = Ijq.

The corresponding bipartite graph is in Fig. 4; the max-flow, shown 

by thick lines, corresponds with the matching (1-4, 2-3, 5-6, 7-8, 9-10).

The completion of the labeling process is listed below, facing the run 

of the algorithm of Nemhauser and Trotter (implemented with the standard

Ford and Fulkerson labeling method).
Nemhauser and TrotterLabeling process

labeling verticesStep

no discarding 
xj = 1
X2 = 0 
X2 = 0 
X4 = 0 
X5 = 0
label Ve 

" y 'y

1 no discarding
2 V1

v'23
V’3
y r4
v's

5 v3
V2

V8V6
V’9y's

Vj is scanned
2
4 V10 

v 8

v7,”6
flow change 

Zj + ci = 2.5 + 1 < 5
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Nemhauser and TrotterLabeling process

labeling verticesStep

2 X£ = 1
Xj = 0
x2 = 0 
label V4

”2
V'l3
v'3

4 v4
v'ev'e3
v'sv'e
v'10v’io

4 v5y 5
V?V?
v9v9

Z2+C2=4+l=5 
olution X2 - X4 = x2 = xy = xg = 1 

XI = X3 = xg = xg = X20b‘ 0

5 Solution X2 = X4 m xg = xy = xg = 1
xi - x2 = xg - xg = Xjq=

On this example, it appears that some significant simplifications are 

obvious (for instance, as soon as a neighbour Vj of Vi is labeled, vr£ 

may be labeled at the next step); others are less easy to set, and suppose

They lead to an improved ver-more material about "alternating chains".

sion of the labeling procedure, which

works directly on the original graph G,

(ii) assigns labels + or - to the vertices, the main part of this

being done along trees.

(££•£) uses an immediate identification of a subset of vertices that

might not be integer-valued, and then are discarded.

(iu) assigns at most two labels to the remaining vertices.

For seek of simplicity, we have not included here this improved 

algorithm; the interested readers may write to the authors to get it.
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