Skip to main content
Log in

Proof theory and ordinal analysis

  • Published:
Archive for Mathematical Logic Aims and scope Submit manuscript

Abstract

In the first part we show why ordinals and ordinal notations are naturally connected with proof theoretical research. We introduce the program of ordinal analysis. The second part gives examples of applications of ordinal analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barwise, J.: Admissible sets and structures. Perspectives in Mathematical Logic. Berlin Heidelberg New York: Springer 1975

    Google Scholar 

  2. Buchholz, W.: Normalfunktionen und konstruktive Systeme von Ordinalzahlen. In: Diller, J., Müller, G.H. (eds.) ISILC — Proof theory symposium. (Lect. Notes Math., vol. 500, pp. 4–25) Berlin Heidelberg New York: Springer 1975

    Google Scholar 

  3. Buchholz, W., Feferman, S., Pohlers, W., Sieg, W.: Iterated inductive definitions and subsystems of analysis: recent proof-theoretical studies. (Lect. Notes Math., vol. 807) Berlin Heidelberg New York: Springer 1981

    Google Scholar 

  4. Buchholz, W., Schütte, K.: Ein Ordinalzahlenbezeichnungssystem für die beweistheoretische Abgrenzung derΠ1/2-Separation und Bar-Induktion. Sitzungsber. Bayer. Akad. Wiss. Math.-Naturwiss. Kl. (1983)

  5. Buchholz, W.: A new system of proof-theoretic ordinal functions. Ann. Pure Appl. Logic32, 195–207 (1986)

    Google Scholar 

  6. Buchholz, W., Wainer, S.S.: Provably computable functions and the fast growing hierarchy in mathematical logic and combinatorics. In: Simpson, S. (ed.) Proc. of the AMS-IMS-SIAM (AMS-ser. Contemp. Math., vol. 65, pp. 179–198) Providence-Rhode Island: AMS 1987

    Google Scholar 

  7. Buchholz, W.: Notation systems for infinitary derivations. (This volume)

  8. Cichon, E.A., Wainer, S.S.: The slow growing and the Gregorczyk hierarchies. J. Symp. Logic48, 399–408 (1983)

    Google Scholar 

  9. Feferman, S.: Systems of predicative analysis. J. Symb. Logic29, 1–30 (1964)

    Google Scholar 

  10. Feferman, S.: Formal theories for iterated generalized inductive definitions and some subsystems of analysis. In: Kino, A., Myhill, J., Vesley, R.E. (eds.) Intuitionism and proof theory. Proceedings of the Summer Conference at Buffalo, New York. Amsterdam: North-Holland 1970

    Google Scholar 

  11. Gentzen, G.: Die Widerspruchsfreiheit der reinen Zahlentheorie. Math. Ann.112, 493–565 (1936)

    Google Scholar 

  12. Gentzen, G.: Beweisbarkeit und Unbeweisbarkeit von Anfangsfällen der transfiniten Induktion. Math. Ann.119, 140–161 (1943)

    Google Scholar 

  13. Girard, J.Y.:Π 21 -logic, part I: dilators. Ann. Pure Appl. Logic21, 75–219 (1981)

    Google Scholar 

  14. Girard, J.Y.: Proof theory and logical complexity. Studies in proof theory. Naples: Bibliopolis 1987

    Google Scholar 

  15. Moschovakis, Y.: Elementary induction on abstract structures. Amsterdam: North Holland 1974

    Google Scholar 

  16. Jäger, G.: Die konstruktible Hierarchie als Hilfsmittel zur beweistheoretischen Untersuchung von Teilsystemen der Analysis und Mengenlehre. Dissertation, München, 1979

  17. Jäger, G.:ϱ-inaccessible ordinals, collapsing functions, and a recursive notation system. Arch. Math. Logik Grundlagenforsch.24, 49–62 (1984)

    Google Scholar 

  18. Jäger, G.: Theories for admissible sets: a unifying approach to proof theory. (Habilschrift at the University of Munich) Naples: Bibliopolis 1986

    Google Scholar 

  19. Jäger, G., Pohlers, W.: Eine beweistheoretische Untersuchung von (Δ1/2CA)+(BI) und verwandter Systeme. Sitzungsber. Bayer. Akad. Wiss. pp. 1–28 (1982)

  20. Löb, H.H., Wainer, S.S.: Hierarchies of number-theoretic functions. Arch. Math. Logik Grundlagenforsch.13, 39–51 & 97–113 (1970)

    Google Scholar 

  21. Pohlers, W.: Proof-theoretical analysis ofID v by the method of local predicativity. In: Buchholz, W., Feferman, S., Pohlers, W., Sieg, W. (eds.) Iterated inductive definitions and subsystems on analysis: recent proof theoretical studies. (Lect. Notes Math., vol. 897, pp. 261–357) Berlin Heidelberg New York: Springer 1981

    Google Scholar 

  22. Pohlers, W.: Contributions of the Schütte school in Munich to proof theory. In: Takeuti, G. (ed.) Proof Theory, 2nd edn. Amsterdam: North Holland (1987)

    Google Scholar 

  23. Pohlers, W.: Ordinal analysis of KPi. Chapter I Ordinals. Mimeographed preprint Münster (1988)

  24. Pohlers, W.: Proof theory: an introduction. (Lect. Notes Math., vol. 1407) Berlin Heidelberg New York: Springer 1989

    Google Scholar 

  25. Rathjen, M.: Untersuchungen zu Teilsystemen der Zahlentheorie zweiter Stufe und der Mengenlehre mit einer zwischen (Δ1/2-CA) und (Δ1/2 — CA +BI) liegenden Beweisstärke. Dissertation, Münster (1989)

  26. Rathjen, M.: Ordinal notations based on a weakly Mahlo ordinal. Arch. Math. Logic29, 249–263 (1990)

    Google Scholar 

  27. Rathjen, M.: Proof theoretic analysis of KPM. Arch. Math. Logic30 (1990)

  28. Schütte, K.: Beweistheorie. Berlin Heidelberg New York: Springer 1960

    Google Scholar 

  29. Schütte, K.: Eine Grenze für die Beweisbarkeit der transfiniten Induktion in der verzweigten Typenlogik. Arch. Math. Logik Grundlagenforsch.67, 45–60 (1964)

    Google Scholar 

  30. Schütte, K.: Predicative wellorderings. In: Crossley, J.N., Dummett, M. (eds.) Formal systems and recursive functions, pp. 176–184. Amsterdam: North Holland 1965

    Google Scholar 

  31. Schütte, K.: Proof theory, 2nd edn. Berlin Heidelberg New York: Springer 1977

    Google Scholar 

  32. Smith, R.L.: The consistency strengths of some finite forms of the Higman and Kruskal theorems in Harvey Friedman's research on the foundations of mathematics. In: Harrington, L.A., Morley, M., Scedrov, A., Simpson, S.G. (eds.), pp. 119–136. Amsterdam: North-Holland 1985

    Google Scholar 

  33. Tait, W.: Normal derivability in classical logic. In: Barwise, J. (ed.) The syntax and semantics of infinitary languages. (Lect. Notes Math., vol. 72, pp. 204–236) Berlin Heidelberg New York: Springer 1968

    Google Scholar 

  34. Tait, W.: Applications of the cut elimination theorem to some subsystems of classical analysis in intuitionisms and proof theory. In: Kino, A., Myhill, J., Vesley, R.E. (eds.) Intuitionism and proof theory. Proceedings of the summer conference at Buffalo, N.Y. 1968, pp. 475–488. Berlin Heidelberg New York: Springer 1970. Kino et al. eds. Springer (1970)

    Google Scholar 

  35. Takeuti, G.: Proof theory, 2nd ed. Amsterdam: North Holland 1987

    Google Scholar 

  36. Veblen, O.: Continuous increasing functions of finite and transfinite ordinals. Trans. Am. Math. Soc.9, 280–292 (1908)

    Google Scholar 

  37. Wainer, S.S.: A classification of the ordinal recursive functions. Arch. Math. Logik Grundlagenforsch.13, 136–153 (1970)

    Google Scholar 

  38. Wainer, S.S.: Ordinal recursion and a refinement of the extended Grezgorczyk hierarchy. J. Symb. Logic37, 281–292 (1972)

    Google Scholar 

  39. Weiermann, A.: Vereinfachte Kollabierungsfunktionen und ihre Anwendungen. Preprint Münster (1989)

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to K. Schütte on the occasion of his 80th birthday

Work partly supported by a grant of the Volkswagenstiftung

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pohlers, W. Proof theory and ordinal analysis. Arch Math Logic 30, 311–376 (1991). https://doi.org/10.1007/BF01621474

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01621474

Keywords

Navigation