Skip to main content
Log in

Remarks on Herbrand normal forms and Herbrand realizations

  • Published:
Archive for Mathematical Logic Aims and scope Submit manuscript

Summary

LetA H be the Herbrand normal form ofA andA H,D a Herbrand realization ofA H. We show

  1. (i)

    There is an example of an (open) theory ℐ+ with function parameters such that for someA not containing function parameters

  2. (ii)

    Similar for first order theories ℐ+ if the index functions used in definingA H are permitted to occur in instances of non-logical axiom schemata of ℐ, i.e. for suitable ℐ,A

  3. (iii)

    In fact, in (1) we can take for ℐ+ the fragment (Σ 01 -IA)+ of second order arithmetic with induction restricted toΣ 01 -formulas, and in (2) we can take for ℐ the fragment (Σ 0,b1 -IA) of first order arithmetic with induction restricted to formulas VxA(x) whereA contains only bounded quantifiers.

  4. (iv)

    On the other hand,

    $$PA^2 \vdash A^H \Rightarrow PA \vdash A,$$

    wherePA 2 is the extension of first order arithmeticPA obtained by adding quantifiers for functions andA∈ℒ(PA). This generalizes to extensional arithmetic in the language of all finite types but not to sentencesA with positively occurring existential quantifiers for functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • [B] Beeson, M.J.: Goodman's theorem and beyond. Pac. J. Math.84, 1–16 (1979)

    Google Scholar 

  • [G76] Goodman, N.: The theory of the Gödel functionals. J. Symb. Logic41, 574–582 (1976)

    Google Scholar 

  • [G78] Goodman, N.: Relativized realizability in intuitionistic arithmetic of all finite types. J. Symb. Logic43, 23–44 (1978)

    Google Scholar 

  • [K1] Kleene, S.C.: Introduction to metamathematics. Amsterdam: North-Holland 1952

    Google Scholar 

  • [Kr51, 52] Kreisel, G.: On the interpretation of non-finitist proofs, I and II. J. Symb. Logic16, 241–267 (1951);17, 43–58 (1952)

    Google Scholar 

  • [Kr52a] Kreisel, G.: On the concepts of completeness and interpretation of formal systems. Fundam. Math.39, 103–127 (1952).

    Google Scholar 

  • [Kr82] Kreisel, G.: Finiteness theorems in arithmetic: an application of Herbrand's theorem forΣ 2-formulas. In: Stern, J. (ed.). Proc. of the Herbrand symposium (Marseille, 1981), pp. 39–55, Amsterdam: North-Holland 1982

    Google Scholar 

  • [Kr-L] Kreisel, G., Levy, A.: Reflection principles and their use for establishing the complexity of axiomatic systems. Z. Math. Logik Grundlagen Math.14, 97–142 (1968)

    Google Scholar 

  • [Lu73] Luckhardt, H.: Extensional Gödel functional interpretation. A consistency proof of classical analysis. Lect. Notes Math. vol. 306. Berlin Heidelberg New York: Springer 1973

    Google Scholar 

  • [Lu89] Luckhardt, H.: Herbrand-Analysen zweier Beweise des Satzes von Roth: Polynomiale Anzahlschranken. J. Symb. Logic54, 234–263 (1989)

    Google Scholar 

  • [P70] Parsons, C.: On a number-theoretic choice schema and its relation to induction. In: Kino, A., Myhill, J., Vessley, R.E. (eds.). Intuitionism and Proof Theory, pp. 459–473. Amsterdam: North-Holland 1970

    Google Scholar 

  • [P71] Parsons, C.: On a number-theoretic choice schema II (abstract). J. Symb. Logic36, 587 (1971)

    Google Scholar 

  • [P72] Parsons, C.: Onn-quantifier-induction. J. Symb. Logic37, 466–482 (1972)

    Google Scholar 

  • [Sch] Schwichtenberg, H.: Proof theory: some applications of cut-elimination. In: Barwise, J. (ed.). Handbook of mathematical Logic, pp. 867–895. Amsterdam: North-Holland 1977

    Google Scholar 

  • [Sh] Shoenfield, J.R.: Mathematical logic. New York: Addison-Wesley 1967

    Google Scholar 

  • [Si85] Sieg, W.: Fragments of arithmetic. Ann. Pure Appl. Logic28, 33–71 (1985)

    Google Scholar 

  • [Si87] Sieg, W.: Provably recursive functionals of theories with König's lemma. Rend. Semin. Mat. Torino. Faxicolo speciale 75–92 (1987)

  • [Si91] Sieg, W.: Herbrand analyses. Arch. Math. Logic30, 409–441 (1991)

    Google Scholar 

  • [Ta] Tait, W.W.: Infinitely long terms of transfinite type. In: Crossley, J.N., Dummett, M.A.E. (eds.). Formal systems and recursive functions, pp. 176–185. Amsterdam: North-Holland 1965

    Google Scholar 

  • [Tr] Troelstra, A. S.: Metamathematical investigation of intuitionistic arithmetic and analysis. (Lect. Notes Math., vol. 344). Berlin Heidelberg New York: Springer 1973

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

I am grateful to the referee and to Prof. H. Luckhardt for many helpful suggestions which led to an improved presentation of our results

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kohlenbach, U. Remarks on Herbrand normal forms and Herbrand realizations. Arch Math Logic 31, 305–317 (1992). https://doi.org/10.1007/BF01627504

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01627504

Keywords

Navigation