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ABSTRACT

In this paper we study real linear dynamical systems X = Fx+Gu, y = Hx, xeR" = state
space, u<R™ = input space, y e R” = output space, under the equivalence relation induced
by base change in state space; or in other words we study triples of matrices with real
coefficients (F, G, H) of sizes nxn, nxm, p x n respectively, under the action (F, G, H)
—(TFT™', TG,HT " ') of GL,(R), the group of invertible real n x n matrices. One of the
central questions studied is: “d o there exist continuous canonical forms for this equivalence
relation?". After various trivial obstructions to the existence of such forms have been
removed the answer is very roughly: noif m > 2,p > 2,yesif m = 1,orp = 1. For a precise
statement cf. theorem 1.7.

Existence or nonexistence of continuous canonical forms is related to the existence of
a universal family of real linear dynamical systems. More precisely continuous canonical
forms exist if such a universal family exists and if the underlying vector bundle of this family

is the trivial vector bundle. In the case studied we show that a universal family in the
appropriate sense does exist.

The methods used are purely (differential) topological and in particular do not involve
any algebraic geometry. There is a corresponding algebraic theory over any field k instead
of R which is the subject of part III of this series of papers.

1. Introduction
We consider linear dynamical systems with constant coefficients
(1.1) x =Fx+Gu, xeR", ueR™
y = Hx, yeR?,
(continuous time), and systems
(1.2) X1 =Fx,+u, x,eR" ueR" teZ
¥y, = Hx, y,eR?
(discrete time)

I.e. there are m inputs, p outputs and the state space dimension is n. A change of
basis in state space changes the triple of matrices (F, G, H) as follows
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(1.3) (F.G,H)~(F,G,H)Y =(TFT™ ', TG, HT '), TeGL,(R)

where GL,(R) is the group of invertible n x n matrices. Motivated by e.g.
identification of systems theory, the question now arises whether there exist
continuous canonical forms for this action of GL,(R) on the space of all triples (F,
G, H). A precise definition of this notion follows. Let L, , ,(R) denote the
topological space of all triples of matrices (F, G, H) of sizes nxn, nxm, pxn
respectively; L,, , ,(R) is naturally identifiable with R"*™*?" and is given the
corresponding topology.

1.4 Definition. Two elements (F, G, H), (F,G,H)<L,, , ,(R) are called GL,(R)
equivalent if there is a Te GL,(R) such that (F, G, H)" = (F, G, H).
We can now define a continuous canonical form as follows:

1.5 Definition. A continuous canonical form on a subspace L = L
continuous map ¢: L - L such that

R)isa

m, n.p(

(1.5.1) c(F, G, H) is GL,(R) equivalent to (F, G, H) for all (F, G, H)eL,

(1.5.2) ¢(F,G,H)=cF,G,H)if and only if (F, G, H), (F, G, H)e L are GL,(R)
equivalent.

Of course one usually lets L be a GL,(R) invariant subspace of L, , , ie. a
subspace such that (F, G, H)e L = (F, G, H)T e L for all TeGL,(R).

One now remarks immediately that, for trivial reasons, there is no continuous
canonical form on all of L, , ,(R); more precisely because there are socalled
jump phenomena; that is there are families (F,, G, H,), teR, of elements in
L,, .. ,(R), depending continuously on the parameter ¢ such that (F,, G, H,) and
(F.. Gy, H,) are GL,(R)-equivalent forallt # 0,s # 0 but such that (F,,G,, H,)is not
GL,(R)-equivalent to (F,, G,, H,) for t # 0. One now easily checks that if L
contains such a family then no continuous canonical form on L can exist. One
example of such a family is obtained asfollows. Let G, be any nonzero matrix, F;
any matrix, H, = 0. Now define G, =tG, H, =0, F, =F, for all teR.

So, for continuous canonical forms to exist we must first of all see to it that no
jump phenomena can occur. One subspace of L, , ,(R) for which this condition
is satisfied is the subspace L, , ,(R) of all completely reachable triples (F, G, H).
For a definition cf. 2.2 below.

This fits in rather well with the “identification of systems” point of view where
one is mainly interested in systems which are completely reachable and
completely observable because as far as input/output behaviour is concerned
every linear system is equivalent to such a one. We denote with L5 (R) the
subspace of L, , ,(R) of completely reachable and completely observable triples
(F, G, H); cf. 2.2 below for a definition of completely observable.

In addition to L7 ? (R) we consider some more (GL,(R)-invariant subspaces
of L, . ,(R). A short list of interesting subspaces might be the following:

1.6 List of Subspaces.

Ly, . ,(R): all triples (F, G H) such that (F, G) is completely reachable.
Ly .. »(R): all triples (F, G, H) such that (F, H) is completely observable.
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Lo (R) = L, (R)A LY, (R).
L,ﬁ.,,'p(R): all triples (F, G, H) such that the eigenvalues of F are all real, distinct
~and different from zero.
L2y (R) = Lo (R) N Ly, o(R)
L%, A(R): all triples (F, G, H) such that (F, G) is completely reachable, (F, H) is
completely observable, rank(G) = min(n, m), rank H = min(n, p).
L4 ,(R) = Lf, , (R) A Ly, ,(R)

The following theorem then describes the main results of section 3 below.

1.7 THEOREM. The following table lists necessary and sufficient conditions
for the existence of a continuous canonical form on various GL,(R)-invariant
subspaces L of L,, , ,(R)

space L necessary and sufficient conditions for existence
of a continuous canonical form

O | m.o® m=1

(i) LR p=1

Ei_ii-)—“ Lo (R) m=1lorp=1

(iv) L HR) m=1lorp=1

(7v;’— o Ly . (R) m=lorp=lorn=morn=p

(vi) L% (R) B m=lorp=lorn=morn=p

(i) If L is a GL,R) invariant subspace of L, , ,(R) such that
Lf,‘,’",ﬁf},"(R) € L < LT (R) then there exists a canonical formon L iff m = 1
orp=1.

() If L is a GLYR) invariant subspace of L, , ,R) such that
Le* AR)Ys L <Lt , (R)thenthereexists acontinuous canonicalformon L
fffm=1lorp=1lorn=morn=np.

There are many more theorems of this kind. The first step in proving such a

theorem is to examine the orbit spaces L/GL,(R). If these “quotient” spaces are

not Hausdorff, continuous canonical forms cannot exist. (Jump phenomena
again). Section 2 below is mainly concerned with the structure of

Ly . ,(R)/GL,(R) and the fibre bundle L¢; , (R) — Li; , ,(R)/GL,(R). In section

3 we then use these results and some examples to prove the theorem 1.7 quoted

above.

1.8. Thus theorem 1.7 shows that as a rule one cannot expect continuous
canonical forms to exist. However, the next best thing does exist: the quotient
space M, (R) = L&, (R)/GL,(R)admits a fine moduli space structure which
very roughly means that it is possible to define a “family of linear dynamical
systems” over M% , (R) such that up to GL,(R)-equivalence every completely
reachable system occurs exactly once in this family and such that every family can
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be obtained from this (universal) one in precisely one way (by pullback). Section 4
below is concerned with these notions.

1.9 There also exists an algebraic geometric version of the theory presented in
this paper. In fact practically all the essential constructions are algebraic with the
notable exception of the example 3.3. In the algebraic geometric case thisexample
has to be replaced by a three dimensional one (a one dimensional one does not
exist). For this algebraic geometry theory cf. [5] and also [ 1], [2] and [6], where
rather more powerful algebraic-geometric machinery is thrown at the problem.

1.10. The contents of the paper are
1. Introduction and statement of some of the results
2. The quotient manifold M, , ,(R)

2.1. The quotient space M, ,, ,(R)

2.2. Completely reachable and completely observable systems

2.3, Nice selections

2.4. The local quotients U,/GL,(R)

2.5. The differentiable manifolds M;; , (R)and M;-" (R)

2.6. The principal fibre bundle L;; , (R)—M; , (R)

2.7. Remark on the local canonical forms ¢,

3. Existence and nonexistence of continuous canonical forms

3.1. Local canonical forms and local sections of L;; , (R)— M, (R)

3.2. Examples

3.3. An embedding P'(R) - M5 (R)

3.4. Some remarks on principal GL,(R) bundles

3.5. On the nonexistence of continuous canonical forms

4. Families of linear dynamical systems and the fine moduli space M;, , ,(R).

4.1. Families of linear dynamical systems

4.2. Description of families of linear dynamical systems by transition
functions

4.3. The universal family Z* over M§, , (R)

4.4. The functor @, , ,of isomorphism classes of linear dynamical systems.

4.5. The fine moduli space M,, , ,(R)

4.6. Remarks.

2. The Quotient Manifold M¢" = (R)

“m,n,p

In this section we study the action of GL,(R) on L, ,, ,(R) and discuss the
quotient spaces L/GL,(R) for various GL,(R)-invariant subspaces L.

2.1. The Quotient SpaceM,, , ,(R). WedefineM,, , ,(R)asthequotient space
of L, ,,(R) under GL,(R) equivalence as defined in 1.4. Le. the points of
M,, .. ,(R) are the orbits of GL,(R) in L, , ,(R) and its topology is the finest
topology for which the natural projection =: L, p(R)—>Mm, . p(R) 18
continuous. The space M,, , (R) is never a Hausdorff space. (Because of the
Jump phenomena mentioned in the introduction above; or in other words,

because not all orbits of GL,(R) in L,, , ,(R) are closed subsets).

2.2 Completely Reachable and Completely Observable Systems. Let (F, G.
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H)eL, , ,(R). Thesystem (F,G,H)is said to be completely reachable if the matrix
R(F, G) has rank n, where (R(F, G) is the matrix

(2.2.1) R(F,G)=(GFG...F"G)

consisting of the columnvectors FiGj, i=0,...,nj=1,...,m, where G, j
=1,..., mis the j-th column of G. Dually the system (F, G, H) is said to be
completely observable if the matrix Q(F,H) has rank n,where Q(F, H) is the matrix
defined by

(2.2.2) QF,HY=(H'F'H' ...F"H)
where A’ denotes the transposed matrix of 4. Let

(2.2.3) Lo, (R)={{F,G,H)eL,,, (R)rank (R(F, G)) = n}
(2.2.4) L2, (R) = {F, G, H)eL, , (R)rank (Q(F, H)) = n}
(2.2.35) Lo ,(R)=Lg , (R)nLy, (R)

m,n, p m.n, p

We define
(2.2.6) M . (R) =mn(L, , (R))

m,n, p

where w stands for cr or co or cr, co.

2.3. Nice Selections. We number the m(n+ 1) columns of R(F, G) by pairs of
indices as follows

0l,...,0m; 11,...,1m; ...: nl,...,nm

and use J, ,, to denote this ordered set. A nice selection o is now defined as an
ordered subset« < J, ,, of size n such that (i, ) e ximplies (i',j)exforalli’ < i.Ifa
is a nice selection we define s(o, j),j = 1, . . ., m as that element (k, j)eJ, ,, such
that (k',j)eaforall 0 < k' < k. (If x contains no elements of the form (i, j) then s(«,
j) = (0,))). These s(a, j) are called the successor indices of o.. There are precisely m
of them; oneforeachj = 1,..., m. If ais any subset of J, ,, we denote with R(F,
G), the matrix obtained from R(F, G) by removing all columns whose index is not
in a.

2.3.1. LEMMA.If (F,G,H)e L., ,(R)thenthereis anice selection o suchthat
det(R(F, G),) # 0.
Proof. Cf. [1] lemma 2.4.1. O

2.4. The Local Quotients U,/GL,(R).
Let o be a nice selection. We define

(2.4.1) U, ={(F,G,H)eL, , ,(R)det R{F, G), 0}
(2.4.2) W, = {F,G,H)eL, , (R)REF, G), =1,)

where [, is the n x n identity matrix. We claim that W, is naturally homeomorphic
with R™*"P_To see this write x e R™ as a sequence of m column vectors of length n
asfollows x = (x4, . . ., x,,) Where x, consists of the first n coordinates of x, x, of
the second n coordinates of x, etc.

i
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2.4.3. LEMMA.Foreach x e R™ there is precisely one pair of matrices (F,G) of
sizes n x n and n x m respectively such that

(2.44) RF,G), =1, RF,G)yo y=%Xpj=1,...,m

Proof. Cf. [1] lemma 2.3.3. (]

2.4.5. Now let x = (y, z)e R™ x R"P; we define i (x) = (F,(x), G,(x), H (x)) as
the unique triple of matrices such that (F,(x), G,(x)) is the unique pair
corresponding to yeR™ as in lemma 2.4.3 and such that H (x)is the p x n matrix
corresponding to z. Lemma 2.4.3 now implies that i, is a homeomorphism R™"

x R"™ — W,.

2.4.6. Let X be any topological space. We let GL,(R) act on GL,(R)xX by
multiplication on the left hand factor.

There now is a natural GL,(R)-invariant morphism ¢, defined as follows

(2.4.7) t,: U, »GL(R)x W,
(F, G, H)~(T™', F, G, H)T), where T = R(F, G); ".

2.4.8. LEMMA. t, is a GL,(R)-invariant homeomorphism.
Proof. One obviously has for all TeGL,(R),

(2.4.9) R(TFT™!, TG) = TR(F, G).

The GL,(R)-invariance of t, follows immediately from this. To see that ¢, is a
homeomorphism observe that (T, (F,G,H)) — (F,G,H)" isan inverse map to t,. [J

2.5. The Differentiable Manifolds M3, , (R) and M5, ¢ (R). By means of the
results of 2.4 we can now obtain a local pieces and patching data description of the
topological space Mg, , (R). We see from 2.4.8 and 2.4.5 that U,/GL,(R)
~ R™*" 1t remains to patch these local pieces together.

We define for each pair of nice selections «, f§

2.5.1) V, =R™*", Ve = {xeV,Jrank Q(F,(x), H,(x)) = n}
(2.5.2) Vp = {xeVJdet(R(F,(x), G,(x))y) # O}
(2.5.3) =V VY
We now define homeomorphisms ¢,,: V,; — V;, as follows
(2'54) ¢aﬁ(x) =y (Fm(x)’ Ga(x)’ Ha(x))T = (Fg(,V)s Gﬂ(,v)a Hﬂ(y))

with T = R(F,(x), G,(x)); -

One easily checks that for all triples of nice selections «, f, 7, ¢5,@,5(xX) = P, (x)
whenever the left hand side is defined and that ¢,; induces homeomorphisms ¢53:
VCO = VL‘O

ap Pa

2.5.5. LEMMA. The topological space obtained by glueing together the V, by
means of the ¢, is M, . (R). More precisely we have
(i) V,»>W,cU,cLs, (R)>M, (R) is injective. Let W, be this
composite map. Then
(i) Wo(x) =) if and only if xe V,; and ¢, 4(x) = y.
(i) M5, (R) = U (V,) where o runs through all nice selections.
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Proof. (i): 1f (F, G, H), (F, G, H)e W, are GL (R)equivalent. Then, cf. (2.4.9) we
must have R(F, G) = TR(F, G) for some TeGL,(R). Hence R(F, G), = TR(F, G),.
ButR(F,G), = R(F,G), = I,:hence T = I . Part (ii) of the lemma follows directly
from'the definition of ¢,, (cf. (2.5.4)), and part (iii) follows from lemma 2.3.1 and
2.4.8. 0

2.5.6. COROLLARY.

(i) M%< ,(R) is the topological space obtained by glueing together the V3 by
means of the induced homeomorphisms ¢35:V iy — Vi,

(i) The Y (V,) and Y (V) are open subsets of Mi . (R) and MG (R)
respectively.

We now want to show that M5, , (R)is a Hausdorfl space. To do this we use the

following lemma.

2.5.7. LEMMA. Let a, 8 be two nice selections and suppose that (G, G, H;), ieN
is a sequence of elements in U , converging to (F,G,H) eU, as i — oo and that (F,,G,,
H,), ieN is a sequence of elements in U, converging to (F, G, H)eU,. Suppose
moreover that (F,, G, H,) and (F,,G, H;) are GL,(R) equivalent for all ieN. Then (F,
G,H) and (F, G, H) are GL(R)-equivalent.

Proof. We have

(2.5.8) lim R(F,, G;), = R(F, G),

Now R(F;, G,), and R(F, G), are invertible for all ieN. This means that also
(2.5.9) lim R(F, G,); ' =R(F, G);*

=
We also have that

(2.5.10) lim R, G;), =R(F, G),

Now because (F;, G;, H;) and (F,, G, H}) are both in L, , ,(R) they are GL,(R)
equivalent if and only if

(25.11)  (F, G, H)" = (F, G, H) with T, = R(F;, G)), R(F,, G);'

This follows from the fact that T, must be such that T,R(F,, G;) = R(F,, G;) and
that R(F;, G;) and R(F,, G,) both have rank n. By (2.5.9) and (2.5.10) we know that
lim,_ _, T,exists and is equal to R(F,G), R(F,G); ' = T, and taking the limit for
— oo in the equality TR(F, G;) = R(F,, G;) we find

(2,5,12) T.R(F, G) = R(F, G)
Both R(F,G)and R(F,G)are of rank n so that rank (T, ) = n,i.e. T, is invertible so
that

(2.5.13) lim T/ '=T3"

We already had
(2.5.14) lim T, =T,

i o«
i=w
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and

(2.5.15) F,=TFT ' G =TG, H =HT "

Taking the limit for i — oo of the equalities (2.5.15) now shows that

(2.5.16) (F,G,H)=(F,G H)T=
which proves the lemma. (]

2.5.17. THEOREM. My . |
differentiable submanifold.

Proof. The patching functions $.pand @5z aren times differentiable for all n. In
view of lemmas 2.5.5 and 2.5.6 it therefore suffices to prove that M, , (R)is a
Hausdorff space. This follows from the fact that M;, , ,(R) is covered by the
Hausdorff open subsets V., ~ R™*" and lemma 2.5.7 above which says that a
sequence in ¥, N V; cannot converge to two different points (one in ¥, and one in
V,) at the same time. (If M5, , ,(R) were not Hausdorff such a sequence would
exist). [

2.5.18. Remark. The manifold M{; , (R) is never a compact manifold.

2.6.The principal fibre bundle. L , (R) - M, (R).

From now on we shall occasionally talk about fibre bundles and principal
fibre bundles over a topological space X. For these concepts and some elementary
facts concerning them the reader is referred to [4]. All fibre bundles in this paper
will be locally trivial and we shall often omit to mention this.

According to lemmas 2.5.5 and 2.4.8 we have a commutative diagram

(R) is a differentiable manifold and M« (R)is a

m, n, p

1%y, et
GL,R)x V,—=— GL,(R)x W,—— U, 5 Li7, ,(R)

'I’;v cr
. €& > M, (R)

where p, is the projection onto the second factor. By lemma 2.5.5 and corollary
2.5.6 we know that the V, = y,(V,) are open and form an open covering of
M . ,(R) where « runs through all nice selections.

We now obtain from (2.6.1) a commutative diagram

Ax
GL,(R)x V——U, 5 L  (R)

m,n.p

(262) ll’: ln, ln

Ve==——= V,s M, (R)

where =, is the restriction of # to U, and y, is equal to

(2.6.3) 2=t (Ix,) (Ixyg) ™t ax 1)
where 1: GL,(R) - GL.(R) is the homeomorphism T— T,
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The homeomorphism y, can be described as follows. Let xe V, « M, , (R),
let (F, G, H)en™ '(x). Then we have

(2.6.4) 1l X) = (F, G, H)" with T = R(F, G);*
(T x) = F, G, H'™T
Now let (T, x)eGL,(R)x (V,n V}). Then we know (by the commutativity of
diagram (2.6.2) above) that y; 'y, is well defined and of the form
15 1al(T X) = (pap(x, T), x)
We are going to calculate p,4(x, T).

Let x, = .,” '(x). Then we have

(Pap(x, T), x) = (1x 1)7 1 (Ix ) (D)™ Mgty P (1) (Ixy) ™t (1% 1)
(T, x)
= (x 1) () (Ixg) ™ tepet (1) (T x))
=(x D)7 (Ixyp) (U x ) s (T
(FL(x2), Gu(x), H, (X))
= (x D)7 (U x ) (1xyp) ™ M p((F (x0), Golxp) H ()" ™
This shows that (cf. the definition of 1, (2.4.7))

Paplx, T) = R(T™'F(x)T, T™'G,(x;)); !
le.

(2.6.5) Papx, T) = REF, ;7 (X)), G (W, 1) ' T

We have now proved:

2.6.6 THEOREM. Li; , (R)—M;; . (R)is a principal (locally trivial) fibre
bundle with group GL,(R).

Proof. This follows from 2.5.6, the commutativity of (2.6.2) and (2.6.5); cf.
Steenrod [4], 2.3 and 8.1. O

2.6.7. COROLLARY. The covering {V.} of M5, (R) and the transition

m,n, p
functions defined by (2.6.5) define the principal fibre bundle L . ,(R)
=M, H(R).

2.6.8. COROLLARY. L;-? (R) = M2 (R) is a (locally trivial) principal

fibre bundle with group GL,(R). It is the restriction of the bundle L , (R)
—)M‘;‘:; n.p(R) 1o thé’ Subspace MCr.ca (R).

m, n, p

2.7. Remark on the local canonical forms c,, The constructions and
calculations carried out in the sections above are very much related to certain
(currently popular) local continuous canonical forms

(2.7.1) Canr U, = U,
where o is a nice selection. These are defined as follows

(2.7.2) c4(a) (F, G, H) = (R(F, G); 'FR(F, G),, R(F, G); 'G, HR(F, G); ')



372 M. HAZEWINKEL

The relation between the ¢, and the various maps above is as follows (cf. (2.6.4)).

(2.7.3) ¢ ((F, G, H)) = y,(,, n,F, G, H))
Cf. also diagram (2.6.2). If we define
(2.7.4) S V= U, x o ., x)

then we have

(2.7.5) ns, = ly.

a>a 2

i.e. s, is a local section of the bundle Lf; , ,(R) =M, , ,(R) and the canonical
forms ¢, are related to these sections by

(2.7.6) Cuq = SqT,

3. Existence and Nonexistence of Continuous Canonical Forms

We are now in a position to start investigating whether continuous canonical
forms exist or not.

3.1 Local Canonical Forms and Local Sections of L;; , (R) % M;  , (R). Let
L < Lg, (R)beaGL,-invariant subset of Ly , ,(R)and let M’ = n(L). Then we

have an (induced) principal GL,(R) bundle L & M'.
3.1.1. LEMMA. Let ¢: L — Y be any continuous map such that ¢ is constant on
the orbits of GL(R) in L. Then there is a unique map y:M' — Y suchthat ¢ = yr’.
Proof. LetU, = L nU_, V. =V, nM'. Then we have a commutative diagram
GL,(R)x V!~V 5 GL(R)x Vi—>—U, 5 L

SO l |- |

VooV > V==V, M

where ¢, is a GL,(R)-invariant homeomorphism, viz. the restriction to GL,(R)
x Viof t7' (1xy,) (1xys)~ ' Let ¢, be the restriction of ¢ to U, Then the
middle commutative square of 3.1.2 shows that there is a unique y,: V; = Ysuch
that y,m, = ¢, In fact we have Y, (x) = ¢,1, ' (I,, x). It follows that ¥, |V, NV

= Y,V 0 V},so that the i, combine to define a continuous map y: M’ — Y such
that yn' = ¢. The map  is unique because we must have Y|V, = y, for all nice
selections «. [J

3.1.2 LEMMA. There exists a continuous form ¢’ on L if and only if there is a
sections' of the bundle ': L' — M’, i.e.,acontinuous map s’: M’ — L suchthat n's'
= 1y

Proof. Suppose s': M’ — L is a section. Then s'n': L - L is a continuous
canonical form on L. This follows immediately because n's’ = 1,,. and because '
induces a one-to-one onto correspondence between the orbits of GL,(R) in L and
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the points of M". Inversely suppose that ¢': L — L is a continuous canonical form.
Then ¢’ is constant on the orbits of GL,(R) in L, therefore by lemma 3.1.1 there is
aninduced map s':M' — L suchthats'n’ = ¢’. One checks easily that s’ isindeed a
section. [J

3.1.3. Remark. The induced principal GL,(R) bundle L' — M’ admits a section
if and only if it is (isomorphic to) the trivial principal GL,(R)-bundle over M". Cf.
Steenrod [4], 8.3. Thus there are canonical forms on each of-the U, = Ly, (R),«

a nice selection. Cf. also section 2.7 above. !
3.1.4. COROLLARY.

(i) If m =1 there is a continuous canonical form on L . (R)

(it) If m = n there is a continuous canonical form on Lf, , (R).
Proof.

(i) Ifm = 1thereis only one nice selectionviz. o = {(0,1),(1,1), . . ., (n—1),1)}.
So that in this case Lj; , ,(R) = U, And we know that the induced bundle

U,— V. =n(U,) has a section, e.g. s,: V, > U, x »t; '(I,, x).

(ii) By definition (F, G, H)e Lf, , ,(R) implies that rank G = min(m, n). So if m
= nwe have rank(G) = n, which says that L?, , (R) in this case iscontained
in U, where f is the nice selection § = {(0, 1), (0, 2), ..., (0, n)}. O

3.1.5. Duality. The assignment
6:(F,G,H)—~(F',H', G')

defines a homeomorphism L, , ,(R)— L, , ,(R). The map J is not GL,(R)-
invariant but it does have the property that two triples (F,G, H), (F,G,H)eL;; , ,
are GL (R)equivalent if and only if the triples d(F,G,H) and §(F, G, H) are GL,(R)-
equivalent. Note also that 6> = id. The duality § halves the work we have to do to

prove theorems like 1.7. This is proved by the following lemma.

3.1.6. LEMMA. Let L' be a GL,(R)-invariant subspace of L,, , ,(R), then §(L)
is u GL,(R) invariant subspace of L, , .(R) and there is a continuous canonical
Jorm on (L) iff there is a continuous canonical form on L.

Proof. The lemma is proved by: if ¢: L' - L is a continuous canonical form on
L, then d ¢’ 6~ !is acontinuous canonical formon §(L),and if¢’: (L) - é(L)isa
continuous canonical form on §(L) then ™' ¢’ § is a continuous canonical form
on L. These last two statements follow immediately from the definition of
continuous canonical form (cf. 1.5) and the remarks made above in 3.1.5. O

3.1.7. COROLLARY. If p=1 there is a continuous canonical form on
Ly, (R). If p = n there is a continuous canonical form on L%, , (R).

Proof. These statements follow from 3.1.4 and 3.1.6 because o(L;; , ,(R))
=LY, .(R)) and 8(L%, , ,R)) = L8 , ,(R). O

3.2. Examples. In this section we construct a number of examples of G,F and H
matrices which will be useful in our continuous canonical form investigations.

3.2.1 The Matrices G, ,(t, s). These n x m matrices are as follows

(322)Ifn=1,m>2 G, (t,s)=(ts0...0)
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t s/0...0
(323)Ifn>22<m<n G, ,t,s)=(1 1[0...0

2 1

. . B

2 1

where Bis an (n — 2) x (m— 2) matrix independent of ¢, s such that the columns of B
and the columnvector (1, 1, ..., 1) span an (m— l)-dimensional subspace of
R"~2. Note that such a B exists because 2 < m < n.

I s
11
B24) Ifn>2,m=2 G,,ts)=[2 1

t s 00...0 0...0
{110...0 0...0
(325 Un>=2m>n G, t.s)=[ 0 0 0O :
0

n—1 m—n—1
(o)
2 1

(326) Ifn=m>2 G, q(t,s)=

\2 1 0...0 /
3.2.7 The Matrices F,. These n x n matrices are as follows

1 0...0

(3.2.8) F, =
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3.2.9 The matrices H, ,(t) and H p.n(8)- To define these matrices we need a
number of nonalgebraic functions of t and s. We shall take

[t for|f <t

(3.2.11) y,(t) = exp(—1t?)

(3.2.12) x,(5) = 1 forls|<1
P T2 for s > 1

(3.2.13) (6) = sTlexp(—s ) fors#0
2 0 fors =0

Note that for s # 0
(3.2.14) xy(s)=s" Yyis”T A Xy(8) =s" 1)’2(5_ Y

The precise form of these functions is not important provided they are
continuous, satisfy conditions (3.2.14)for s # 0, and are such that y,(t) # Oforall
tand x,(s) # Oforalls. Itis perfectly possible to find C*-functions satisfying these
conditions (simply smooth the corners in these functions) but there are no
polynomials in t, s which satisfy these conditions.

We can now define the matrices H, ,(t) and H, (s). Below we only give the
H, ,(t). In each case H, ,(s)is obtained from H , ,(¢) by replacing y,(t) with x,(s)
and y,(t) with x,(s).

y1(t)
y2(t)
0
B215Ifn=1p=>2 H, (t)=
0
y6) 1 0...0
y0) 1 0...0
0 1 0...0
(3.216) If n=2,p>n H, )= 0 O
’ n—1
0 0...0 1
0O ....... 0
. p—n—1
ko ....... 0/ )
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y¢) 1.0...0

yolt) 1
0 O
(3.217) fn=2,p=n H, ()=
p—2
0 0 0...0
P E————
n—2
y1(2) 2 2
y2(t) 1 1
(3218) Ifn>2,2<p<n H,,lt)= 0...0
C
0...0

where C is an (p — 2) X (n — 2) matrix independent of ¢ such that the rows of C and
the rowvector (1, ..., 1)eR"~? span a (p— 1) dimensional subspace of R"™2.
(Such a C exists because 2 < p < n).

B _ yl(t) 1 2...2
(3.2.19) If n>2,p=2 Hp.n(t)-(yz(t) 1 1'_.1>

3.3 Anembedding P'(R) — M{: ¢’ (R). We now use the matrices defined in 3.2
above to define an embedding 7, ,, ,: P'(R) » M, , (R)for all (n, m, p) such that
m > 1 and p > 1, where P{R) is one dimensional real projective space (which is
homeomorphic to the circle).

Let m > 1, p > 1. We define
(3.3.1) Onmp: R Ly p(R), t o (Fpy Gy (2, 1), Hp (1)

(3.3.2) Grmp: R= Ly p(R), 8 > (Fps Gy (1, 5), H p (5))

Let « be the nice selection o = {(0, 2), (1, 2), . . ., (1 —1, 2)} and let § be the
nice selection § = {(0, 1), (1, 1), ..., (n—1, 1)}. One easily checks that
(3.3.3) Gn.m. (R) = UL, G, (R) = UY

Let T(s) be the n x n matrix
(3.3.4) T(s) =

then we see that
(3.3.5) ts=1=0, . p(t)m) =Gy m, p(5)
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To see this use the relations (3.2.14). Thus the composed continuous maps

a

R n.m.p L‘;::‘:p(R)—”’M”'cu (R)

m,n, p

R 7wmp LS (R) = MT (R)

m,n. p

combine to define a continuous map

Tyom p: PI(R) > Mo (R)

m.n, p

3.3.6. Remark. One easily checks that (F,,, G, ,(t, 1),H, ,(t))and (F,.G, ,(1,s),
H, ,(s)) are GL,(R) equivalent if and only if ts = 1. It follows that t, ,, ,is in fact
an embedding.

3.4. Some Remarks on Principal GL (R)-bundles. Let n: E — B be a principal
GL,(R)-bundle. Such a bundle can be described by giving an open covering { V,} of
B and transition functions

(34.1) O VoV, > GL(R)
which statisfy
(3.4.2) Gc(X)Pap(X) = @plx), xe VN VNV,

Cf. Steenrod [4], 2.3 and 3.2.

3.4.3 Induced Bundles. Now let f: B'— B be a continuous map. Let V|
= f~!(V,). One now defines transition functions ¢, as the composite

344 s ¢
(3.4.4) ViAV, = V,n V, $GL(R)

These functions satisfy (of course) the analogue of (3.4.2) and hence define a
principal (locally trivial) GL (R)-bundle /'n: f'E — B’ over B'. We remark that f'n:
f'E — B’ is trivial (i.e. isomorphic to the product bundle GL,(R)xB' — B')if n: E
— B is trivial.

3.4.5. A second construction which we shall use is the following. The
composed maps

(3.4.6) V,AV, "¢ GL,R)% GL,(R)
define a set of transition functions with values in GL,(R) on B. These define a

locally trivial principal GL,(R) bundle over B which is of course trivial if the
original bundle was trivial.

3.4.7. Example of a Nontrivial Locally Trivial Principal GL(R)-Bundle.
Consider P'(R) = {(t:s)| t # 0, s # 0}. Let V; = {(t:1); =R and V; = {(1:s)]
=R. Then V, u V, = P!(R). We now define a transition function

¢: VNV, —>GL(R), (t:s) > 15"

One checks easily that this bundle is non trivial (by showing that there is no
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continuous section). As a matter of fact the associated line segment bundle is the
Mobius band bundle over the circle ( = P'(R)), cf. [4] example 1.3.

3.5. On the Nonexistence of Continuous Canonical Forms. We consider the
continuous map 1, , ,: P'(R) = M;; , (R) constructed in section 3.3 above. Let
o and B be the selections defined just above (3.3.3), and let V; and V, beasin 3.4.7.
Then we have from (3.3.3) that

(3.5.1) Tyom oY1) € Vi Ty m p(V2) € W

The transition function U, n U, — GL,(R) of the bundle L7, ,(R) - M}, (R)
is (according to (2.6.5))

(3.5.2) Paplx) = RIF, (0.1 (x)), G ()5 '

By the definition of ¥/ (cf. 2.5.5) we see that R(F,(¥;” '(x)), G,(y,” '(x))) can be

calculated as follows. Take any (F, G, H)eU, such that n(F G H)=x. Then (cf.
also (2.6.4))

(3.5.3) R(F, (0 (%)), G(¥, '(x))) = R(F, G); 'R(F, G)

We now construct a GLl-bundle over P!(R) by first pulling back L7, (R)
- M, (R)bymeansofz, ,, ,(cf. 3.4.3) and then using determinants as in 3.4.6.

It now follows from (3.5.3), (3.5.2)and (3.5.1) that the resulting bundle is given by
the transition function

VinV,—-GL,(R)
(3.5.4) (t: 1)~ det(R(F,. G, n(t, 1); ') det R(F,, G, (1, 1)),
An easy calculation shows that we find
(3.55) V,nVy»GLR), (t: Yt tifn=1,: 27" 2" Hiln> 2.

This is a nontrivial bundle. In fact the bundle defined by this transition function is
isomorphic to the bundle defined in 3.4.7.

3.5.6. COROLLARY. The principal GL,(R)-bundle L5, , (R) =M, ,(R)is
nontrivial.

3.5.7. In fact the examples show more: if L is any GL -invariant subspace of
L, m ,and M’ =n(L) and 7,, , ,(P'(R)) = M, then we have that the induced
bundle I & M’ is nontrivial. [It also follows of course (because the pullback of a
vector bundle by a homotopically trivial map is necessarily trivial) that the first
homotopy group 7,(M’) # 0].

Let M), (R)=m(Ly , (R)) where w is one of the following groups of
symbols
(3.5.8) cr CrCO CrCOA D pPoi

Then one easily checks from (3.2.2)-(3.2.6), (3.2.8), (3.2.15}-(3.2.19) and
(3.2.11), (3.2.12) that:

3.5.9. LEMMA.
(i) Tw.n (P (R) =M, (R)forallwfromthelist(3.5.8)ifm # 1,nandp # 1,n.
(i) Ty . (P (R)) © M2 HR) if m 1 and p # 1.
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3.5.10. COROLLARY. The principal GL,(R)-bundles Ly, , (R) - M}, (R)
are nontrivial for all w from the list 3.5.8 if m # 1, n and p # 1, n. The principal
bundles Ly > /(R) —» Mg 2 A(R) and Ly (R) = M5 < (R)) are nontrivial if

m+#1and p# 1. ’ ’

3.5.11. Proof. of Theorem 1.7. The only if parts of (1), (iii), (iv), (v), (vi) follow
from corollaries 3.5.6 and 3.5.10 combined with lemma 3.1.2, except when p = 1
in case (i). In this case one proceeds exactly as before starting with slightly
modified maps o, ,, 1, Ga . 1 defined asin (3.3.1), (3.3.2) above except that the H-
components are taken to be identically zero, The only if part of (ii) follows from
the only if part of (i) by duality. Cf. 3.1.5and 3.1.6. The if parts of (i), (ii) and (v) are
proved by 3.1.4 and 3.1.7. The if parts of (iii), (iv), (vi) follow from these because we
have the inclusions

Ly 5 »(R)
Lo (R) < L (R)
Q
L 5 »(R)

Ly Ry < Ly, ,(R). O

4. Families of Linear Dynamical Systems
and the Fine Moduli Space M;, , (R)

m,n, p

We have seen that as a rule continuous canonical forms cannot exist even on such
a relatively small subspace as L% % (R). This section is devoted to

m.n. p

showing that the next best thing is true: M  (R) is a fine moduli space for a

m,n, p

suitable notion of “families of linear dynamical systems”.

4.1. Families of Linear Dynamical Systems.

4.1.1. Definition. A Family of Linear Dynamical Systems of Dimensions (n, m,
p) over a Topological Space S consists of
(i)  an n-dimensional vector bundle p: E — S over S.

(i) a vectorbundle endomorphism F: E - E
(i) a vectorbundle homomorphism G: S xR™ - E
(iv) a vectorbundle homomorphism H: E — S X R?

4.1.2 The Canonical Map Associated to a Family with Trivial Underlying
Bundle. Let ¥ = (E,F,G, H) be a family of dynamical systems over S such that E is
isomorphic to the trivial vectorbundle over S. Then we can find continuous
sections e, . . ., e,: S — E such that {e,(s), . . . , e,(s)} is a basis for E; = p~(s)
forall seS. Lete),...,e,:S>SxR";ef,...,e;: S—>S§SxRP be the obvious
“basis vector sections” of the trivial bundles § x R™ and S x R?. The vectorbundle
homomorphismsF, G, H induce homomorphisms G;:s x R" = E,F 1 E,— E, H:
E.—»sxRP Let G(s, e), F(s, e), H(s, e) denote the matrices of these
homomorphisms relative to the bases {€}(s), .- ., en(s)}, {€1(s) - ... €us)}
{ef(s), ..., e,(s)}. Then because the sectionse’, . . . ,ep; €y, - - - e,;e,. .. e are
all continuous we find a continuous map.

(4.1.3) S—L (R), s = (F (s, e), G(s, e), H(s, €))

m,n, p
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which (obviously) depends on the choice of the sections ey, ..., ¢, Ife,, ..., &,
is a different set of n sections of E (and if we keep e;, €] as before) then the
continuous map s — (F (s, &), G(s, €), H(s, €)) is such that (F, s, e), G(s, ), H(s, e)) is
GL,(R)-equivalent to (F(s, &), G(s, €), H(s, &) for all seS.

This means that the composite map

(4.1.4) fzt S—L R)-M (R)

is independent of the choice of the sections {e, ..., e,}. We denote this
continuous map with f;. Informally we can say

4.1.5. Description of fy. The family (E, F, G, H) = T defines a “linear-
dynamical-system-up-to-GL (R)-equivalence” (E, F, G,, H,) over every seS; f
maps seS to the point of M, , ,(R) corresponding to this orbit.

4.1.6. The Canonical Map Associated to aFamily. Now let X = (E,F,G,H) be
any family over S. There is an open covering {U,} of S such that E|U, is trivial for
all a. Thus by 4.1.2 we have continuous maps associated to the families Z|U,
= (Ean’ F|Ua’ G‘Ua’ Hlua)

(4.1.7) fi:Ug—» M, , (R)

which satisfy the description 4.1.5. It follows that f,|JU, " U, = f,|U, " U, so that
the maps f, combine to define a continuous map

fy:S > M, . R)

m, n, p( m,n, p

m,n, p

which also satisfies the description of 4.1.5.

4.1.8. Definition. The family = = (E,F,G,H)is said to be completely reachable
iff f5(s) = M5, , ,(R).
This simply means that the linear-dynamical-systems-up-to-GL,(R)-
equivalence (E,, F,, G, H,) are all completely reachable.
4.1.9. Remark. Using the construction of 4.1.2 above we see that a family of
linear dynamical systems £ can be defined by giving
(i) acovering {U,} of S
(ii) continuous maps y,: U,— L,, , ,(R)
(ili) continuous maps ¢, : U, nU, - GL,(R)
such that the following conditions are satisfied
(V) Gnl¥)B(x) = dolx) for all xeU, AU, AU,
(V) Y (x)?a™ =y, (x) for all xeU,n U,
A family is completely reachable iff Y (x)e LS , (R) for all a and all xeU,. So,

m, n, p

informally, a family is locally a continous map of S into L, , ,(R).

4.2. Description of Families of Linear Dynamical Systems by Transition
Functions. Let (E,F,G,H) = X be afamily of linear dynamical systems over S. The
bundle E can be described by an open covering {V,} of Sand transition functions
dw: VoV, = GL,(R) satisfying ¢,.(x)¢(x) = ¢, (x) forall xe V,n V,n V.. Cf.
Steenrod [4]. The family X is now defined by giving in addition vectorbundle
homomorphisms

(4.2.1)F,: V,xR"> V,xR", G,: V,xR™" > V,xR", H,: V,xR" > V,x R?
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such that the following diagram of induced vectorbundle homomorphisms
commutes

/' Vi % R —s Vb X R"\
G, H,
P bur
“22) VxRS l l V,, xR
G, 14

X R —Es VY xR~
where V,, = V, "V, and 4 (x, v) = (x, ¢u(x)V).

4.3. The Universal Family Z* over M5, , ,(R). We are now going to construct a
certain very special completely reachable family Z* over My, , (R). This family
has the property that the induced linear-system-up-to-G L, (R)-equivalence over
xeM;, . (R)“is” the point x. To define the universal family £*we view M7 , (R)
as obtained by glueing together the pieces V, = R™*" by means of the
isomorphisms ¢, of 2.5 above. That is we identify ¥, with V, for each o by means

of the ..

4.3.1. The Local Families X, Let o be a nice selection. For each « let ¥,
=R™*" E, =V, xR"and let p,: E, — V, be the obvious projection. Let i, be
the isomorphism y,: V, —» W, of section 2.4.5 above. We write (x) = (F,(x),
G,(x), H (x)). We now define the family X, = (E,, F,, G,, H,) as follows

4.3.2) F, E,—E, (x,v) = (x, F(x)v)
4.3.3) G,: V,xR™ > E_, (x, u) »(x, G,(x)u)
4.3.4) H, E,— V,xR? (x,v) —=(x, H,(x)v)

This defines a completely reachable family over V, for all o. The associated
continuous map fy : ¥, » M5, . (R) is the embedding y; of lemma 2.5.5.

m, n, p

4.3.5. The (global) Family £*. Now let f§ be a second nice selection. Let V4, V3,
and ¢,; be asin section 2.5. Let E,; = V,; x R", Eg, = Vj, x R". We now define an
isomorphism of vectorbundles ¢,;: E,; — Ej, as follows

(436) $aﬁ('x’ U) = (¢aﬁ(x)a R(Fa(x)7 Ga(x))Elv)

It is obvious that ¢, induces an isomorphism of vectorspaces in each fibre and
that the diagram

Eaﬂ JL.) Eﬁa

e T

Py )
V;:ﬂ V[Iu

commutes. Also one readily checks that for all
xe Vg, = {xeV|det(R(F,(x), G,(x));) # 0 and det(R(F,(x), G,(x)),) # 0}

(438) $ﬁy($aﬂ(xv U) = &ay(x’ U)
and that for all xe V,,
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(4.3.9) BoplFo(x, D)) = Fy(@,p(x, 1))
(4.3.10) BuplGolx, u)) = Gy(x, u)
4.3.11) Hy($oplx, v) = Hy(x, v)

Now let E* - M, , (R) be the n-vectorbundle obtained by glueing together the
E, by means of the $aﬁ. Relations (4.3.9)-(4.3.11) then mean that F, H,, G,
combine to define an endomorphism F*: E* — E* and homomorphisms G*:
M, (R)xR™—E* and H*: E* - My , (R)XRP?, so that we have defined a
completely reachable family Z* over M, , ,(R). Thisfamily has the property: “the
induced linear-system-up-to-GL,(R)-equivalence over xe M5, , ,(R) is the point
X" because this is true for the local families Z,.

4.3.12. Remark. From 4.3.6 (cf. also (3.5.3)) we see that E*is the n-vectorbundle
associated to the principal GL,(R) bundle LS, , (R) - M5 . (R).

m, n, p m,n, p
4.4 The Functor @, ,, , of Isomorphism Classes of Families of Linear Systems.

Two families T, T’ over a topological space S are said to be isomorphic if there
exists an isomorphism of vectorbundles ¢: E — E’ such that

4.4.1) ¢F =F'¢, G =G, H =H'¢

For each topological space S weletds; ,, (S)denote the set of isomorphism classes
of completely reachable families of linear systems (of dimensions (n, m, p)) over S.
Now let - §' — § be a continuous map. By pulling everything back along fwe
obtain a family f'£ = (fiE,fF f'G,fH ) over S’ which is completely reachable if and
only if £ is completely reachable. Informally f'Z is the family which induces over
s'eS' the same linear system as X induces over f(s')e S. More precisely /T is

defined as follows

(4.4.2) fE=1{s,e)eS xE|f(s') = p(e)}

(4.4.3) [F:fE-fE, (5, e) »(s,F(e))

(4.4.4) 'G: S’ xR" > f'E, (s, u) - (s G(f(s"), u))
(4.4.5) fH:f'E— S xRP, (s, e)— (s, gH(e))

where ¢: S x R? — § is the natural projection onto the first factor. If , £’ over §
are isomorphic families then /'S and f'S’ over S’ are isomorphic. It follows that
the pullback construction and the definition of @5; , ,(S) combine to define a
functor

(4.4.6) @ . ,: Top”? — Set

where Top is the category of topological spaces and Set the category of sets.

4.4.7. Remark®;’ ,, (pt),where pt is the one point space is naturally the same
as the underlying point set of M;; , (R).

4.4.8 Let ¥ and £ be two families of linear dynamical systems over S defined
relative the same covering {V,) of § by transition functions ¢, ¢,, and local
vectorbundle homomorphisms F,. F,, G,, G, H,, H,. Cf. 4.2. Then £ and £ are
isomorphic families if and only if there exist continuous maps o,: V, > GL,(R)
such that for all ¢, b and xe V,n V}
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(4.4.9) B ap(X)0,(x) = Tp(X)Pap(X)

and moreover the following diagram commutes for all a
V,x R"— V, x R"

TR~ R VxR T

where & ,(x, v) = (X, g,(x)v).

(4.4.10) V,xR" V,x R?

44.11. Let X be a family over a topological space S and let f: "~ S be a
continuous map. Suppose X is given by means of a covering {¥,} and local data
¢ F oG H,asind.2 above. Let { V,} be any covering of S’ which is finer than the
covering {f~ '(V,)}. For each o, f select an a, b such that f(V,) = V,, f(V}) = V,,
Then the pullback family /'S can be described by the following data

(4.4.12) Gup: Ve Vi = GL(R), X = ¢y (f(x))

(4.4.13) F,:V.xR"= V. xR", (x, v) = (X, Fa s (0))

(4.4.14) G, Vi xR™" >V, xR, (x,u) = (X, G, r(u))

(4.4.15) H,: V,xR" > V,xR?, (x,v) =(x, H, ;,())

where F, ., G, ., H, ( for se V, are defined by F (s, v) = (s, F, (), G,(s, u) = (s,

G, sW), Hy(s, v) = (s, H,, ((v)).
4.5. The Fine Moduli Space M5, , (R)

4.5.1. Definition. A fine moduli space for the functor ® , , consists of a
topological space M and an isomorphism of functors p: @5, , — Top(—,M). Le.
M represents the functor ®<

m.n,p*

4.5.2. THEOREM. M¢ | (R) is a fine moduli space for the functor @ , .
More precisely the assignment X fs induces a functorial isomorphism
w: 5 . (S)—Top(S, M5 , (R)). The inverse isomorphism to p assigns to

m.n.p m.n.p
g: S =My, (R) the isomorphism class of the family g'zv.

Proof. One checks easily that f; depends only on the isomorphism class of T
and that £ > f; is functorial in the sense that f,;; = f - g. This is most easily seen

by using the description of ¢'T given in 4.4.11. We must now prove two things

(i) IfZ=gZ thenfs=g

(i) fLX*and X are isomorphic families of linear systems.
To prove (i) it suffices to remark that

(iil) the system-up-to-GL (R)-equivalence £, over seS is the system-up-to-
GL,(R)-equivalence T}, (cf. 4.4)

(iv) thesystem-up-to-GL,(R)-equivalence I} “is” the pointg(s)e M7 , ,(R) (cf.
4.3 just above 4.3.12).

(v) fs(s) is the point of Mj , (R) representing the system-up-to-GL,(R)-
equivalence Z,.
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Alternatively one proves (i) by remarking that fy. = id (by (iv)) and by applying
the formula fjis = f5 o g

It remains to prove (ii). Let £ be given by local data . F,, G,, H, relative a
covering { ¥,} of §. By refining this covering if necessary we can assume that {V,}is
finer than le (V.)}. For each a, b, ¢ let a, f, 7, be such that jE(V)t_ V.,
fs(W) € Vifs(V,) < V. Writeffor f;. Then the pullback family f'Z*is given by the
local data

(4.5.3) Palx) = RE(f(x)), G (X))’

(4.5.4) F (x, v) = (x, F(f(x))v)

4.5.5) G, (x, u) = (x, G,(f(x))u)

(4.5.6) H(x, v) = (x, H(f(x)0)

Here we have identified V, « M, , (R)and V, via ¥, so that (F,(x), G,(x), H,(x))
for xe V, is the unique element in W, < L7, ,(R) which = maps to x.

Let the family £ be given by the local data Vap Foo G, H,. Then by the
definition of fy = fwe know that the triples (F, ;, G, , H, ;) and (F (f(5)), G,(f(5)),
H,(f(s)) are GL (R)-equivalent. This means that

(4.5.7) (Fasr Gayoo Ha )T = (F(f(5), Go([(5)), H,(f(5))
for a certain T(s)eGL,(R). In particular we have

(4.5.8) T(SR(F,, s, Go s) = REF(f(5)), Golf(5))

so that we must have

(4.5.9) T.(s) = R(F,, 0 Ga !

(Note that (4.5.8) implies that R(F,,, G,,), has nonzero determinant). This

defines a continuous map
(4.5.10) 0, V,=>GL,(R),s »>R{F,, G, ) '

The local data ., F,, H,, G, defining T are related by the commutativity of the
diagram 4.2.2 which in particular means that

(4511) ll’ab(s)R(Fa,w Ga,s) = R(Fb, s’ Gb‘ s)
We shall now show that
(4.5.12) ll;ab(s 0,(8) = 0p()Y 4 ($)

Indeed, we have using (4.5.8)~(4.5.10) and (4.5.3)
Var($)0oSIR(F 52 Go, i) = REL (), G ()5 'RELf(5)): Gul f(5)))
On the other hand using (4.5.11) and (4.5.8)-(4.5.10)
(W ab(RE 5 Ga,5) = 0p(8) REF 5, Gy, ) = R(F4(f(5)), Gy(f(s)))

which is equal to R(F,(f(s)), G.(f(5))); 'R(F,(f(s)), G,(f(s))) by the definition of
theF,,G,, F;, Gy This proves (4.5.2) because R(Fa »Ga s)hasrankn (cf. 4.5.8). The
commutativity of the diagram corresponding to (4. a. 10) follows directly from
(4.5.7) so that (by 4.4) the g, do indeed define an isomorphism X — f3Z* O
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4.6. Remarks.

4.6.1. The underlying bundle E* of T* is the associated R” bundle of the
principal GL,(R) bundle L{; , ,(R) = M;, , (R). So in particular it is nontrivial if
m # 1. (Cf. Steenrod [4] 8.2-8.4). Also the restrictions of E* to various subspaces
are often nontrivial. Cf. 3.5.10.

One can also use the fine moduli space property of My, ,, (R), Z* to show that
there exists a continuous canonical form on a suitable subspace L = L7, (R)iff
the bundle E* restricted to M’ = r(L) is trivial. Cf. [2] Thm 6.1.
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