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ABSTRACT

A new criterion for series-parallel irreducibility is given which makes no reference
to underlying semigroups but involves only series-parallel connection operations.

A semi-automaton or fransition system is a triple <X, Q, M) where X, Q are
finite sets (of input symbols and internal states respectively), and M: @ x X — Q
is the transition function. (In the usual abuse of notation we write M for {X, O,
M>.) In this note we shall characterize the semi-automata which are irreducible
with respect to series-parallel decomposition. This augments the definition of
Krohn and Rhodes [1] (see also Arbib’s formulation in [2]), which in an essential
way required the specification of output maps and thus held only for full automata,
i.e., machines of the form <S, Q, O, M, N>, where O is the outut set and N:
0 — O, the output function. Moreover, their definition of irreducibility for
machines made direct reference to semigroups while the definition we shall give
makes reference only to series-parallel connection operations. Except for changes
in notation the presentation follows that of [2] (Chapters 3 and 5).

Let S(M) denote the semigroup of M, i.e.,

S(M) = {M(,x): Q0 —QlxeX*},
where M is M extended to X*. Given a semigroup S, let M denote the semigroup
transition system, i.e., Mg: S'x S — S* with My(1, 5) = s and M(s, s') = 55
for all 5, s € S. Note that S(My) = S.!

In the following we consider as usual only connected machines with specified
starting state.

Given transition functions M;: Q;xX; — Q,, i = 1, 2, we say that M,
divides M, (written M,|M,) if there exist Q] < Q, and maps g: X, — X},
h: Q1 — Q, (onto) such that

(1) Qj is closed under g(X,)* and

(2) forall g, € 0, s € Xy, h(B1(qy, £(5)) = My(H(qy), ).

* Research was sponsored by National Institutes of Health, Grant No. GM-12236-03;
Office of Naval Research, Contract No. N00014-67-A-0181-011; and U.S. Army Research

Office (Durham), Grant No. DA-31-124-ARO-D-483.
181 is the smallest monoid containing S.
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2 A Note on Series Parallel Irreducibility

Given {X, @, M) and a positive integer »n define I"M = (X, Q", I"M>
by HnM(ql’. " s S) = (M(ql, S)" "y M(qns S)) for all (qla' * G S) € QnXX'
IT1"M represents n copies of machine M (possibly in different states) which are
run in parallel and are fed the same input symbol,

Definition. M, w=-divides M, (M,|,M,) if there is a positive integer n such
that M,|I1"M,. We remark that division, and =-division are transitive relations.

M, mutually n-divides My (M, =, M,) if M,|,M, and M,|.M,. We require
the following statements.

(1) M, M, implies S(M,)|S(M,).?

() S(M,)|S(M,) implies M,|My ).

(3) MsuplM.

@ SI"M) = S(M).
Proofs may be found in Chapter 1 of [4]. Suffice it to say that (1) and (2) are
well-known; (3) is a slight extension of Fact 2.14b, Chapter 5 of [3]. For (4) we
note that - )

H"M(ql" T qm X) = (M(qla X),' T M(qm .X)),

and examining the Myhill equivalences relations, we have

o~

x =mmy y <> forall(gs, 43,7, 4) € 0, Mgy, 7, 4 %) =
T"M(g;,*, 4w 7)
«forallge Q, M(q, x) = M(q, y)
=X =y
Hence S(I"M) = X*| =pnyy = X*| =4 = S(M).

PROPOSITION 1. S(M,)|S(M,) if and only if M,|,M,.

Proof. Assume that S(M,)|S(M,). Then from (2), M,|Mgy,. Also from (3)
My l.M, so by transitivity M,|,M,.

Conversely, assume that M,|,M;. Then for some n, M,|II"M, so by (1)
S(M)|SII"M,). Recognizing that S(II"M) = S(M,) fromr (4) completes the
proof.

We see that Proposition 1 allows re-interpretation of semigroup division in
terms of m-division, This is not true for ordinary division; to make the converse
of (1) hold, output maps have to be added to the semigroups as in Theorem 7.3.10
of [2]. The best that we can get from (1) and (2) is

(5) S(M,)|S(M,) if and only if M,| Mgy,
An interesting consequence of Proposition 1 is
COROLLARY 2. M, =, M, if and only if S(M,) = S(M,).

Proof. Apply Proposition 1 twice.
The standard definitions of irreducibility are:

(2) A semigroup S is irreducible if whenever S|S, xz S, then S|S, or S|S;.
(Here S, x; S; is a semidirect product of S; by S, with connecting map Z.)

2For semigroups S;, i = 1, 2, 81|55 if S} is 2 homorphic image of sub-semigroup of .S3.
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(b) A machine M irreducible if whenever M|M, x, M, then M|M, or
M|M,. (Here M, % M, is the series-parallel cascade of M, followed by M,
with connecting map Z.)

(c) A machine M is s-irreducible if whenever M|M, x , M, then M|Mgy,,
or M| Mg,y

We add the definition:

(d) A machine M is m-irreducible if whenever M|M, x, M, then M| .M,
or M| M,.

Theorems 8.3.6 and 8.3.7 ([2], p. 4) state that M is s-irreducible if and only if
S(M) is irreducible. On the other hand, while M is irreducible implies S(M) is
irreducible, the converse does not hold.® Using on Proposition 1 we can now
show that the equivalence does hold for #-irreducibility.

THEOREM 3. M is w-irreducible if and only if M is s-irreducible.

Proof. M is m-irreducible < if M|M, x, M, then M| .M, or M| M, < if
MM, x, M, then S(M)|S(M,) or S(M)|S(M,) (from Proposition 1) < if
M|M, x ; M, then M |Mg,, or M|Mgy,, (from [S5]) < M is s-irreducible.

In conclusion, we have seen that the irreducibles are strictly included in the
s-irreducibles which are co-extensive with the w-irreducibles. What this says is
that although a machine M which is s-irreducible but not irreducible has a series-
parallel decomposition into machines M,, M, such that neither M, nor M,
can simulate M, still it must be that by taking a suitable number of copies of
either M, or M, we can simulate M, i.e., M|, M, of M| M,. Finally we note
that Theorem 3 enables us to relate the s-irreducible machines given by the
Krohn-Rhodes theory (the simple group and unit actions) entirely to machine
decomposition operations without reference to semigroup concepts.

Added in proof: A related paper was presented at the Eleventh Annual
Symposium on Switching and Automata Theory, Santa Monica, California.
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3Actually, these are proved for full machines but can easily be shown to be true for semi-
automata,



