Skip to main content
Log in

On the small time behavior of the nonlinear estimation problem for finite bandwidth signals

  • Published:
Mathematical systems theory Aims and scope Submit manuscript

Abstract

In this paper we investigate the small time behavior of solutions of the Zakai equation. We derive a wave equation-like stochastic partial differential equation which is related to the Zakai equation. We are able to solve this equation for sufficiently smooth signals, and (approximately) transform these into solutions of the Zakai equation. We construct a Hadamardtype expansion for solutions of this partial differential equation and show how this expansion is related to a small time expansion of solutions of the Zakai equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Benes, V. E.: Exact Finite Dimensional Filter for Certain Diffusions with Nonlinear Drift,Stochastics 5, 65–92 (1981).

    Google Scholar 

  2. Brockett, R. W.: Remarks on Finite Dimensional Nonlinear Estimation, inAnalyse des Systèmes, C. Lobry (ed.), pp. 47–56, Astérisque, Vol. 75-76, Soc. Math. de France, Paris (1980).

    Google Scholar 

  3. Brockett, R. W.: Classification and Equivalence in Estimation Theory,Proc. 1979 IEEE Conf. on Decision and Control, Ft. Lauderdale (1979).

  4. Brockett, R. W., and Clark, J. M. C.: The Geometry of the Conditional Density Equations,Proc. Int. Conf. on Analysis and Optimization of Stochastic Systems, Oxford (1978).

  5. Bucy, R. S., and Pages, J.:A Priori Bounds for the Cubic Sensor Problem,IEEE Trans. Automat. Control 23, 88–91 (1978).

    Google Scholar 

  6. Clark, J. M. C.: The Design of Robust Approximation to the Stochastic Differential Equations of Nonlinear Filtering, inCommunication Systems and Random Process Theory, J. K. Skwitzynski (ed.), Sigthoff and Nordhoff, Alphen aan den Ryn (1978).

  7. Courant, R., and Hilbert, D.:Methods of Mathematical Physics, Vol. 2, Wiley-Interscience, New York (1962).

    Google Scholar 

  8. Davis, M. H. A.:Linear Estimation and Stochastic Control, Chapman and Hall, London (1977).

    Google Scholar 

  9. Davis, M. H. A.:Lectures on Stochastic Control and Nonlinear Filtering, Tata Institute for Fundamental Research, Springer-Verlag, New York (1984).

    Google Scholar 

  10. Davis, M. H. A., and Marcus, S. I.: An Introduction to Nonlinear Filtering, inStochastic Systems: The Mathematics of Filtering and Identification and Applications, M. Hazewinkel and J. C. Willems (eds.), pp. 53–75, Reidel, Dordrecht (1981).

    Google Scholar 

  11. Duistermaat, J. J., and Hormander, L.: Fourier Integral Operators, II,Acta Math. 128, 183–269 (1972).

    Google Scholar 

  12. Elworthy, K. D.:Stochastic Differential Equations on Manifolds, London Math. Soc. Lecture Notes, No. 70, Cambridge University Press, Cambridge (1982).

    Google Scholar 

  13. Erdelyi, A.:Asymptotic Expansion, Dover, New York (1956).

  14. Guillemin, V., and Sternberg, S.:Geometric Asymptotics, Math. Survey, No. 14, American Mathematical Society, Providence, RI (1977).

    Google Scholar 

  15. Hazewinkel, M., and Marcus, S. I.: Some Results and Speculations on the Role of Lie Algebras in Filtering, inStochastic Systems, The Mathematics of Filtering and Identification and Applications, M. Hazewinkel and J. C. Willems (eds.), pp. 591–604, Reidel, Dordrecht (1981).

    Google Scholar 

  16. Hazewinkel, M., and Marcus, S. I.: On Lie Algebras and Finite Dimensional Filtering, Report 8019-M, Econometric Institute, Erasmus University, Rotterdam (1980).

    Google Scholar 

  17. Hijab, O.: Asymptotic Bayesian Estimation of a First Order Equation with Small Diffusion,Ann. Prob. 12, 890–902 (1984).

    Google Scholar 

  18. Hörmander, L.: Fourier Integral Operators, I,Acta. Math. 127, 79–183 (1971).

    Google Scholar 

  19. Hörmander, L.: Spectral Analysis of Singularities, inSeminar on Singularities of Solutions of Partial Differential Equations, Lars Hormander, ed., Annals of Math. Studies, No. 91, Princeton University Press, Princeton, NJ (1979).

    Google Scholar 

  20. Kannai, Y.: Off Diagonal Short Time Asymptotics for Fundamental Solutions of Diffusion Equations,Comm. Partial Differential Equations 2, 781–830 (1977).

    Google Scholar 

  21. Kato, T.:Perturbation Theory for Linear Operators, third edition, Springer-Verlag, New York (1966).

    Google Scholar 

  22. Katzur, R., Bobrousky, B. Z., and Schuss, Z.: Asymptotic Analysis of the Optimal Filtering Problem for One-Dimensional Diffusions Measured in a Low Noise Channel, Part I,SIAM J. Appl. Math. 44, 591–604 (1984).

    Google Scholar 

  23. Krener, A. J.: The Asymptotic Approximation of Nonlinear Filters by Linear Filters, inTheory and Applications of Nonlinear Control Systems, C. I. Byrnes and A. Lindquist (eds.), pp. 359–378, North-Holland, New York (1986).

    Google Scholar 

  24. Kunita, H.: Densities of a Measure-Valued Process Governed by a Stochastic Partial Differential Equation,Systems Control Lett. 1, 100 (1981).

    Google Scholar 

  25. Kunita, H.: Stochastic Partial Differential Equation Connected with Nonlinear Filtering, inNonlinear Filtering and Stochastic Control, Lecture Notes in Mathematics, No. 972, Springer-Verlag, Berlin (1982).

    Google Scholar 

  26. Malliavin, P.: Un principe de transfert et son application au Calcul des Variations,C. R. Acad. Sci. Paris Ser. A 284, 187–189 (1977).

    Google Scholar 

  27. Marcus, S. I., Willsky, A., and Hsu, K.: The Use of Harmonic Analysis in Suboptimal Estimator Design,IEEE Trans. Automat. Control 23, 911–915 (1978).

    Google Scholar 

  28. McGarty, T. P.:Stochastic Systems and State Estimation, Wiley-Interscience, New York (1974).

    Google Scholar 

  29. Mitter, S. K.: On the Analogy Between Mathematical Problems of Non-Linear Filtering and Quantum Physics,Ricerche Automat. 10. 163–216 (1979).

    Google Scholar 

  30. Occone, D.: Applications of Wiener Space Analysis to Nonlinear Filtering, preprint.

  31. Reed, M., and Simon, B.:Mathods of Modern Mathematical Physics: Fourier Analysis, Self-Adjointness, Academic Press, New York (1975).

    Google Scholar 

  32. Sussman, H. J.: On the Gap Between Deterministic and Stochastic Ordinary Differential Equations,Ann. Prob. 6, 19–41 (1978).

    Google Scholar 

  33. Sussman, H. J.: Rigorous Results on the Cubic Sensor Problem, inStochastic Systems: The Mathematics of Filtering and Identification and Applications, M. Hazewinkel and J. C. Willems (eds.), pp. 637–648, Reidel, Dordrecht (1981).

    Google Scholar 

  34. Taylor, T. J. S.: Considering the Nonlinear Estimation Problem: Asymptotics, inTheory and Applications of Nonlinear Control Systems, C. I. Byrnes and A. Lindquist (eds.), pp. 413–420, North-Holland, New York (1986).

    Google Scholar 

  35. Vardhan, S. R. S.: On the Behavior of the Fundamental Solution of the Heat Equation with Variable Coefficients,Comm. Pure Appl. Math. 20, 431–455 (1967).

    Google Scholar 

  36. Vardhan, S. R. S.: Diffusion Processes in a Small Time Interval,Comm. Pure Appl. Math. 20, 659–685 (1967).

    Google Scholar 

  37. Wertz, J. R. (ed.):Spacecraft Attitude Determination and Control, Astrophysics and Space Science Library, Vol. 73, Reidel, Boston (1978).

    Google Scholar 

  38. Yosida, K.:Functional Analysis, fourth edition, Springer-Verlag, New York (1974).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taylor, T.J.S. On the small time behavior of the nonlinear estimation problem for finite bandwidth signals. Math. Systems Theory 20, 283–303 (1987). https://doi.org/10.1007/BF01692071

Download citation

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01692071

Keywords

Navigation