Skip to main content
Log in

The structure of nonsingular polynomial matrices

  • Published:
Mathematical systems theory Aims and scope Submit manuscript

Abstract

LetK be a field and letL ∈ K n × n [z] be nonsingular. The matrixL can be decomposed as\(L(z) = \hat Q(z)(Rz + S)\hat P(z)\) so that the finite and (suitably defined) infinite elementary divisors ofL are the same as those ofRz + S, and\(\hat Q(z)\) and\(\hat P(z)^T\) are polynomial matrices which have a constant right inverse. If

$$Rz + S = \left( {\begin{array}{*{20}c} {zI - A} & 0 \\ 0 & {I - zN} \\ \end{array} } \right)$$

andK is algebraically closed, then the columns of\(\hat Q\) and\(\hat P^T\) consist of eigenvectors and generalized eigenvectors of shift operators associated withL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Baumgärtel, Endichdimensionale analytische Störungstheorie, Akademie-Verlag, Berlin, 1972.

    Google Scholar 

  2. R. W. Brockett, Finite Dimensional Linear Systems, Wiley, New York, 1970.

    Google Scholar 

  3. W. A. Coppel, Matrices of rational functions,Bull. Austral. Math. Soc. 11, 89–113 (1974).

    Google Scholar 

  4. P. A. Fuhrmann, Algebraic system theory, an analyst's point of view,J. Franklin Inst. 301, 521–540 (1976).

    Google Scholar 

  5. F. R. Gantmacher, The Theory of Matrices, Vol. 2, Chelsea, New York, 1960.

    Google Scholar 

  6. I. Gohberg, P. Lancaster and L. Rodman, Representations and divisibility of operator polynomials,Canad. J. Math. 30, 1045–1069 (1978).

    Google Scholar 

  7. A. S. Householder, The Theory of Matrices in Numerical Analysis, Blaisdell, New York, 1964.

    Google Scholar 

  8. R. E. Kalman, Mathematical description of linear dynamical systems,SIAM J. Control, Ser. A, 1, 152–192 (1963).

    Google Scholar 

  9. P. Lancaster, A fundamental theorem on lambda-matrices, I. Ordinary differential equations with constant coefficients,Linear Algebra Appl. 18, 189–211 (1977).

    Google Scholar 

  10. P. Lancaster and H. K. Wimmer, Zur Theorie der λ-Matrizen,Math. Nachr. 68, 325–330 (1975).

    Google Scholar 

  11. H. H. Rosenbrock, State-space and Multivariable Theory, Wiley, New York, 1970.

    Google Scholar 

  12. H. H. Rosenbrock, Structural properties of linear dynamical systems,Int. J. Control 20, 191–202 (1974).

    Google Scholar 

  13. G. C. Verghese, Infinite-frequency Behaviour in Generalized Dynamical Systems, Ph.D. Thesis, Stanford University, 1978.

  14. G. C. Verghese and T. Kailath, Infinite eigenvalues and associated eigenvector chains in the generalized eigenproblem, submitted for publication.

  15. H. K. Wimmer, Jordan-Ketten and Realisierungen rationaler Matrizen,Linear Algebra Appl. 20, 101–110 (1978).

    Google Scholar 

  16. H. K. Wimmer, A Jordan factorization theorem for polynomial matrices,Proc. Amer. Math. Soc. 75, 201–206 (1979).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wimmer, H.K. The structure of nonsingular polynomial matrices. Math. Systems Theory 14, 367–379 (1981). https://doi.org/10.1007/BF01752407

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01752407

Keywords

Navigation