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Abstract

We show, in this paper, how one can compute the exact shapes of a class
of polyhedral scenes by means of a simple sensory device issuing probes. A
scene in this class consists of disjoint polyhedra with no collinear edges, no
coplanar faces and such that no edge is contained in the supporting plane of
a non incident face. The basic step of our method is a strategy for probing
a single simple polygon with no collinear edges. When each probe outcome
consists of a contact point and the normal to the object at the point, we
present a strategy that allows to compute the exact shape of a simple polygon
with no collinear edges by means of at most 3n — 3 probes, where n is the
number of edges of the polygon. This is optimal in the worst-case. This
strategy can be extended to probe a family of disjoint polygons. It can also
be applied in planar sections of a scene of polyhedra of the class above to
find out, in turn, each edge of the scene. If the scene consists of k polyhedra
with altogether n faces and m edges, we show that 2n(m + k) — 2m — 3k
probes are sufficient to compute the exact shapes of the polyhedra.

Résumé

On montre, dans cet article, que ’on peut calculer la forme exacte d’une
classe de scénes polyédriques au moyen de mesures simples. Une scéne de la
classe est constituée de polyédres disjoints n’ayant pas d’arétes colinéaires,
ni de faces coplanaires ni d’arétes contenues dans le plan support d’une
face non incidente. Notre méthode repose sur une stratégie permettant
d’explorer un polygone simple sans arétes colinéaires. Plus précisément, si
le systéme de mesure fournit les coordonnées d’un point de contact et la
normale au polygone en ce point, nous présentons une stratégie de prise de
mesures qui permet de calculer la forme exacte du polygone au moyen d’au
plus 3n — 3 mesures, ce qui est optimal dans le cas le pire. Cette stratégie
est ensuite adaptée pour traiter le cas d’une scéne de polygones disjoints.
Appliquée dans des sections planes d’une scéne de polyédres de la classe
ci-dessus, elle permet de trouver, une i une, les arétes de la scéne. Sila
scéne comprend k polyédres ayant au total n faces et m arétes, on montre
que ¥n(m + k) — 2m ~ 3k mesures suffisent 3 determiner la forme exacte
des objets de la scéne.



1 Introduction

Given a simple polyhedron or a family of simple non intersecting polyhedra,
the probing problem consists in determining the shapes of the polyhedra
by a small set of simple measurements. A variety of subproblems can be
distinguished, depending on the model of the sensor and on the constraints
on the type of the objects to be probed.

This problem has first been studied by Cole and Yap [4] who showed that
the shape of a convex polygon with n edges can be determined with no more
than 3n “finger” probes (i.e. each probe response consists of the coordinates
of a “contact point” on the boundary of the object); later, Bernstein [3]
improved on this result in the case where the polygon is restricted to a finite
set. Dobkin, Edelsbrunner and Yap [5] have considered the case of convex
polytopes in multidimensionnal space, other probe models and also probes
with errors. A work of synthesis of the field of geometric probing as well as
a collection of new results can be found in Skiena’ Ph.D. Thesis [7].

This paper extends the results of [2], recalled in Section 2, where it is
shown how one can probe a large class of non convez polygons, namely the
class of simple polygons with no collinear edges. In order to study such
complex objects, we use probes that are more powerful than simple finger
probes : our probes answer not only with a contact point but also with
the normal to the object at that point. Moreover we use an additionnal
information, called a ray, which is generally available with the outcome of
each probe. A ray is defined as a half-line or, more generally, as any semi-
infinite curve which has the measured point as its origin and which does
not intersect the interior of the objects — as do an optical ray, for example.
It has been shown [1] that, given a set of contact points belonging to the
boundary of a single object, the rays induce a total order on the set of points
that coincides with the natural order of the points along the boundary of
the object. Our method heavily relies on this property and a related lemma
that we recall in Section 2.1. The method is subsequently extended so as to
deal with multiple objects in a plane (Section 3), and 3-dimensional objects
(Section 4).



2 The basic planar probing algorithm

2.1 Description of the probe model and preliminaries

We show, in this section, how one can compute the exact shape of a simple
polygon C by probing in the plane of C. In the sequel, we will denote n the
number of edges of C. It is important to realize that n is a priori unknown
and will be discovered at the same time as the exact shape of the object.

Our probe model is the following. One probes along a half line, called
the probe path, whose origin is some point o; of the plane. When the probe is
issued, the probing device responds with the first point p;, called the contact
point, where the probe path encounters the boundary of C and gives also the
normal n; to C at p; when it is defined. The sensory device is supposed to
be able to detect when p; is a vertex of C, in which case the object responds
with two normals instead of one, namely the normals to the edges incident
to p;. An.example of such a device may be a finger with a tactile sensor at
its tip.

In addition, in order to avoid unrealistic probes, we assume that, when
the probe path contains an edge of C (such a probe is called a tangent
probe), no contact point on this edge is reported : the device misses the
edge.

The above probe model does not guarantee that any probing problem is
solvable in a finite number of steps. To ensure that, two mild conditions are
needed :

Condition 1. The oriented supporting lines of the edges of C are all distinct?.
Notice that two supporting lines may be identical if their orientations
are opposite.

Condition 2. A point ¢ of the object (on the boundary or in the mtermr
of polygon C), called the target point , is given.

These two conditions are made to ensure that the probing problem is solvable
in a finite number of steps. Indeed, without the first condition, a small
detail of the object may still have been missed after any finite number of
probes. Another way to circumvent this difficulty, that we do not follow here,
would be to assume that the edges of the object have at least a minimal
finite length. The second condition allows one to isolate the problem of

1C is supposed to be oriented counterclockwise and the edges and thelr supportmg
lines accordingly.



discovering the shape of the object from the problem of locating it within
the workspace. Without this condition, we have no idea where C is located
and an unbounded number of probes can be required to find it.

Our probing strategy is based on the use of the total order induced on
the set of contact points by the set of probe paths. In order to make use of
the results of [1], each new probe is chosen so that the outcoming contact
point p; can be associated with a semi-infinite curve [;, called a ray, that
ends at p; and is known not to intersect the interior of the object. This
is achieved as follows. As previously mentionned, each probe is associated
with an origin o; and a contact point p;. The line segment o;p; connecting
these two points (a portion of the probing path) is called the probe segment
of the probe. The origin o; of a new probe path is chosen to be either a
point at infinity or to belong to a previous probe segment. In the former
case, ray [; is identical to the new semi-infinite probe ségment; in the latter
case, ray [; is the concatenation of the current probe segment o;p; with the
semi-infinite prefix made of portions of previous probe segments and ending
at point o;. In the sequel, we shall consider that a probe outcome, noted
@; = (pi,ni,l;), includes three components : the contact point p; , the
normal n; to the boundary of C at p; and the semi-infinite ray /; ending at
pi.

Let P be a set of contact points and L the set of corresponding rays.
We first recall a few facts (proved in [1]). The set of rays L induces, on
P, a total cyclic order that corresponds to the natural order of the points
of P along the boundary of the probed object. The following lemma is a
necessary and sufficient condition for two contact points p; and p; of P to
be consecutive in that order.

Let C be any simple curve joining the points of P without intersecting
the rays of L (except at the points of P). In particular, in this section, we
can take this curve to be the unknown boundary of the probed object. The
curve C is considered to be oriented so that the rays of L lies on the right
side of C. Let C; ; be the portion of C joining p; to pj. C; ;, together with
the rays l; and /; measuring respectively the points p; and p;, partitions the
plane into several regions. Let W; ; be the union of the regions that do not
contain p; nor p; (W; ; may be empty). Among the two regions containing
pi and p; on their boundary, let H;; be the region to the right of C; ; (See
Figure 1).

Lemma 1 Two points p; and p; of P are consecutive in the order induced
by L if and only if the region H;;, considered as a closed region including



Figure 1: For the definition of W, ; and H;;

its boundary, contains no point of P, except p; and p;.

2.2 The basic probing algorithm

In this section, we present a probing strategy that computes the exact shape
of a n sided simple polygon with no collinear edges by means of at most 3n—3
probes.

Given a probe outcome w; = (pi, n;,!;), we call the line D;, normal to
- m; and passing through p;, the supporting line of w;. When necessary, D;
is considered to be oriented so as to let /; on its right side (and therefore
the interior of the object on its left side) in the neighborhood of p;. When
a probe outcome includes a contact point p; that belongs to the edge e; of
C, we say that the edge e; has been discovered. At that time, this edge is
not completely known because its endpoints have not yet been found out.

The initialization step of the algorithm performs the first three probes as
follows. The first two probes are issued along straight line rays with opposite
directions and both passing through the target. Let D; and D, denote the
two supporting lines of the two corresponding probe outcomes wy and w;
and let T = DiND; be the intersection point (possibly at infinity) of these
two lines. The third probe is performed along a directed straight line passing
through the target point and I and directed in such a way that the target
point is reached before I. The three corresponding contact points p;, p2, p3
belong to three distinct edges of C.



Let us now describe the current step of the algorithm. At a given stage
of the algorithm some edges have been discovered. The algorithm maintains
a list of contact points C, sorted according to the ray order (in the sequel,
the indices refer to that order). The intersection I between the supporting
lines D; and D;;; of two successive contact points is called a corner and
is a potential vertex of C. The algorithm maintains also an ordered list of
corners L . Let I be the current first corner of list £. I is the intersection of _
two supporting lines Dy and D, (I = D, ND,) corresponding to two contact
points p1 and p, that are at present consecutive in the list C. At each
step, the algorithm either confirms the corner I as being a vertex of C, or
discovers a new edge lying between p; and p, on the boundary of C. This is
achieved by means of at most two probes that are described just below. In
the first case, we simply report the vertex and delete I from L; in the latter,
two new corners are inserted in £. The algorithm halts when £ is empty.

Let us describe precisely the (at most two) probes performed at the
current step of the algorithm. The two supporting lines D; and D, define
four wedges R (with p; and p, on its boundary), S (with p; but not p; on
its boundary), T (with neither p; nor p, on its boundary) and U (with p,
but not p; on its boundary) (see Figures 2 and 3). Let wy = (p1,l1,m1)
and wy = (pg,ly,n2) be the two probe outcomes whose supporting lines
are D; and D, and let e; and e, be the edges of C containing p; and p,
respectively. The two points p; and p, are adjacent in the order induced by
the set of rays, at this stage of the algorithm. Therefore, from Lemma 1,
the region H; > is known to contain no contact point of the previous probes
and furthermore, a future contact point p is to be inserted between p1 and
P2 on the boundary of C if and only if p lies inside Hi s,

The strategy is to exhibit probe paths that will either confirm I as being
a vertex of C or discover a new edge of C between p1 and py. For that
purpose, the first probe path p, issued at the current step is such that:

1. p aims at I in order to decide whether this point is actually a vertex
or not,

2. p does not intersect the supporting lines D nor D,, to avoid useless
probes with contact points on already discovered edges,

3. the probe segment of u is guaranteed to lie entirely inside Hy,, to
ensure that the outcoming contact point will lie between p1 and py on
the boundary of C.



Such a probe path p may be constructed as follows. Let D be a straight
line contained in R U T2. D passes through I and intersects the segment
p1p2. We orient D so that p; is on the left side of D and p; on its right side.
The probe path p is supported by D and its origin o is chosen as follows.
The boundary v of Hy 5 is a simple closed curve that is the concatenation of
the portion of the boundary of C between p; and p;, Cy 2 — unknown at this
stage —, and of an arc h; 2 made of portions of previous probe paths and,
possibly, an edge at infinity. Let 0,...,00; be the sequence of intersection
points between D and h4 2, sorted along D. We associate to each intersection
point o; a sign, + if D enters Hy2 at point o;, — otherwise. The origin o
of p is either oy if 0% has sign + or the first of two successive intersection
points with both sign +. Because 7 is a simple closed curve, it follows from
Jordan theorem that such a point exists and, moreover, we are guaranteed
that the half line 4 supported by D and starting at o, encounters first C at
a point p satisfying op C H1 ;. Details can be found in the companion paper
[2].

Let @ = (p,l,n) be the outcome corresponding to the first probe path p
issued at the current step. The probing ray ! is exactly the probe segment
op, if 0 is a point at infinity and, otherwise, the concatenation of op with the
infinite portion of the ray /; (i=1 or 2) passing through o. Lemma 1 implies
that pq, p, p2 are encountered in that order along the boundary of C.

We distinguish four possible cases, depending whether p belongs to e;,
ez, both or none. Notice that, due to Condition 1 above, p belongs to e; iff
p belongs to D; and n = n,.

Case 1: p€ ey and p € e,

In this case, p = I and I is confirmed as a vertex of C. Due to Condition
1, we are guaranteed that the edges containing p; and p, are adjacent along
the boundary of C and that I is their common vertex.

Case 2: pde; and pfeq

The supporting line D(w) of the probe outcome is distinct from Dy and D,.
Because p is guaranteed to belong to the portion C 5 of the boundary of C
and because, up to this point, Cy 2 contains no contact point, a new edge
has been discovered.

?It would be possible to take for D a pseudo-line instead of a straight line. This will
only affect the complexity of computing the individual probes, not the number of probes.



Case 3: p€Eerand pfe,

In this case p = I but is not a vertex of C. Thus probe u does not confirmed
I as a vertex of C and discovers no new edge. In that case, the algorithm
issues another probe that is guaranteed to discover a new edge. Let II; be
the half-plane on the right side of D, when oriented as described above. We
distinguish two subcases according to whether p; belongs to II; or not. In
both subcases, we exhibit a new probe path y' that is guaranteed to discover
a new edge of the boundary of C between p; and p,. u' will be supported
by a straight line D’ passing through I and contained in SUU.

Subcase 3.1: p, € II4

The situation is depicted in Figure 2. In this case, D’ is oriented from § to
U. Let i’ be the half line supported by D' and starting at I. The contact
point probed by 4 is p'. The corresponding ray ! is the concatenation of
Ip' and I. Asin Case 2, the new probe necessarily discovers a new edge of
C (between p; and p,).

Figure 2: Case 3.1

Subcase 3.2: p, ¢ II;

The situation is depicted in Figure 3. We now orient D’ from U to S. The
origin o' of the new probe path ' is defined in a way similar to the origin o
of .. This insures that the new probe necessarily discovers a new edge of C
(between p; and py).



Figure 3: Case 3.2

Case 4: p¢e; and p€ e

This case is analogous to the previous one. The indices 1 and 2 have simply
to be exchanged as well as the wedges U and S.

Let us count the total number of probes that have been performed. Each
step of the probing algorithm either confirms a corner of list £ as a vertex
of C by means of one probe and this corner will never be probed again, or
discovers a new edge by means of at most two probes. Thus to determine
the exact shape of C, the algorithm issues at most one probe per vertex
and two probes per edge, except for the first three edges that are discovered
in the initialization step by means of only one probe each. This proves the
following theorem : :

Theorem 1 3n — 3 probes are sufficient to determine the exact shape of a
simple polygon with n non collinear edges.

It is proved in [2] that, under our probe model, this bound is also a lower
bound and that every probe algorithm that determines the shape of a polygon
with n edges makes at least 3n—3 probes in the worst-case. Thus our probing
strategy is optimal with respect to the number of probes.

2.3 Complexity analysis

The above strategy guarantees that a finite number of probes are performed.
In order to evaluate the actual complexity of the algorithm, it remains to



analyze the complexity of determining each new probe path. The supporting
line of a new probe path can be chosen, in constant time, as described in
Subsection 2.2. Computing the origin of the path is done as follows. As
above, we note h; ;11 the arc, made of portions of probe paths and, possibly,
of an edge at infinity, that joins the currently consecutive contact points p;
and p;41. It is shown in [2] that the probes can be constructed in such a
way that, at each step of the algorithm, the arc h; ;41 is a polygonal convex
chain (i.e., the angle between two successive segments of h; ;41, in the order
they are encountered when going from p;41 to p;, is less than 180 degrees).
A direct consequence of the fact that hiit1 is a convex curve is that we
can take, as the origin of the new probe path u, the point of intersection
between h; ;11 and D which is encountered first, when marching along D. In
Subcases 3.2 and 4.2, we can take, as the origin of 4/, the point of intersection
between h; ;11 and D’ which is encountered first when marching along D’.
By storing the polygonal chains h; ;41 between pairs of consecutive points
on the boundary of C, as appropriate data structures (a list of concatenable
queues), each of the at most 3n — 3 probes can be determined in O(logn)
time. The details of this procedure can be found in [2]. Thus the algorithm
has overall O(nlog n) time complexity and requires O(n) storage.

2.4 Probing a polygonal room from a given point within the
room

The probing strategy developped above can also be used if one wants to find
out the exact shape of a polygonal room by probing from the inside of the
room. This is possible as soon as a point s inside the room is known : this
point may be, for example, the initial position of the probing device.

In this case, each contact point may be associated with a ray joining this
contact point to the point s without intersecting the exterior of the room.
It can be easily proved that the set of rays induce a total order on the set, of
contact points that corresponds to the order of these points on the boundary
of the room and that Lemma 1 holds.

The initialization step of the algorithm performs three probes issued
from this point s : the first two probes are issued from point s along two
opposite directions. Let I = D;iND, (possibly at infinity) be the corner
formed by the supporting lines of the two corresponding probe outcomes.
The third probe is issued from the point s along the straight line passing
through the points s and [ and directed from f to s. The three corresponding
contact points py, p2, p3 belong to three distinct edges of the polygonal room.

10



Then, a strict application of the probing strategy described above provides a
complete description of the polygonal shape of the room in clockwise order.

3 Probing several polygons

In this section, the probing strategy developped in Section 2 is extended to
apply to the case where several polygons have to be simultaneously explored.
More precisely, we assume that the probing device has to compute the shape
of k' polygons Ci,...,Cr among a scene of k polygons (1 < k' < k). Let n
denote the total number of edges in the scene. The numbers k£ and n are
unknown and will remain unknown, except in the case &' = k.

As above, some mild restrictions on the statements of the problem are
assumed in order to ensure that the probing problem is solvable within a
finite number of steps. Namely :

1. The oriented supporting lines of the n edges in the scene are all dis-
tinct.

2. A target point t; is given within each polygon to be explored (t; € C;
(i=1,...,k")).

Under those conditions, we prove below that 3n — 3 + k probes are sufficient
to compute the exact shapes of the &’ polygons. Unfortunately, these probes
are harder to compute than those of Section 2 and our algorithm requires
O(n) time per probe and, thus, has overall time complexity ©(n?).

3.1 Description of the algorithm

Roughly speaking, the present algorithm for probing several polygons uses
the divide and conquer paradigm in conjonction with the probing strategy
described in Section 2. This strategy, valid for the probing of a single poly-
gon, is applied as long as there is no evidence for the presence of several
objects among the current set of contact points. When the presence of more
than one object becomes manifest, the probing problem is split into two
subproblems that are recursively solved.

Before giving the whole algorithm, we describe its main ingredients and
introduce the notions of a probing process and of a separator probe.

In the following, we call probing process a realization of the probing
algorithm for a single polygon (in fact, a slight variant to be described
below). As explained in Section 2, the current state of a probing process P

11



is completely determined by the triplet (C,L,H), where the current contour,
C, is the circular list of contact points sorted according to the order induced
by the rays, L is the corresponding ordered list of corners and H is the set
of the polygonal chains, h;;y1, made of portions of probe segments, and
joining pairs, (p;,pi+1), of successive contact points.

We call separator probe a probe whose outcome reveals that the contact
points of C belong to more than one polygonal object. Such a probe is either
a probe whose contact point p is at infinity (if the probe path encounters
no polygon) or a probe whose probe segment op intersects the polygonal
chains of H in, at least, one point o' (between o and p). Indeed, as long as
no probe segment op intersects the set of chains H, all the contact points of
C belong to the same cell of the subdivision of the plane induced by H (or
equivalently, by the set of the rays). Therefore, we know from [1] that there
there exists a simple curve passing through all the contact points without
intersecting the rays (except at their end points); thus there is no evidence
that the contact points found so far belong to several polygons.

The algorithm for several polygons will activate several probing pro-
cesses. Each probing process will be stopped as soon as a separator probe
is encountered. As previously mentionned, the probing process is a variant
of the basic algorithm of Section 2. The only difference between the variant
and the basic algorithm is an additional test. Indeed we need here to detect
when a separator probe is encountered and therefore, each time a probe is
issued, before updating the triplet (C,£,H), we have to check whether the
probe segment op intersects one of the segments of the current set M or
not. This simple variant of the basic algorithm will serve as the first main
ingredient of the algorithm for several polygons.

When a probing process P with current state (C,L,H) encounters a
separator probe, it is stopped and replaced by two secondary processes P’
and P” with current states (C’,£',H') and (C",£"”,H"). These secondary
processes will evolve recursively in turn. The construction of (C', L', H’)
and (C”,L£",H") from (C,L,’H) and the separator probe segment op is per-
formed by our second main ingredient, the so-called procedure SPLIT to be
described below. As will be proved in the next section, the current states
(C', L', 1) and (C”,L" 'H") of P' and P" will resume the whole information
(as far as probing is concerned) contained in the current state (C,L,H) of
process P and, both secondary processes P’ and P" have no evidence for the
presence of several polygons among their respective sets of contact points.

12



Procedure SPLIT

Input : a probing process P with current state (C,£,H) and a separator
probe segment op;

Output : two secondary processes P’ and P” with initial states (C',L',H’)
and (C",L"H").

1. Find the intersection point o’ between the separator probe segment op
and the segments of the set of chains H which is closest to o.

2. Split the circular list C into two circular sublists as follows. Among
the two chains of H containing o, let h;;y; be the one such that the
supporting line D,, of op, oriented from o to p, comes into the region
H; 41 at point o (i.e. o has sign + according to the sign convention of
Section 2.2). Among the two chains of H containing o, let h; ;41 be
the one such that D,, comes out of the region H; ;41 at point o (i.e.
o' has sign —). C’ is the sublist of C going circularly from p;4; to p;
while C” is the sublist of C going circularly from pj;q to p;. The list
L is split accordingly. (See Figure 4) '

Figure 4: Illustration of Procedure SPLIT

3. All the chains from H’ and H" are inherited without change from the
corresponding chains of H except for the chain ;41 of €’ and the
chain Dy oy of 7. The new chain h; oy is the concatenation of the
portion of the old chain hj ;i from p; to o', the segment o’o and the

13



part of the old chain h;;;y from o to p;y;. Similarly the new chain
h;j+1 is the concatenation of the part of the old chain hiiy1 from p;
to o, the segment 0o’ and the part of the old chain h; ;1 from o to

Pj+1- .

We can now give a description of the whole algorithm. During the course
of the algorithm, a number of probing processes will be activated. Each
probing process is activated with an initial state (Co,Lo,Ho); the initial
state of the first probing process is (0, 0,/ ), where I, is the line at infinity.
We distinguish between primary and secondary processes. A primary process
is a process whose initial lists of contact points Cg and corners Lo are empty.
At the initialization step, we issue three probes aiming at a given target (as
in the initialization step of the basic algorithm), fill the two lists Cy and Lo
with the outcomes of these three initial probes and update H,.

A secondary process is a process which results from splitting a previous
process when a separator probe is encountered. A probing process disap-
pears either because its list of corners £ becomes empty, which means that
it has completed the exploration of one of the polygons, or because it has
been replaced by two secondary processes after a separator probe has been
encountered.

At the begining, the algorithm activates a primary process with three
initial probes aiming at the first target point o0 as described in Section 2.
This primary process and the subsequent secondary processes evolve in turn
until all of them have disappeared. We say then that the algorithm has
reached a stable state.

At such a stage of the algorithm, the exact shape of at least one polygon
of the scene has been computed but some of the &’ polygons to be explored
may have been completely missed, until this point. Assume that, when
reaching.a stable state, the algorithm has discovered k; polygons with alto-
gether n; edges. The boundary of these polygons together with the current
set of probe segments induce a subdivision of the plane into regions. Among
these regions, ky are simply the interiors of the discovered polygons, the
others are the regions H; ;11 — called, for short, the H-regions — associated
to each pair of contact points (p;,pi+1) consecutive on the boundary of one
of the k; polygons.

To ensure to discover all the &’ polygons, the algorithm maintains in a
dynamic structure this subdivision of the plane and also a sublist of the given
targets a; which have not yet heen lecated in a explored polygon. Each time
a stable probing state is reached, the subdivision of the plane is updated
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and the algorithm locates in turn each target of the remaining list until it
encounters a first target, say ¢, lying in the interior of a H-region. Then,
a new primary probing process is activated within this H-region, called the
probing region of the process. Its initial list Ho consists of one closed chain3,
the boundary of the probing region, and the first three probes have their
origin on Hg and aim at target t. This will guarantee to discover at least one
new polygon inside the probing region. Such a probing process is very similar
to the initial probing process. In fact, both are identical if one considers the
line at infinity as the boundary of a special probing region, namely the whole
plane. Due to the usual mechanism, the probes issued by this process have
probing segments totally included in the probing region, except possibly for
. the last probe when it is a separator probe with its contact point outside
the probing region.

The whole process is repeated until all the targets have been found to
belong to an explored polygon.

3.2 Correctness of the algorithm

The notion of a probing region, introduced for primary processes, extends
in a straightforward way to secondary processes. In all cases, the probing
region of a probing process is the region of the plane bounded by the initial
set of chains H of the process.

As previously noted, all the probe segments issued by a probing process
P are contained in the probing region of P, except possibly for the last probe
when it is a separator probe with its contact point outside the probing region.
This property guarantees that two probing processes whose probing regions
have disjoint interiors are independant. Therefore, the results of Section
2 show that each probing process evolves correctly as long as no separator
probe is encountered and we only have to prove the correctness of Procedure
SPLIT.

We shall successively prove the three following facts that altogether prove
the correctness of Procedure SPLIT :

Fact 1 : Both sublists ¢’ and C” are non empty.

Fact 2 : The separator probe subdivides the probing region into two sub-
regions with disjoint interiors, one containing the points of C’ and the
cther the points of C”.

" 3With possibly an edge at infinity.
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Fact 3 : The secondary processes P’ = (C’,L',H') and P” = (C",L", H")
together resume the whole information regarding probing that is con-
tained in the state (C,L,H) of P; none of them has any evidence for
the presence of several objects among its set of contact points.

Because no separator probe has been encountered by P before op, we know
that there exists a simple closed curve C joining all the points of C without
intersecting the chains of the set H, except at the points of C. C and the
chains of H altogether subdivide the probing region of P into the interior
of C and the regions H;;i;. We note v; the boundary of the region Hiip e
7i is the concatenation of the portion of C, C; i+1, going from the contact
point p; to the contact point p;1, and of the chain h;;4; of H with end
points p; and p;4;.

To prove the first and the second facts, we consider the intersections
between the line D,, supporting the separator probe segment op and the set
of simple closed curves ;. The supporting line D,, is oriented from o to p
and we assume, for each intersection point between D,, and a curve «; the
same sign convention as in Section 2 : the intersection has a sign + if D,
enters H;;,q at this point and sign — otherwise. Furthermore, we consider
that the intersection points are sorted along D,, and, in the sequel, first,
last, next etc... refer to that order.

Proof of Fact 1

We will prove that the indexes i and j defined in Step 2 of procedure SPLIT
are distinct, which clearly implies Fact 1. Let us suppose, for a contradic-
tion, that o’ € h; ;1. Due to our conventions, ¢ is an intersection with sign
— between D,, and h;;;. Thus o is not the last point on the list of inter-
sections between line D,, and the chain h; i+1 and, moreover, from the way
the point o has been chosen on D,, (see Section 2. 2), this point is the first
one of two consecutive intersections between D, op and h;i41, 0 and 0", both
with sign +. Thus point 0” is necessarily between o and o' on D,p, which
contradicts the fact that ¢’ is the intersection between the probe segment op
and the set of chains H which is closest to o. O

Proof of Fact 2

Let [ and I’ be the rays passing through o and o’ respectively and let A (resp.,
A’) be the portions of I (resp., ') between o (resp., o') and the common
point of I and /" if it exists or, otherwise, infinity. The concatenation of the
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segment oo’ and of A and )X is a simple curve, either infinite or closed, whose
intersection with the probing region is connected. Let us call such a curve
the separator curve. This curve subdivides the probing region into exactly
two subregions. To complete the proof of Fact 2, we show that one of those
subregions contains the points of C’ while the other contains the points of
C". This is done by proving that C;;; and C; ;4 intersect the separator
curve in an odd number of points while any other Cj 41, for k¥ # ¢ and
k # j, intersects the separator curve in an even number of points. Notice
first that the intersections between C and the separator curve obviously all
belong to 0o’. From Jordan Lemma and the definition of points o and o/,
the first (along line D,,) of these intersections has sign — and belongs to
C'i+1 while the last one has sign + and belongs to Cj j4;. Still from Jordan
Lemma, the sequence of signs of the other intersections between C and 0o’
(if any) is an alternate sequence of + and - : +—+—...4+—. Let us consider
one such intersection with sign +, belonglng, say, to Ck g+1. At this point
line D, enters region H k k+1 and thus must leave this region later on. From
the definition of 0 and o', D,, must leave this Hy, ;41 through Cj 441, which
proves that the subsequent intersection (with sign —) also belongs to Cj k4.
This ends the proof of Fact 2. O

Proof of Fact 3

The set of chains H' and H” together span the set of chains H, which shows
that the two current states (¢, £, 1) and (C", £, H") include together the
whole information (as far as probmg is concerned) gathered in the current
state (C,L£,H) of the probing process that disappears. Let us consider the
curve C’ which is the concatenation of the portion Ciy; ; of C' going coun-
terclockwisely from p;;; to p; and of a curve joining p; to p;y; obtained by
following the chain h;;y; defined at step 3 of Procedure SPLIT, as closely
as possible (figure 5). Such a curve is a simple closed curve that joins all
the contact points of C’ in their order in this sublist and intersects no chain
of H', except at points C’. This proves that the probing process P’, in its
current state (C’, £’,H’), has no evidence for the presence of several objects
among its contact points. A similar argument holds for the probing process
P" in its current state (C",L", H"). o
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Figure 5: For the proof of Fact 3.

3.3 Number of probes

Let us now count the total number of probes performed by the above al-
gorithm. For a polygonal scene including k polygons, at most k separator
probes can be encountered. Except for those separator probes, each probe
either confirms a corner as being a vertex of one of the polygons or discovers
a new edge or guarantees that the next probe will discover a new edge. As a
primary probing process starts by aiming at a given target known to belong
to a polygon, the first three probes of each primary process are garanteed to
each discover a new edge. At least one such primary process is performed
which yields finally the following theorem :

Theorem 2 Gliven a scene of k polygons including altogether n non collinear
edges, it is possible to determine the exact shape of any subscene of k' < k
polygons by means of at most 3n — 3 + k probes, provided that one target
point is given inside each of these k' polygons.

3.4 Complexity analysis

A direct consequence of Theorem 2 is that the cardinalities of the sets C ,
L and H are in O(n) at any stage of the algorithm. In particular, the
set M of the chains h;;,; has O(n) edges. This immediately implies that
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the determination of one probe can be done-in O(n) time and thus the
determination of all the probes can be done in O(n?) time. This time bound
can be improved to O(log ) time per probe by using a technique analogous
to'that of Section 2.3, but this is useless here since the additionnal test that
detects separator probes induces a quadratic complexity.

Indeed, in order to check if the current probe is a separator probe, we
have to test if the probe segment op intersects one of the chains of H. This
requires to examine in turn each segment of the set of chains which takes
O(n;) time for the i*h probe. Hence, in total, @(n?).

Procedure SPLIT is called at most k times. Once all intersection tests
have been performed, Procedure SPLIT can be performed in constant time
if appropriate pointers link the lists C, £ and H.

Let us now evaluate the complexity of locating the targets ¢;,i = 1,..., k'
in the successive subdivisions corresponding to the stable states encountered
by the probing algorithm. A straightforward induction shows that if k&,
polygons with altogether nq edges have been explored, the induced planar
subdivision has at most (3n; — 3 + k;) regions. Thus locating a target in
the subdivision can trivially be done in O(n) time. FEach time a location
is queried for a target, either the target is found to belong to one of the
explored polygons or a new probing process is activated that will discover a
new polygon. Thus O(k) queries are performed, with total cost O(kn). For
large values of &, this time bound can be improved to O(nlog? n) by using
the dynamic structure for maintaining a subdivision described in [6, pages
135-143].

The algorithm for probing several polygons is thus dominated by the
complexity of the intersection tests which is ©(n?). As mentionned, improv-
ing the time complexity of these intersection tests will immediately improve
the overall complexity of the method. We let as an open question whether a
data structure for storing the set of chain H can be found that would allow
to perform these tests more efficiently.

3.5 Probing from a point at finite distance

In Section 2.4, we have shown that our basic probing strategy allows as well
to compute the shape of a polygonal room as soon as a point inside the
room is known. It is easy to see that this is also true in the case of several
polygons since the presence of a room does not perturb the evolution of a
probing process once this process has been initialized.

We will consider the slightly different situation where it is not known in
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advance whether the objects to be explored are contained in a bounded room
or not. Although this problem may appear a bit strange to the reader, it is
exactly one of the probing problems that will be encountered when probing
polyhedra in 3d-space. More formally, the problem can be stated as follows :
given a scene of polygonal objects, possibly contained in a polygonal room,
a point s, lying outside all the objects but inside the room (if any), and %'
target points belonging to £’ pbjects in the scene, compute the exact shapes
of the k' objects.

We will see that our method can be slightly adapted to solve this problem
by means of at most 3n—2+k probes, where £ is the total number of polygons
in the scene (including the room, if present) and n is the total number of
edges of the scene (including the edges of the room, if present).

Let t; be the first target point.

1. The first probe has s as its origin and is directed along the line pass-
ing through s and t;, oriented from t¢; to s. If the contact point is
at infinity, no room is present and the usual algorithm described in
Subsections 3.1 can be resumed from the beginning. With respect to
the usual algorithm, only one additional probe has been performed.
Otherwise, let p; be the contact point outcome by this first probe and
let Dy be the corresponding supporting line.

2. The second probe path is issued along the half-line starting at s and
directed towards the target t;. This probe outcomes necessarily a
contact point pp on the segment Ot,. Let D; be the corresponding
supporting line,

3. Let I = DyND; be the corner between the supporting lines D, and
D;. The third probe is issued along the half-line starting at s and
directed towards /1.

e If this probe path reaches infinity without encountering any ob-
stacle, no room is present and the scene can be probed from in-
finity. In that case, an additional probe performed from infinity
along the line pip, and directed towards p; (or pe) is garanteed
to discovered a point p on a third edge distinct from the edges
containing p; and p; and the usual probing algorithm can be re-
sumed. (The contact point p; (resp. p,) can now be associated
with a ray joining infinity which is the concatenation of the seg-
ment op; (resp. opp) with the third probe path.) Once again,
only one additionnal probe has been performed.
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e Otherwise, let p3 be the contact point outcome by the third

probe. The three points p;, p; and p3 belong to three distinct
edges of the scene and form, with the set of chains {hiiy1 =
Piopit1, 1 = 1,2,3 (mod 3)} a correct initialization of the first
primary probing process. This probing process will be handled
in the usual way. Two cases may happen. Either the process will
encounter a probing path reaching infinity. At that moment, all
the contact points may be associated with an infinite ray and the
usual probing algorithm can be resumed at that point as in the
previous case.
Or, the algorithm will reach a stable state where the enclosing
polygonal room has been discovered (and thus completely found
out). At this stage, any additional primary process which may
be necessary can be initialized and further continued in the usual
way.

In any case, only the first probe path reaching infinity — this probe
proves that no room is present — is an additional probe which has not been
counted in the analysis of the basic algorithm. This achieves the proof of
the following theorem.

Theorem 3 Given (i) a scene of polygonal objects, possibly contained in a
polygonal room, (i) a point s, lying outside all the objects but inside the room
(if any), and (1ii) k' target points belonging to k' objects in the scene, the
exact shapes of the k' objects can be computed by means of at most 3n—2+k
probes, where k is the total number of polygons in the scene (including the
room, if present) and n is the total number of edges of the scene (including
the edges of the room, if present).

Remark This algorithm provides the boundaries of the discovered objects in
counterclockwise order and the boundary of the polygonal room in clockwise
order.

4 Probing polyhedra in 3d-space

The probing algorithm can be extended so as to probe a polyhedron C in 3d-
space. The idea is to discover one edge of C at a time by applying another
variant of the basic planar algorithm in a plane whose intersection with C
contains that edge.
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This algorithm works under the two following conditions that are the
3d-analogous of Conditions 1 and 2 of Section 2:

Condition 1. C has no collinear edges. Moreover, there is no pair (e, f)
where e is an edge of C and f is a face of C which does not contain e,
such that e and f are coplanar (Thus, in particular, C will not have
coplanar faces).

This condition ensures that no section of C through a plane containing
e contain edges collinear to e.

Condition 2. A target point t belonging to C is known.

The probe model is the analog of the probe model used in Sections 2 and
3. When a probe is issued, the probing device responds with the first point
where the probe path encounters the object. The probe outcome includes
the contact point, the associated ray and the normal to the face of the
polyhedron passing through this point. The normals are oriented towards
the exterior of the object. The sensory device is assumed to be able to detect
when the contact point lies on an edge of C or is a vertex of C, in which
cases the normals of all incident faces are reported in the probe outcome.

4.1 General outline of the 3d-probing algorithm

We say, as usual, that an edge has been discovered when a contact point
on this edge has been outcome by a probe; furthermore, we say that an
edge has been ezplored when its two endpoints have been probed. After
an initialization step that discovers a first edge of C, the algorithm will
consider in turn each discovered edge to find out the vertices of C which
are its endpoints. Therefore the algorithm maintains the list E of the edges
that have been discovered but not yet explored. For each element e in this
list, the outcome of the probe that has discovered e (i.e. a contact point
on e and the normals to the faces incident to e) is stored. The following
pseudo-code gives the general outline of the algorithmn.

Initialization : First, call procedure INIT to find a contact point on an
edge of C. E is initialized with that edge.

Loop : While E is not empty

L. Take the first element e of £ and call Procedure EDGE(e) to find
the vertices of C which are the end points of e;
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Figure 6: Collinear edges in a planar section.

2. Remove e from FE and insert in F the edges incident to the end-
points of ¢ and not yet explored (each of these new edges has, as
its associated contact point, one of the end points of e).

The main ingredients of the 3d-probing algorithm are the two procedures
INIT and EDGE(e), to be described in Section 4.3 and 4.4. The aim of
Procedure INIT is to issue a contact point on an edge of C and the aim of
Procedure EDGE(e) is to find out the endpoints of the discovered edge e.
Both of these procedures choose a plan II intersecting the object and use
a variant of the algorithm described in the previous sections to explore (in
general, only partially) the planar section II(e) N C. We shall say, for short,
that these procedures probe in a plane, which means that all the issued probe
paths are included in the same plane.

The main difficulty encountered at this stage comes from the fact that
the planar section II(e) N C does not fulfill Condition 1 of Sections 2 and 3;
indeed, it may include collinear edges (see Figure 6). The basic algorithm
has no mean to understand that two contact points with collinear supporting
lines belong to distinct edges unless another contact point has been found
on an edge between these two collinear edges. Thus the algorithm is likely
to consider two collinear edges as a single one, erroneously too long, and not
to discover the edges between these collinear edges.

in addition, the current estimate of the polygonal contour (obtained by
Joining by straight line segments the pairs of consecutive contact points)
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Figure 7: Intersecting edges with confirmed vertices.

may be not simple; indeed, the relative interiors of some of its edges may
intersect even if their endpoints are confirmed vertices (cf. Figure 7). This
may happen at any stage of a probing process and heavily disturb the further
evolution of the probing process. To cope with this difficulty, we introduce a
variant of the basic algorithm that avoids to produce explored edges whose
relative interiors intersect. This procedure is described in the next section.
It will be used by procedures INIT and EDGE(e).

4.2 Error recovery in the presence of collinear edges

Each time both vertices of an edge have been explored, the algorithm checks
whether or not the relative interior of this edge intersects some of the edges
that have been previously explored. If an intersection is detected, at least
one of the two intersecting edges is erroneously long and has to be corrected.
This is done by the following procedure.
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Let J = eNe’ be such an intersection. Let H;iy1 (resp., Hy;ryq1) be
the region associated to the contact points p; and pi+1 (resp., pi and p;ry1)
preceding and following J on e (resp., €’). We issue a probe aiming at J in
one of these regions, say, for example, H; ;11. There are two possible cases.

o If the answered contact point p is not J or coincides with J but does
not belong to e (i.e., its normal is distinct from the normal at p; and
Pi+1), then e is erroneous : p; and p;+; belong to distinct edges and the
contact point p belongs to an edge that has not yet been discovered,
lying between p; and p;4; along the contour.

o Otherwise, the contact point coincides with J and lies on e. Edge €' is
necessarily erroneous. A new probe, issued inside Hys ;41 and aiming
at J, will necessarily discover a new edge between p;s and pjry1.

In both cases, at least one of the two intersecting edges has been ruled out
and, by means of at most two probes, we have discovered a new edge. The
probing process can go on as usual.

4.3 Procedure INIT

Procedure INIT chooses a plane II passing through the target point ¢ and
probes in that plane using the probing strategy of Section 3 modified so
as to include the error recovery procedure of the previous section. The
first primary probing process is initialized from infinity with point ¢ as its
target point. The probing process is stopped as soon as a vertex v has been
confirmed. The edge of C passing through the vertex v of IIN C is returned,
with the contact point v and the normals to the two incident faces.

Notice that the presence of collinear edges in the planar section II N C
does not cause any trouble here since the probing process is not required to
explore the whole section but simply to report a vertex.

4.4 Procedure EDGE(e)

As soon as e is discovered, the supporting planes of the two faces incident
to e are known. Among the four wedges defined by these planes, let R be
the wedge which contains C in a neighborhood of e and T be the wedge
opposite to R. Procedure EDGE(e) chooses a plane II(e) passing through e
and contained in RUT and probes in that plane in order to find the vertices
of II(e) N C which are the end points of e.
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The planar section II(e) N C consists of an unknown number of con-
nected components and moreover, these components may have holes that
may themselves include other components. Procedure EDGE(e) has to
discover the connected component of II(e) N C which contains e. As this
component may be contained in another one, Procedure EDGE(e) uses the
probing strategy of Section 3.5. The target point is the contact point p(e)
of the probe that discovered edge e. The starting point is obtained by a
preliminary probe issued from p(e) along a straight half line contained in
II(e) NT. Let ¢ be the contact point (possibly at infinity) outcome by this
preliminary probe. Any point s on the segment p(e)q can be taken as a
starting point. The probing algorithm is stopped as soon as the component
of II(e) N C which contains e has been found out. '

This component may be erroneous because of the presence of collinear
edges in the planar section II(e) N C but the endpoints of edge e are guar-
anteed to be the actual endpoints of e because, due to Condition 1 of the
present section, there is no edge collinear to edge e in the planar section
IIe)nC.

Notice that, according to the probing strategy of Section 3.5, p(e) will
be the contact point of the second probe issued by the first primary probing
process. Thus, the component of II(e) N C which contains e has surely been
explored by the time the probing algorithm reaches its first stable state.
Thus no additional primary probing processes will be required, which is
fortunate since the localization of the target p(e) among erroneous polygonal
contours would have been a hazardous undertaking!

4.5 Probing a scene of polyhedra

Throughout Sections 4.1-4.4, we have never used the fact that C was the
unique polyhedron in the scene. Let us suppose that the scene C consists
of k polyhedra satisfying Conditions 1 and 2 of Section 4 and that we want
to compute the shapes of a subset of £’ polyhedra in the scene located by &’
target points. We activate the above algorithm until all the discovered edges
have been explored. We have then reached a stable state and computed the
shape of some of the polyhedra. The whole algorithm is subsequently rerun,
alming now at a target t’, not contained in one of the explored polyhedra (if
any). Procedure INIT chooses a plane II’. Let C’ be the intersection of II’
with the already explored polyhedra. If ¢/ is surrounded by a (non simply
connected) component C', of C’, Procedure INIT probes inside the hole of
Cl, containing t' (i.e., we take as probing region this hole); otherwise, we

26



use the standard procedure described in Section 4.3. Procedure EDGE(e)
is then applied as usual. This procedure is iteratively applied until all the
targets have been located inside one of the discovered polyhedra.

4.6 Complexity of the algorithm

Let us count the number of probes performed by the algorithm. Suppose
first that the scene consists of a unique polyhedron C with n faces and m
edges. Each section of the object has at most n edges and n/3 connected
components. Indeed if a section contains 0 or 1-dimensional parts (i.e. a-
vertex or an edge of C with all their incident faces on the same side of
the cutting plane), our probes will miss them (these are tangent probes);
thus any connected component of a cross section of C has at least 3 edges.
Therefore, from Theorems 2 and 3, Procedure INIT and procedure EDGE
perform at most respectively 139n —3 and %n — 2 probes. Procedure EDGE
is called m times. Therefore, the total number of probes performed by the
algorithm is at most 32n(m+1)—2m—3. If the scene consists of k polyhedra
with n faces and m edges in total, Procedure INIT is activated at most k
times. The total number of probes performed by the algorithm is,in that
case, at most n(m+ k) — 2m — 3k. We sum up our results in the following
theorem :

Theorem 4 Let S be a scene of k polyhedra with m non collinear edges,
n non coplanar faces and such that no edge is contained in the supporting
plane of a non incident face. One can determine, by means of at most
1—30-n(m+ k)—2m — 3k probes, the exact shape of any subscene of k' polyhedra
of S located by k' target points, one inside each polyhedron.

5 Concluding remarks

1. The probing algorithm developped by Cole and Yap for convex objects
assumes a simple finger probe model whose outcome consists only of the co-
ordinates of a point on the boundary of the object but contains no informa-
tion on the direction of the normal at that point. Differently, we introduced
a new probe model that includes the normals at the contact points.

This seems to be an essential feature for probing non convex objects.
Indeed, without additional hypothesis, the problem of finding the exact
shape of non convex polygons with a finite number of finger probes has
no solution. Even if collinear points are found, we cannot guarantee that
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they belong to the same edge of C; thus an edge can never be confirmed as
an edge of C. Nevertheless, we have shown in [2] that, when no information
on the normal directions is available, a variant of our method will almost
surely output the exact shape of the objet, provided that, in addition to the
two conditions stated in Section 2, the following third condition is fulfilled :

Condition 3. If the intersection point of the supporting lines D; and D;
of any pair of edges e; and e; of C belongs to C, then it belongs to e;
or €;.

More precisely, we have the following theorem :

Theorem 5 Provided that Conditions 1, 2 and 3 are fulfilled, the above
procedure discovers with at most 8n — 4 finger probes a polygon which almost
surely is identical to C.

The method obviously extends to the case of several planar objets. It also
extends to the case of polyhedra provided that Condition 3 is replaced by the
(analogous) following condition : the intersection of the supporting planes
of any two distinct faces intersects C only finitely many times (in which
case, we can always slightly rotate the cutting plane so that, in each planar
section, Condition 3 is satisfied).

2. In this paper, we have mainly tried to optimize the number of probes
and have ignored, in our complexity analysis, the cost of moving the probing
device from one point to another. Our strategy is not good, in general, for
this task and we can exhibit situations, even in the simplest case of one
single polygon, where the probing device will execute ©(n?) turns. On the
other hand, a probing device that adopts the strategy of moving towards
the target until it reaches the object and then follows the boundary of the
object, will perform an infinite number of probes to ensure that no edge
is missed, but the trajectory followed by the device is clearly the shortest
possible one. Between these two extreme situations, there is surely room for
interesting compromises. For example, how many probes are necessary and
sufficient to determine the exact shape of a planar object using only O(n)
turns ?

3. Theorem 4 gives an upper bound on the number of probes in the 3-d case
that is quadratic. Is there also a quadratic lower bound ?

4. Lastly, we recall an open question already mentionned at the end of
Section 3.4 : does a suitable data structure exists that allows to efficiently
compute the probes in the case of several polygons ?
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