Skip to main content
Log in

A lower bound on the area of permutation layouts

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

In this paper we prove a tight Ω(n 3) lower bound on the area of rectilinear grids which allow a permutation layout ofn inputs andn outputs. Previously, the best lower bound for the area of permutation layouts with arbitrary placement of the inputs and outputs was Ω(n 2), though Cutler and Shiloach [CS] proved an Ω(n 2.5) lower bound for permutation layouts in which the set of inputs and the set of outputs each lie on horizontal lines. Our lower bound also holds for permutation layouts in multilayer grids as long as a fixed fraction of the paths do not change layers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Alon, Eigenvalues and expanders, Preprint.

  2. N. Alon and V. Milman, λ1, isoperimetric inequalities for graphs, and superconcentrators,J, Combin. Ser. Theory B,38 (1985), 73–88.

    Article  MATH  MathSciNet  Google Scholar 

  3. N. Alon and F. R. K. Chung, Explicit Constructions of Linear-Sized Tolerant Networks, Preprint.

  4. A. Aggarwal, M. Klawe, and P. Shor, Multilayer Grid Embeddings for VLSI,Algorithmica,6 (1991), 129–151.

    Article  MATH  MathSciNet  Google Scholar 

  5. A. Aggarwal, M. Klawe, D. Lichenstein, N. Linial, and A. Wigderson, Multi-layer grid embeddings,Proc. IEEE 26th Ann. Symp. on Foundations of Computer Science, 1985, pp. 186–196.

  6. V. E. Beneš, Optimal rearrangeable multistage connecting networks,Bell System Tech. J.,43 (1964), 1641–1656.

    MATH  MathSciNet  Google Scholar 

  7. N. K. Bose and K. A. Prabhu, Thickness of graphs with degree constrained vertices,IEEE Trans. Circuits and Systems,24 (4) (1977), 184–190.

    Article  MATH  MathSciNet  Google Scholar 

  8. M. Cutler and Y. Shiloach, Permutation layout,Networks,8 (1978), 253–278.

    Article  MATH  MathSciNet  Google Scholar 

  9. H. Davenport,Multiplicative Number Theory, Markham, Chicago, 1967.

    MATH  Google Scholar 

  10. J. Friedman and N. Pippenger, Expanding Graphs Contain All Small Trees,Combinatorica,7 (1987), 71–76.

    Article  MATH  MathSciNet  Google Scholar 

  11. Y. Kajitani, On Via Hole Minimization of Routings on a Two-Layer Board, Tech. Report, Dept. of Elec. Engineering, Tokyo Institute of Technology, 1980.

  12. M. Klawe and P. Shor, Optimal Universal Layouts, Preprint, 1986.

  13. E. S. Kuh, T. Kashiwabara, and T. Fujisawa, On optimum single row-routing,IEEE Trans. Circuits and Systems,26 (6) (1979), 361–368.

    Article  MATH  MathSciNet  Google Scholar 

  14. F. T. Leighton, Layouts for the Shuffle-Exchange Graph and Lower Bound Techniques for VLSI, Ph.D. Thesis, Dept. of Math., MIT, 1981.

    Google Scholar 

  15. F. T. Leighton, New lower bound techniques for VLSI,Math. Systems Theory,17 (1984), 47–70.

    Article  MATH  MathSciNet  Google Scholar 

  16. A. Lubotsky, R. Philips, and P. Sarnak, Explicit expanders and the Ramanujan conjectures,Combinatorica,8 (1988), 261–278.

    Article  MathSciNet  Google Scholar 

  17. R. J. Lipton and R. E. Tarjan, A separator theorem for planar graphs,SIAM J. Appl. Math.,36 (1979), 177–189.

    Article  MATH  MathSciNet  Google Scholar 

  18. R. J. Lipton and R. E. Tarjan, Applications of a planar separator theorem,SIAM J. Comput.,9 (1980), 615–627.

    Article  MATH  MathSciNet  Google Scholar 

  19. C. A. Mead and L. A. Conway,Introduction to VLSI Systems, Addison Wesley, Reading, Mass., 1980.

    Google Scholar 

  20. M. S. Paterson, Universal Chains and Wiring Layouts, Preprint.

  21. R. Rivest, The placement and interconnect system,Proc. 19th Design Automation Conf. 1982, pp. 475–481.

  22. Y. Shiloach, Linear and Planar Arrangement of Graphs, Ph. D. Dissertation, Weizmann Institute, Rehvot, 1976.

    Google Scholar 

  23. I. Shirakawa, Letter to the editor: some comments on permutation layout,Networks,10 (1980) 179–182.

    Article  Google Scholar 

  24. H. C. So, Some theoretical results on the routing of Multilayer printed wiring boards,Proc. IEEE Int. Symp. on Circuits and Systems, 1974, pp. 296–303.

  25. C. D. Thompson, A Complexity Theory for VLSI, Ph.D. Dissertation, Carnegie-Mellon University, 1980.

  26. B. S. Ting, E. S. Kuh, and I. Shirakawa, The multilayer routing problem: algorithms and necessary and sufficient conditions for the single-row single layer case,IEEE Trans. Circuits and Systems,23 (12) (1979), 768–778.

    Article  MathSciNet  Google Scholar 

  27. S. Tsukiyama and E. S. Kuh, Double-row planar routing and permutation layout,Networks,12 (1982), 287–316.

    Article  MATH  MathSciNet  Google Scholar 

  28. L. G. Valiant, Universality considerations in VLSI,IEEE Trans. Comput,30 (2) (1981) 135–140.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by F. Thomson Leighton.

The first author's research was partially supported by NSF Grant No. MCS 820-5167. The third author's research was supported by NSF Grant No. MCS-8204246 and by a Hebrew University Fellowship.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aggarwal, A., Klawe, M., Lichtenstein, D. et al. A lower bound on the area of permutation layouts. Algorithmica 6, 241–255 (1991). https://doi.org/10.1007/BF01759044

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01759044

Key words

Navigation