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Computing Convexity Properties of Images on a 
Pyramid Computer 1 

Russ Mil ler  2 and  Quent in  F. S tout  3 

Abstract. We present efficient parallel algorithms for using a pyramid computer to determine 
convexity properties of digitized black/white pictures and labeled figures. Algorithms are presented for 
deciding convexity, identifying extreme points of convex hulls, and using extreme points in a variety 
of fashions. For a pyramid computer with a base of n simple processing elements arranged in an 
n 1/a x n 1/2 square, the running times of the algorithms range from | n) to find the extreme points 
of a convex figure in a digitized picture, to O(n U6) to find the diameter of a labeled figure, | TM log n) 
to find the extreme points of every figure in a digitized picture, to | l/a) to find the extreme points 
of every labeled set of processing elements. Our results show that the pyramid computer can be used 
to obtain efficient solutions to nontrivial problems in image analysis. We also show the sensitivity of 
efficient pyramid-computer algorithms to the rate at which essential data can be compressed. 
Finally, we show that a wide variety of techniques are needed to make full and efficient use of the 
pyramid architecture. 

Key Words. Pyramid computer, Convexity, Digitized pictures, Digital geometry, Image processing, 
Parallel computing, Parallel algorithms. 

1. Introduction.  Pyramid- l ike  para l le l  compute r s  have long been p r o p o s e d  for 
per forming  h igh-speed low-level  image  process ing [ D 1 ] - [ D 3 ] ,  [R3] ,  [ S t l ] ,  [St2],  
[ T a K ] ,  [ T a l ] ,  [Ta2] ,  [ U h l ] ,  [Uh2]  and  several  are under  cons t ruc t ion  [BV],  
[ C F L S ] ,  [ C M ] ,  [ F r ] ,  [Sc],  [SHBV] ,  [Ta2] .  The  p y r a m i d  has a s imple geomet ry  
tha t  adap t s  na tura l ly  to many  types of problems,  and  which may  have ties to 

h u m a n  vision processing.  Fu r the rmore ,  the p y r a m i d  can be p ro jec ted  on to  a 
regular  pa t t e rn  in the plane,  which makes  it ideal  for VLSI  implemen ta t ion  I-D2], 
and  provides  the poss ibi l i ty  of  cons t ruc t ing  py ramids  with t h o u s a n d s  or  mil l ions 

of process ing elements.  
A p y r a m i d  compu te r  can be viewed as being cons t ruc ted  from layers  of  mesh 

computers .  A mesh computer (mesh) of  size n is a col lect ion of n s imple processing 
elements (PEs) a r ranged  in an n 1/z • n 1/2 grid, where each PE, except  those a long 
the border ,  is connec ted  to its four  nearest  neighbors .  A pyramid computer 
(pyramid) of  size n has a base which is a mesh of size n. The base  is called the 
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Fig. 1. Pyramid computer of size 16. 

zeroth level. The level above the base, level 1, is a mesh of size n/4, and so on to 
the apex at level log 4 n. Except for PEs along the boundary, each PE at level k 
is connected to its four mesh neighbors at level k, four children at level k - 1, and 
parent at level k + 1. (See Figure 1.) This model is the same as that used in [D2], 
[MS4], [St2], and [Ta3]. (A complete description of a pyramid computer is given 
in Section 2.) 

A serial computer operating on n pieces of data must take f~(n) time to solve 
the problems considered in this paper, since all the data needs to be examined. 
For problems involving images, a mesh is a natural data structure, which means 
that the mesh computer is a logical alternative to a serial machine for solving the 
problems considered in this paper. Notice that for a mesh computer of size n, any 
algorithm that requires global communication of data must take f2(n l/z) time. 
While algorithms that run in | 1/2) time are a significant improvement over 
f2(n)-time serial algorithms, the relatively long communication diameter of the 
mesh, with respect to other parallel architectures, has been a major criticism of 
that architecture. 

The pyramid computer's parent-child links provide the possibility of | n) 
algorithms, and some simple problems, such as finding a maximum and computing 
parity, can be solved in this time. However, many problems cannot be solved in 
O(log n) time on the pyramid. For example, [St2] showed that sorting requires 
fl(n l/z) time on a pyramid of size n. Since | sorting is possible on a 
mesh [ThK], the pyramid structure does not need to be utilized in order to obtain 
a | pyramid-computer sorting algorithm. Sorting requires ~(n  1/2) time 
because of the large amount of data movement required, while finding a maximum 
value can be completed in | n) time by rapidly eliminating values from 
consideration and moving the remaining values up the pyramid. This extreme 
sensitivity to the amount of data movement makes the pyramid a rather unique 
parallel architecture. 

In this paper we present algorithms to solve a variety of problems, all of which 
deal with convexity. It will become clear that the differences in the running times 
of the algorithms are related to the rate at which data can be eliminated from 
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further consideration during the course of an algorithm. Convexity is a funda- 
mental property of figures, and convexity algorithms for meshes have been widely 
studied (see [DR], [KR1], [MS3], [Ski), but the only previous pyramid algorithms 
we know of are preliminary (conference) announcements of the results presented 
in this paper [MS1]-[MS3]. 

For an arbitrary black figure F on a white background, the extreme points 
representing the convex hull of F (i.e., the vertices of the smallest enclosing convex 
polygon of F) often give a satisfactory compressed approximation of the figure. 
These extreme points can also be used to obtain important geometric classifica- 
tions of the figure, such as determining a smallest enclosing box, smallest enclosing 
circle, and the external diameter of the figure. Efficient pyramid-computer algo- 
rithms that generate and use the extreme points of a single or multiple figures are 
given in this paper. 

In Section 2 we give formal definitions of the pyramid computer, define the 
types of input that are considered, define convexity and related properties, and 
define some fundamental data movement operations that are used in the algo- 
rithms. Section 3 contains algorithms for deciding convexity and finding extreme 
points of single figures or sets of PEs with the same label, and Section 4 contains 
algorithms for determining convexity properties of multiple figures or sets of labels. 
Section 5 contains some algorithms that make use of extreme points to determine 
properties of sets, such as linear separability, diameter, smallest enclosing box, 
smallest enclosing circle, and so forth. Section 6 considers smaller pyramids for 
obtaining geometric information about image data, and Section 7 discusses related 
machine models such as the 4-ary (quad) tree, mesh-of-trees, and hypercube. In 
Section 8 we conclude with observations about optimality and some situations in 
which the results can be improved. 

2. Definitions. In this section we define standard notation, formally define the 
mesh and pyramid computers, specify the forms of input that our problems use, 
define convexity and related properties, and discuss some fundamental data 
movement operations for the pyramid computer. 

2.1. Notation. We use | to mean "order exactly," O to mean "order at most," 
and f~ to mean "order at least." That is, given nonnegative functions f and g 
defined on the positive integers, we write f = | if and only if there are positive 
constants C1, C2, and a positive integer N such that Clg(n)<_ f (n)< Czg(n), 
whenever n > N. We write f = O(g) if and only if there is a positive constant C 
and an integer N such that f(n) <_ Cg(n), for all n > N, and we write f = fl(g) if 
and only if there is a positive constant C and an integer N such that Cg(n) < f(n), 
for all n > N. 

2.2. Models of Computation. The mesh computer (mesh) of size n is a machine 
with n processing elements (PEs) arranged in a square lattice. To simplify exposi- 
tion, we assume n = 4 c for some integer c. For all i, j ~  [0, . . . ,  n 1/2 - 1], PE(i,j), 
representing the PE in row i and column j, is connected by a distinct bidirectional 
anit-time communication link to each of the following four neighbors that exist: 
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PE(i,j  + 1), PE(i,j  - 1), PE(i + 1,j), and PE(i - 1,j). Each PE has a fixed number 
of registers (words), each of size O(log n). In one unit of time, each PE can perform 
standard arithmetic and Boolean operations on the contents of its registers and 
can also send and receive a word of data from each of its neighbors. Each PE 
contains its row and column indices, as well as a unique identification register, 
the contents of which is initialized to the concatenation of the PE's row and 
column indices. 

A pyramid computer (pyramid) of size n is a machine that can be viewed as a 
full, rooted, 4-ary tree of height log4 n, with additional horizontal Hnks so that 
each horizontal level is a mesh. (See Figure 1.) Another convenient view of the 
pyramid is as a tapering array of mesh computers. A pyramid computer of size n 
has at its base a mesh of size n, and a total of ~-n - �89 PEs. The levels are numbered 
so that the base is level 0 and the apex is level log 4 n. A P E  at level i is connected 
by a distinct bidirectional unit-time communication link to each of the following 
nine neighbors that exist: four adjacent PEs of the mesh at level i, four children 
at level i - 1, and a parent at level i + 1. Similar to the mesh, it is assumed that 
each PE has a fixed number of words, each of size O(log n), and that all arithmetic, 
Boolean, and communication operations take unit time. Further, each PE contains 
registers with its row, column, and level coordinates, the concatenation of which 
provides a unique index (label) for the PE. These registers can be initialized in 
| n) time if necessary. 

2.3. Input Data. There are two different forms the data can take. One form of 
input consists of each base PE containing a label, where there are no assumptions 
made concerning the origin of the labels. In particular, the set of PEs with a given 
label may be disconnected. For  example, classification labels give rise to such input 
[To]. 

The other form of input consists of an n ~/2 x n 1/2 black/white picture M = {ml,j} 
stored in the base of the pyramid so that base PE(i,j) stores pixel mi, j. Two black 
pixels are called 4-neighbors (neighbors) if they are stored in PEs sharing a 
communication link, and are connected if there is a path of neighboring black 
pixels between them. This divides the black pixels i n to  (maximal) connected 
components, which we call figures. (We could also define figures and connected 
in terms of 8-neighbors, where a black pixel stored in PE( i l , j l  ) is an 8-neiohbor 
of a black pixel stored in P E ( i z , j 2  ) if max([i a - i 2 [ , j  1 - J 2 [ )  --= 1. It should be 
noted that all of the results presented in this paper work with trivial modifications 
for this definition as well.) For  many of the problems considered in this paper we 
assume that the figures have been labeled, which means that each black pixel has 
been assigned a label, where two black pixels are assigned the same label if and 
only if they are in the same figure. The following result was presented in [MS4] 
for using a pyramid computer to label the figures of a digitized black/white picture, 
and we make frequent use of it throughout the paper. 

LEMMA 1 [-MS4]. Given an arbitrary black~white picture stored one pixel per PE 
in the base of  a pyramid computer of size n, the figures (connected components) 
can be labeled in | 1/4) time. 
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2.4. Lower Bounds. Notice that the pyramid has a communication diameter of 
| n), meaning that any two PEs can exchange messages in O(log n) time, and 
some pairs require ~(log n) time. This sets a lower bound on any problem which 
may require information to be exchanged between arbitrary processors. For very 
simple problems, such as counting the number of black pixels or locating the 
northernmost black pixel, it is quite easy to construct standard bottom-up 
collection, top-down distribution algorithms that finish in | n) time. 

As noted earlier, sorting provides an example of a different class of problems 
for which the extensive data movement required forces the time to be f~(nl/Z). For 
many of the problems considered in this paper, however, neither of these bounds 
is appropriate. The logarithmic bound is still true, but overly optimistic, while the 
n ~/2 bound does not apply because not as much data needs to be moved. We show 
that by exploiting properties of image data, many geometric problems can be 
solved in about n 1/4 time. In some cases we can achieve O(na/6)-time solutions, 
and for a few problems we achieve solutions that run in polylooarithmic time, i.e., 
O(log k n) time, for some integer k > 0. A lower bound more appropriate to these 
situations is contained in the following theorem due to [MS4]. 

LEMMA 2 [MS4]. In a pyramid computer of size n, suppose that there are B 
bits in the first column of the base, 1 <_ B <_ Cn 1/2 log(n), for some constant C > O, 
and suppose that these are to be moved to the last column of the base. Then 
f~(log(n) + [B/log(n)] 1/2) time is required. 

An example of where Lemma 2 can be applied follows. In [MS4] it is shown that 
labeling the figures of an arbitrary black/white picture stored in the base of a 
pyramid of size n may require O(n l/z) bits to be sent from the leftmost column in 
the base to the rightmost column of the base. Therefore, from Lemma 2, it is 
known that f~(nl/4/log 1/2 n) time is required to label the base picture. 

2.5. Convexity. Throughout this paper we identify the base PE(i,j) with the 
integer lattice point (i,j). A set of base PEs is said to be convex if and only if the 
corresponding set of integer lattice points is convex, i.e., the smallest convex 
polygon containing them contains no other integer lattice points. This is the proper 
notion of convexity for integer lattice points, but it does have the annoying 
property that some disconnected sets of points, such as {(1, 1), (3, 4)}, are convex. 
The reader might wish to consult [KR1] and [MS3] for further discussions of 
convexity and digitized data. Some uses of convexity are illustrated in [MS3] and 
[To]. 

Given a set S of base PEs, the convex hull of S, denoted hull(S), is the smallest 
convex set of PEs containing S. As for standard, planar convexity, the convex hull 
of S is the intersection of all convex sets containing S. A P E  P ~ S is an extreme 
point of S if P ~ hull(S - P). The extreme points of S are the corners of the smallest 
convex polygon containing S. We say that we have marked the extreme points of 
S if every PE P in the base of the pyramid has a Boolean variable that is true if 
and only if P is an extreme point of S. We say that we have enumerated the extreme 
points of S if we have marked the extreme points of S, and each extreme point has 
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Fig. 2. Enumerated extreme points of a set. 

been assigned a number as follows. The rightmost extreme point has the number 
1 (if there are two rightmost extreme points then the lower one is number 1), and 
the numbering continues around the extreme points in counterclockwise order. 
Each extreme point must know its number, the total number of extreme points, 
and the locations of the preceding and following extreme points. (See Figure 2). 

2.6. Data-Movement Operations. Efficient parallel algorithms for regular archi- 
tectures often rely on a variety of fundamental operations to move data around 
[M]. Several such operations were introduced for the pyramid computer in [MS4], 
one of which is the pyramid write. The pyramid write is used to move data up 
the pyramid from a given mesh level to a desired mesh level that contains enough 
PEs to hold all of the distinct pieces of data being sent. For  the algorithms in this 
paper we need only a restricted version of this operation. 

LEMMA 3 [MS4]. Given a pyramid computer of size n, f ix  constants p and C, where 
0 < C and 0 < p < 1. Suppose there are no more than Cn p PEs in the base that have 
a piece of  data to be sent to level [log 4 n ~ -P/C]. (This level is the highest one with 
at least Cn p PEs.) The pyramid write will move the data to its proper location in 
O(n p/2 log 1/2 n) time. 

We emphasize that Lemma 3 considers p and C fixed, and only considers n to 
vary. This is all we need for our results, but in other circumstances we may need 
to determine completely the dependence on p and C, as well as on n. 

We now introduce a closely related data-movement operation, the sparse 
pyramid write. 

PROPOSITION 4. Given a pyramid computer of size n, f ix  constants p and C, where 
0 < C and 0 < p < 1. Suppose there are no more than Cn p PEs in the base that have 
a piece of data to be sent to level/log4 n a -P/C]. Further, in each base subsquare o f  
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size k, 0 <_ k <_ n, assume that there are no more than Ck  v PEs sending data. Then 
a sparse pyramid write will move the data to level [log4 n I -v /CJ in | p/2) time. 

PROOF. To perform a sparse pyramid write, fix p and C, and in parallel perform 
a sparse pyramid write in each quadrant. The level that the data is written to is 
either the same as the desired final level, or else it is one level below. Merge the 
data together using a mesh-computer operation such as random access read 
[MS3], and move up one level if necessary. For  fixed p and C, the time obeys an 
equation of the form T(n) = T(n/4) + dn p/2, which has a solution of | [] 

Our algorithms use one additional data-movement operation from [MS4], 
called reducing a function. Given sets A and B (which in this paper will always 
be the same), given a function f mapping A x B into some set C, and given an 
associative, commutative operation �9 on C, let g be defined on A by g(a) = 
f (a ,  bt)* f (a ,  b2) * " "  * f (a ,  bk), where B = {b t , . . . ,  bk}. g is called the reduction 
o f f .  For example, if A and B are sets of points in the plane, if C is the set of real 
numbers, if f computes the distance between points, and if �9 is the maximum 
operation, then g(a) is the farthest distance from a to any point in B. 

LEMMA 5 [MS4]. Suppose that f and * can be computed in unit time, and that A 
and B are stored one itern per  P E  at level l with m PEs,  1 < m <<_ n t/2. The operation 
of  reducing a function will compute g in |  t/2) time, storing g(a) in the PE  at level 

l storing a. 

We also need to use an extended reduction operation for the situation where 
there are three sets A1, A2, and A3, a function f mapping At x A 2 x A3 into C, 
and an associative commutative operation �9 on C. The reduction of f is the 
function g mapping A1 to C given by 

9(a) = , f ( a ,  x, y). 
(x , y )~A2  • A3 

This operation is presented in [M]. 

LEMMA 6 [M]. Suppose that f and * can be computed in unit time, and that A 1, 
A2, and A 3 are stored one item per PE  at a level with m PEs, 1 <_ m <_ n t/3. Then 
the reduction o f f  can be computed in | t/2) time. 

3. Single Figures or Labels. In this section we consider input at the base of the 
pyramid that consists of a single digitized black figure on a white background (i.e., 
there is only one connected black component in the picture) or a figure with a 
single label (i.e., all base PEs that contain a label, contain the same label). Pyramid 
solutions to problems involving single figures are important for a variety of 
reasons, including the recent result presented in [MS6] which shows how to 
transport a single figure pyramid algorithm to a variety of architectures, including 
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the pyramid, mesh, hypercube, mesh-of-trees, and several bus-augmented mesh 
machines, and solve the corresponding problem for multiple figures. The approach 
used in [MS6] is to create a simulated essential pyramid over every figure and then 
use these to run the single-figure algorithms simultaneously. For a variety of 
architectures, it is shown in [MS6] that the multiple-figure version will run nearly 
as fast as the single-figure pyramid-computer version. 

Before solving some general convexity problems for single figures, we first prove 
a lemma that will be quite useful. The lemma shows that once the extreme points 
of a figure have been marked, they can be enumerated in | n) time on a 
pyramid of size n. 

LEMMA 7. In a pyramid computer of size n, suppose the extreme points of a set S 
of base PEs have been marked. Then in | n) time the pyramid can enumerate the 
extreme points of S. 

PROOF. The algorithm requires that the processors determine certain basic 
information, as follows: 

1. By using a bottom-up report, followed by a top-down broadcast operation, in 
(2 log4 n) steps all PEs in the pyramid computer can know the identity of the 
base processor that contains the extreme point that will be labeled 1. This may 
be accomplished as follows. Pass data up the pyramid so that at step i, 1 < i _< 
log 4 n, each PE at level i will know the identity of the extreme point in the 
base beneath it that would be labeled 1 if the extreme points of S were restricted 
to the subset of S in the base beneath it. After (log 4 n) steps, the apex of the 
pyramid knows the identity of the extreme point in the subset of S beneath it 
(i.e., in the entire base) that is to be labeled 1. This information is broadcast to 
all PEs in the pyramid in (log 4 n) steps by a straightforward top-down broadcast 
operation that is initiated by the apex. 

2. In a similar fashion, in (2 log4 n) steps all PEs can simultaneously determine 
the total number of extreme points of S. 

3. Using a bottom-up report procedure, in (log 4 n) steps the apex of the pyramid 
can know the locations of the rightmost-bottommost, rightmost-topmost, 
topmost-rightmost, topmost-leftmost, leftmost-topmost, leftmost-bottommost, 
bottommost-leftmost, and bottommost-rightmost extreme point of S. These 
eight (not necessarily distinct) extreme points partition the extreme points of S 
into eight "triangular regions," as shown in Figure 3. 

Fig. 3. The eight "triangular regions." 
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4. In (2 log 4 n) steps, every PE in the pyramid can know the total numbers of 
extreme points of S in the base under it that are in each of these eight regions. 
Notice that the boundaries of these (possibly degenerate) triangular regions 
may be generated in unit-time by every PE of the pyramid once they are 
informed as to the locations of these eight points. 

Once this information has been determined, the extreme points of S can be 
labeled in | n) steps by having the apex recursively distribute ranges of the 
numbers to its children for each of the eight regions. Distributing the proper 
numbers to the children is straightforward since the extreme points represent a 
convex polygon. Notice that within each region, this is a prefix computation. 

It only remains to show that each base PE containing an extreme point of S 
can determine the location of the preceding and succeeding extreme points of S 
in | n) steps. During the numbering process, as every PE passes ranges of 
numbers to its children, it also determines if any of its children are responsible for 
extreme points that have a preceding or succeeding extreme point in another one 
of its children. For each such case, the PE creates a neighbor record, which consists 
of the numbers of the extreme points involved, as well as the identity of the PE 
creating the record. When the numbering phase of the algorithm terminates, these 
neighbor records are sent in lockstep fashion down to the base. When a base PE 
receives a neighbor record, it is examined to determine if either of the numbers 
in the record correspond to its extreme point number. If there is a match, then 
the location of the extreme point is appended to the record, and the record is sent 
back up to the PE that generated it, while otherwise the record is discarded. 
Finally, the neighboring information is sent down to the base in lockstep fashion 
so every base PE in S will know not only its number, but the location of its 
predecessor and successor. Hence, the extreme points of S have been enumerated. 

The algorithm requires a fixed number of | n)-time top-down and bottom- 
up tree-like operations. Therefore, the running time of the algorithm is | n). 

[] 

We now look at the general problem of enumerating the extreme points of a 
single convex set of base PEs (i.e., marking and numbering the PEs that contain 
extreme points of the figure). This is important in many image-processing applica- 
tions that require a compact description of a single convex figure for storage or 
transmission purposes. One such description is given by the extreme points of 
the figure. 

Before we give our result for enumerating the extreme points of a single convex 
figure, we first give a simple technical lemma which we find extremely useful. The 
lemma is concerned with the fact that it is possible to take a digitized convex 
figure, divide it into two parts by a straight line parallel to one of the grid axes, 
and have points which are extreme points of the parts but not of the entire figure. 
An important consequence of the following lemma is that there are only O(log n) 
such points. 

LEMMA 8. Given a convex figure F on a grid, suppose the grid is divided vertically 
in half and the extreme points of the restriction o fF  to the right half are determined. 
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Suppose p and q are extreme points alon9 the top of the right-hand portion. Further, 
suppose p and q are not extreme points o fF,  and that q is further from the dividin 9 
line than is p. Then q is more than twice as far from the dividin 9 line as p is. 

PROOF. Since p = (Px, Py) and q = (qx, qy) are not extreme points of F, it must 
be that the line segment L from q, passing through p and continuing on to the 
dividing line, lies in the convex hull of F when viewed as a figure in the real plane 
(rather than just on the grid). If q were less than twice p's distance to the dividing 
line, then the grid point r = (2px - q~, 2py - qy) would lie on L and be on the 
same side of the dividing line as p and q. This means that r would be in F and, 
specifically, in the restriction of F to the right half. However, since p is halfway 
between q and r, this contradicts the assumption that p is an extreme point of the 
restriction of F to the right half. [] 

The next result is concerned with enumerating the extreme points of a convex 
set of processors. The algorithm used to solve this problem is based on a bottom,up 
divide-and-conquer solution strategy. 

THEOREM 9. In a pyramid computer of size n, suppose the PEs with a 9iven label 
form a convex set S. Then in | n) the time the extreme points of S can be 
enumerated. 

PROOF. The algorithm proceeds in two phases. The first phase of the algorithm 
marks the extreme points of S, and the second phase of the algorithm enumerates 
them by applying the algorithm of Lemma 7. Therefore, we need only describe 
the marking phase of our algorithm. 

Our algorithm for marking extreme points works in a bottom-up fashion, where 
at step k, 0 < k _< log 4 n, decisions regarding extreme points are made by PEs at 
level k. Consider the PEs at level k in the pyramid. These are the apices of disjoint 
subpyramids with bases of size 2 k x 2 k. Call the base of each of these disjoint 
subpyramids a subsquare. At the end of step k, suppose that in each 2 k x 2 k 
subsquare those points which are not extreme points of the restriction of the figure 
to their subsquare have been marked as not being extreme, while those that are 
extreme points in their subsquare remain as candidate extreme points for the entire 
figure. Suppose further that for each way of forming a square of four subsquares, 
each point which is not an extreme point in the larger square has also been marked 
as not being extreme. Notice that these larger squares overlap, and some corre- 
spond to bases of subpyramids of height k + 1, while others do not. 

Now consider step k + 1, where for PEs at level k + 1 we call the base of each 
of the corresponding subpyramids a block. Since each block is a square of four 
2 k x 2 k subsquares, we know that at the beginning of step k + 1 those points which 
are not extreme points in their block have already been marked as not extreme. 
The purpose of step k + 1 (i.e., the recursive step) is to identify those points which 
were candidate extreme points at the end of step k, but which are not extreme 
points in some square of four blocks. This must be done for all possible squares 
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2 k 

2 k 

q 

Fig. 4. Eliminating extreme points. 

of four blocks, not just those corresponding to the base of a subpyramid of height 
2 + k .  

Each square of four blocks can be viewed as merging two blocks together (for 
two sets in parallel), and then merging these rectangles together. Both merge steps 
are similar, so only the first is described. Since all squares of four 2~• 2 ~ 
subsquares have been considered during step k, for a candidate extreme point p 
to be marked as not being a candidate during step k + 1, there must be a triangle 
containing p with one if its vertices being an extreme point q more than 2 k away. 
An example is given in Figure 4, where q can be taken to be the rightmost 
remaining candidate extreme point in its subsquare, and p the leftmost remaining 
candidate extreme point in its subsquare. Further, if q causes two remaining 
candidate extreme points to be eliminated, then an argument as in Lemma 8 shows 
that the second, call it r, must be more than twice as far from q as p is. Therefore, 
r must be in a different subsquare than p, and since it must also be the next 
candidate extreme point after p, in left-right order, r must be the leftmost extreme 
point in its subsquare. This same consideration shows that q cannot eliminate 
more than two candidate extreme points within this square of four blocks. Thus, 
by knowing for each subsquare only the leftmost and rightmost remaining 
candidate extreme points along the top, the leftmost and rightmost remaining 
candidate extreme points along the bottom, the topmost and bottommost remain- 
ing candiate extreme points along the left, and the topmost and bottommost 
remaining .candidate extreme points along the right, we can determine all false 
extreme points in the merger of the blocks. 

The apex of each block maintains this information about its block. By exchang- 
ing information with its neighbors at level k + 1, in constant time, simultaneously 
for every apex, an apex can determine for each possible square of four blocks 
which of its candidate extreme points should be eliminated from further considera- 
tion. To finish step k + 1, every PE at level k + 1 initiates a top-down broadcast 
message of the information to its block, and supplies its parent with the informa- 
tion necessary to start step k + 2. 

The time between the start of step k + 1 and the start of step k + 2 is | The 
time it takes to finish the final top-down broadcast after the last step is complete 
is | n). Therefore, the total running time is | n). [] 

The next problem we consider is that of marking the convex hull of a single 
figure that is described by a set of enumerated extreme points. If the original figure 
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was not convex, then the figure that we generate will be an approximation of the 
original figure. However, if the original figure is "blob"-like, then this operation 
can be viewed approximately as the inverse operation .to that of generating the 
extreme points of the figure. 

THEOREM 10. In a pyramid computer o f  size n, suppose the extreme points o f  
the PEs with a given label have been enumerated, then in | n) time the PEs 
in the convex hull of this set can be marked. 

PROOF. Since the extreme points have been enumerated, all base processors 
containing an extreme point know the location of the extreme points preceding 
and succeeding it according to the counterclockwise ordering of extreme points. 
Assume that there are p extreme points in the figure, where the base PE containing 
the ith extreme point is denoted Pi, 1 < i _< p. Each base PE Pi assumes responsi- 
bility for the hull edge, call it el, between its (extreme) point and the extreme point 
that follows it in the counterclockwise ordering. All Pi can now determine, in | 
time, the processor in the pyramid at maximum level (closest to the apex), denoted 
Pi~,,), that is an ancestor of Pi such that ei crosses the boundary between the 
subpyramids rooted at the children of Pit,,)- All base processors, Pi now pass up 
to their respective Pi~,,), the hull edge e~ that they are responsible for, as well as a 
flat indicating which side of ei is on the inside of the hull. Notice that no processor 
in the pyramid will be responsible for more than four such edges. After log4 n units 
of time, all processors in the pyramid will know the (at most) four edges in the 
base that cross the boundaries of the subpyramids of its children. This information 
is then passed down the pyramid in lockstep fashion from all Pi(r~) to their 
descendants. As each base PE receives such information, it decides in | time 
whether or not it is in the convex hull. [] 

The next result provides an optimal solution to the problem of deciding whether 
or .not a marked set of PEs is convex. The algorithm is straightforward, combining 
the results just presented in Theorems 9 and 10. First, use the algorithm associated 
with Theorem 9 to mark the "extreme points" of the set. Using the preceding two 
"extreme points" and the succeeding two "extreme points", every PE determines 
whether or not it can decide that the figure is not convex. Combining these results, 
it can be decided whether or not the "extreme points" are convex. If the set of 
"extreme points" are not convex, then the algorithm halts and it is known that 
the original marked set of PEs is not convex. Otherwise, use the algorithm 
associated with Theorem 9 to mark the convex hull of the extreme points, and 
compare those marked PEs with the original marked set of PEs. This gives the 
following result. 

COROLLARY 11. In a pyramid computer of  size n, in | n) time the set of PEs 
with a given label can decide whether or not they are convex. 

The next problem considered is that of enumerating the extreme points of an 
arbitrary set of base PEs. This extreme-point generation algorithm degrades by a 
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factor of | n/log log n) over the convexity-query algorithm just presented. This 
is counterintuitive in that the solution to the convexity-query problem can be 
obtained faster than generating the extreme points of a given set of base PEs. It 
should be noted that a | n)-time extreme-point generation algorithm is an 
open problem. 

The extreme-point generation algorithm that is presented in Theorem 12 follows 
a top-down divide-and-conquer solution that exploits the following fact about 
extreme points. A point is an extreme point if and only if it is the first point of 
the figure contacted as some line is moved toward the figure from infinity. By way 
of an example, suppose that for a given digital figure embedded in an n a/a x n 1/2 

grid, there exists a unique topmost, bottommost, leftmost, and rightmost extreme 
point (which may be detected by finding, the first point contacted as lines of slope 
0 come from the top and bottom, and lines of slope ~ come from the left and 
right, respectively). Then for any extreme point p of the figure that is between the 
topmost point and the leftmost point (in the ordering of extreme points), there 
must be a slope in the range (n- a/z, ha/Z) such that p is the first point of the figure 
contacted as a line with this slope comes toward the figure from the upper-left 
direction. If the line with slope (n-a/2 + nl/2)/2 is used to detect an extreme point 
between the topmost and leftmost extreme points, then 

(1) if the first point contacted is the topmost extreme point, then there are no 
extreme points of the figure between these two that will be detected by slopes 
in the range [(n-a/2 + na/2)/2, na/2), while 

(2) if the first point contacted is the leftmost extreme point, then there are no 
extreme points of the figure between these two that will be detected by slopes 
in the range (n-1/2, (n-t/2 + na/2)/2] ' while 

(3) if a first point contacted was.not the topmost or leftmost extreme point, then 
this first point (or, in the case of a multiple detection, the outermost points  
contacted) is an extreme point. 

These situations define a recursive search procedure that is used to detect extreme 
points. Notice that if a single new extreme point is found iia an interval, then this 
new extreme point is used to create two subintervals, both of which are searched 
for additional extreme points. These observations form the basis of the algorithm 
that follows. 

THEOREM 12. In a pyramid computer of size n, the extreme points of the base PEs 
with a given label can be enumerated in | a n/log log n) time. 

PROOF. The algorithm uses a top-down divide-and-conquer solution strategy. 
First an algorithm requiring O(log 2 n) time is given, and then we show how to 
modify it so as to reduce the running time to | / n/log log n). Let S be the set 
of base PEs with a given label. Observe that starting with an arbitrary line l far 
away from S and moving it in toward S (without changing its slope), then the 
element of S that 1 reaches first must be an extreme point of S. (If several elements 
of S are reached simultaneously, then only the two extreme points of this 
one-dimensional set of points are extreme points of S). Notice that a P E P  that is 
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Fig. 5. Detecting P as an extreme point. 

an extreme point of S, with P1 and P2 the preceding and succeeding extreme 
points, respectively, will be detected as an extreme point of S by a line 1 that has 
a slope between slope(PP1) and slope(PPz) and moves toward S from the concave 
side of the angle formed by PtPP2. (See Figure 5.) 

The set S of base PEs is embedded in an  n 1/2 X n a/2 grid. Therefore, the difference 
of slopes between any two distinct pairs of these grid points must be greater than 
1/n. Except for vertical lines, all lines through two PEs have slopes between - n  1/2 
and n ~/2, so by checking all multiples of 1In between these two values, all extreme 
points of S will be detected. In fact, while only | different slopes can actually 
occur, the algorithm will check | 3/2) slopes. This will cause no significant time 
penalty, and it is much simpler to consider just multiples of 1In. 

In | n) time, the apex determines the (not necessarily distinct) rightmost- 
bottommost, rightmost-topmost, topmost-rightmost, topmost-leftmost, leftmost- 
topmost, leftmost-bottommost, bottommost-leftmost, and bottommost-rightmost 
members of S. These are all extreme points of S, and they divide the perimeter of 
S into eight (or fewer) intervals. (Refer back to Figure 3.) Four of these intervals, 
e.g., between the topmost-rightmost and the topmost-leftmost points, contain no 
more extreme points, while the other four intervals, e.g., between the topmost- 
rightmost and the rightmost-topmost points, might contain more extreme points. 
For each of the four intervals that might contain more extreme points there is a 
corresponding interval of line slopes that may be used to locate the extreme points 
in the interval. For example, in the interval between the topmost-rightmost and 
the rightmost-topmost extreme points, the slopes are in the range of - n  -1/2 to 
- - n  1/2. From now on an interval means a pair of endpoint coordinates, along with 
the associated interval of slopes. Notice that when a slope m is being used, if each 
base PE computes the inner product of its (x, y) position with (l/m, 1), then the 
base PE with the greatest inner product is the one that would be reached first. (If 
the line approaches from the opposite side, then the base PE with the least inner 
product is the one reached first.) 

Initially, the apex of the pyramid is responsible for the four intervals that may 
contain more extreme points. The algorithm proceeds in stages, where a PE is 
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responsible for at most eight intervals during any stage. At the beginning of each 
stage, if the endpoints of an interval in a PE lie beneath the same child, then 
responsibility for that interval is passed on to that child (which may in turn pass 
it further down). Next, for each interval that a PE is responsible for, the PE creates 
a record corresponding to the interval's endpoints and the middle slope. In a 
top-down fashion, starting with the apex, copies of these records are then sent 
from every PE to each of its four children. Every PE receiving such a record 
ignores it if none of its descendants could be an extreme point as discovered by 
that slope, while otherwise it passes the record down to its children, along with 
any such records it may generate. Notice that no PE passes more than eight such 
records to any of its children. 

When these records reach the base, each element of S determines its inner 
product with the indicated slope and appends this to the record, along with the 
PE's coordinates, and passes this record back to its parent. This information is 
passed up through the pyramid, where when a parent receives multiple copies of 
an interval, it passes along only the one with the largest inner product. (If there 
are ties, then the two outermost extreme points among the ties are passed up.) 
When this information returns to the PE generating the request, several possibili- 
ties can occur. For example, if two new extreme points, say N 1 and N 2, were 
discovered between extreme points P1 and P2, as in Figure 6, then the original 
P1P2 interval is divided into three new intervals, namely, PaNt and N2P2, both 
of which have no more than half as many slopes as the original PIP2 interval, 
and N~N a which requires no further work. Other possibilities are treated similarly. 
Finally, each time an extreme point is found it is marked. 

Each stage of the algorithm takes | n) time. Since there are at most | 3/2) 
slopes, and each stage subdivides an interval's slopes by at least half, then there 
are at most | n 3/2) = | n) steps. When finished, all extreme points have 
been marked, and in an additional | n) time the extreme points can be 
enumerated by applying the algorithm of Lemma 7. 

The algorithm as described requires | 2 n) time. To reduce the time of the 
algorithm to | 2 n/log log n), have each PE that is responsible for an interval 
divide that interval's slopes into log2 n pieces, instead of two pieces. These records 
are sent down in serial fashion (i.e., pipelined), where no PE passes more than 
8 log 2 n records to its children. Each stage still takes | n) time, but because 
the intervals are being broken up faster only | n/log log n) stages are needed, 
Therefore, the algorithm finishes in the time indicated. [] 

N 1 
N 2 ~  P1 

; f f  I t j I 

P2 

Fig. 6. Discovering two new extreme points in an interval. 
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4. Multiple Figures or Labels�9 In this section we consider the problems of 
enumerating extreme points and deciding convexity for multiple sets of base PEs 
(i.e., multiple figures or labels). Since there may be | disjoint sets of base PEs, 
applying the algorithms of Section 3 to one set of PEs at a time would yield 
substantially suboptimal running times in the worst case. In order to determine 
convexity properties for multiple sets of base PEs efficiently, it appears that the 
algorithms must be designed to work on multiple sets simultaneously. Further, 
since f~(n 1/2) time is required if only the base mesh of the pyramid is used, faster 
algorithms must use both the parent-child and mesh links that are available in 
the pyramid. Finally, the algorithms must avoid having many figures trying to 
send data through the apex, for then the apex becomes a bottleneck. 

The running times of algorithms presented in this section are slower than the 
running times of algorithms from Section 3 that involved single figures. Neverthe- 
less, the results presented in this section are at most a logarithmic factor from 
optimal for the pyramid computer. The first result of this section describes an 
algorithm to mark and enumerate the extreme points for each of an arbitrary 
number of digitized figures. 

THEOREM 13. In a pyramid computer of size n with a digitized black~white picture 
in its base, in | 1/4 log n) time the extreme points of everyfigure can be enumerated. 

PROOF. The algorithm uses a bottom-up divide-and-conquer approach. For each 
figure, first enumerate the extreme points of the restriction of the figure to each of 
the four quadrants of the picture. For a figure in two or more quadrants, as in 
Figure 7, we need to determine which extreme points in the quadrant are not 
extreme points in the entire figure. These form an interval, e.g., in Figure 7 they 
are the ones between the dotted lines. To find these dotted lines, we use a binary 
search on the hull edges of the (at most four) pieces of the figure. For example, in 
Figure 7, the topmost dotted line can be found as follows. Find the leftmost and 
rightmost extreme points of the restriction of the figure to the right subimage. 
Using this information, find and send the top hull edge which is in the middle of 
these two extreme points in the enumeration ordering (as restricted to the right 
subimage) to the left subimage. Next, determine if the line collinear with this edge 
passes above the restriction of the figure to the left subimage, passes through or 

| �9 ~ �9 | 

�9 . � 9 1 4 9  �9 | 

�9 �9 ~ 1 4 9  �9 

| �9 �9 � 9 1 4 9  �9 ~ 

| ? 

| . . . . .  | 

�9 �9 �9 �9 ~ 

�9 �9 �9 , � 9  | 

Fig. 7. Not all extreme points of the subregions are extreme points of the region. 
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below it, or is tangent to it (and hence is the dotted line). In the first case, the 
edge and all hull edges preceding it in the counterclockwise ordering (with respect 
to the restriction of the figure to the right subimage) and eliminated from further 
consideration, while in the second case the edge and all hull edges following it are 
eliminated. 

Next, the left-hand piece sends over its middle edge, and a similar check 
eliminates half of the hull edges with respect to the restriction of the figure to the 
left subimage. A binary search for the top dotted line continues in a natural fashion, 
alternating between the halves. Eventually, either an edge on the dotted line is 
found, or else both pieces locate an extreme PE representing an extreme point 
such that the edge on one side is too high, and the edge on the other side is too 
low. In this case the dotted line passes through the PE. Once the intervals of 
extreme points between the dotted lines have been determined, it is easy to 
enumerate the remaining points using their old enumeration information. 

There may be O(n 1/2) figures merging pieces together, so for each step of the 
binary search, for all figures, simultaneously, we move an edge up to a level of 
size O(nl/2), across the level, and down to the piece on the other side. We use a 
sparse pyramid write, with p = �89 to move the data up. This sparse pyramid write 
can be used since, in any subsquare of size k, if a piece of data is being moved up, 
then it is in a figure crossing the border of the subsquare, and there are O(k 1/2) 
such figures. A similar operation moves the data down. The time obeys a 
recurrence equation of the form T(n) = T(n/4) + cn 1/4 log n, c a constant, which 
has a solution of T(n) = | 1/4 log n). []  

Suppose we know a priori that the digitized figures in the base of the pyramid 
are all convex. Then by incorporating the approach of Theorem 9, the time of the 
previous theorem for enumerating the extreme points of each figure can be reduced 
by a factor of | n). 

COROLLARY 14. In a pyramid computer of size n with a digitized picture in its base, 
suppose all the figures are convex. Then the extreme points of each figure can be 
enumerated in O(n 1/4) time. 

In Section 3 the algorithm associated with Corollary 11 can be used to decide 
whether or not a digitized figure is convex. This algorithm was designed by making 
a minor modification to the algorithm in Theorem 9 that enumerates the extreme 
points of a convex digitized figure. A similar modification can be made so that 
we can detect for each digitized figure whether or not it is convex. 

COROLLARY 15. In a pyramid computer of size n with a digitized picture in its base, 
in O(n 1/4) time every figure can decide whether or not it is convex. 

Suppose that we are given an arbitrary number of (not necessarily connected) 
labeled sets of PEs in the base of the pyramid. Further, suppose that we are 
interested in enumerating the extreme points of each labeled set of PEs. By a fairly 
straightforward wire-counting argument, it is easy to show that in the worst case, 
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| pieces of data may have to cross from the left half of the pyramid to the right 
half of the pyramid. Therefore, any pyramid-computer algorithm to solve this 
problem will require f~(n 1/2) time. Since a mesh algorithm to solve this problem 
in | 1/2) time is given in [-MS3], we simply ignore the pyramid structure above 
the base mesh, and use the mesh-computer algorithm to enumerate the extreme 
points of each set of base PEs. 

THEOREM 16. In a pyramid computer of size n, in | 1/2) optimal time we can 
enumerate the extreme points of the PEs with the same label, for all labels 
simultaneously. 

5. Applications of Extreme Points. In this section we solve problems by giving 
algorithms that make use of enumerated extreme points. These algorithms solve 
problems such as deciding if two sets of PEs are linearly separable, determining 
a smallest enclosing box, determining the smallest enclosing circle, and determining 
the diameter of a set of multiple sets of PEs. Additional applications of extreme 
points can be found in [MS3] and [To]. 

A set A of base PEs is linearly separable from a set B of base PEs if and only if 
there is a straight line in the plane such that all elements of A lie on one side of 
the line, and all elements of B lie on the other side. A well-known observation is 
that two sets are linearly separable if and only if their convex hulls are disjoint. 
Given the enumerated extreme points of two sets of (not necessarily distinct) base 
PEs, in | n) time it can be determined whether or not these two sets are linearly 
separable as follows. Mark the convex hull of A and the convex hull B such that 
a base PE has the value c~ if it is in the convex hull of A, and the value fl if it is 
in the convex hull of B. This takes | n) time by applying the algorithm 
associated with Theorem 10 once for A and a second time for B. All base PEs 
send to the apex a Boolean flag that is set to "true" if the PE is labeled e and fl, 
and that is set to "false" otherwise. As each PE in the pyramid receives the four 
Boolean values from its children, they are logically "or"ed together and passed 
up. In O(log n) the apex knows the answer to the query which it propagates to 
all PEs in the pyramid in O(log n) time. Hence the algorithm is complet e in | n) 
time. 

COROLLARY 17. In a pyramid computer of size n, suppose the extreme points 
corresponding to a set A of base PEs have been enumerated, as have the extreme 
points of a set B of base PEs. Then in | n) time it can be decided whether or 
not A is linearly separable from B. 

Given a metric d and a set S of base PEs, the diameter of S with respect to d is 
max{d(P,Q)[P, Q ~ S}. We assume d is one of the Iv metrics, such as the 11 (taxicab) 
metric, loo (chessboard) metric, or 12 (Euclidean) metric. The lp distance from (a, b) 
to (c, d) is ([a - c[ v + Ib - diP) lip for 1 < p N 0% and the l~o distance from (a, b) 
to (c, d) is max([a - c[, [b - d[). The metrics can be computed in unit time, and 
for them the diameter is max{d(P, Q)[P and Q are extreme points of S}. Metrics 
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other than the lp metrics could also be used, but a complete discussion of 
appropriate metrics is outside the focus of this paper. 

Given a set S of points in the plane, a smallest enclosing rectangle (also known 
as a smallest box) is a rectangle of least area containing S. (If rectangles of zero 
area contain S, then we want the smallest line segment containing S.) If S is finite, 
then it can be shown that a smallest enclosing rectangle must contain an extreme 
point of S on each side, and at least one side must contain two consecutive extreme 
points [FS]. The smallest enclosing circle is the circle of least area containing S. 
Smallest enclosing rectangles and smallest enclosing circles appear in [FS], I-MS3], 
and [To]. 

THEOREM 18. In a pyramid computer of size n, suppose the extreme points of a 
labeled set of PEs have been marked. Then in O(n 1/6) time the diameter (measured 
with any given Ip metric), smallest enclosing circle, and a smallest enclosing rectangle 
of this set of PEs can be determined. 

PROOF. We use the number-theoretic fact that for a set of lattice points in a 
square of size k there are O(k 1/3) extreme points [VK]. Using a sparse pyramid 
write, in ~)(n 1/6) time move the extreme points to a level in the pyramid that 
consists of a mesh of size | 

To determine the diameter, let E be the set of extreme points and let d compute 
the given metric. Let g be defined for e ~ E by 9(e) = max(d(e, x)[x ~ E}. So, 9(e) 
is the maximum distance from e to any other labeled PE, and g can be computed 
in ~(n 1/6) time by reducing d with respect to maximum, as mentioned in Section 
2.6. The diameter of the set is just max{g(e)le ~ E}, which can be computed in 
| n) time once g has been computed. 

A smallest enclosing rectangle can be found in a similar manner. For each edge, 
assume an orientation of the points that has this edge as the southernmost edge 
parallel to the x-axis, and use reduction to find the northernmost, westernmost, 
and easternmost points. For each hull edge, these three points determine the 
minimum-area enclosing rectangle that includes the edge. (See Figure 8.) A smallest 

E 

/ 

Fig. 8. Determining a smallest enclosing box for hull edge XY. 



Computing Convexity Properties of Images on a Pyramid Computer 677 

enclosing rectangle of the entire set is found by taking a minimum over these 
rectangles. 

The smallest enclosing circle is the largest circle either passing through three of 
the extreme points or having two of the extreme points as a diameter [MS3]. 
Thus the smallest enclosing circle can be found by using a reduction of a function 
over a triple cross product of the extreme points,which too can be done in t~)(n 1/6) 
time, as described in Section 2.6. []  

Much work in digital image processing and pattern recognition has been spent 
on the fundamental problem of deciding whether a digitized figure could have 
arisen as the digitization of a straight line segment [R1], [R2], IRK], [K2], [K3], 
[KR1], [G]. Our next theorem proves that a pyramid computer of size n can 
determine in | n) time whether or not a digitized figure could have arisen as 
the digitization of a straight line segment. The theorem will combine a result about 
digital arcs [KR1] with Corollary 11 in order to arrive at this asymptotically 
optimal algorithm. 

Digitization can make the detection of even basic properties of a figure nontrivial 
to determine. The digitization scheme that we use is the standard grid-intersection 
scheme [R3] for digitizing arcs. (For a further discussion of digitization schemes, 
see [R2], [RK],  [G], [K1] - [K3] ,  [KR1], [KR2],  [KS], and [DS]). Given a 
coordinate grid superimposed on an arc A, then as we traverse A we cross a 
succession of grid lines. Whenever A crosses a grid line, the PE associated with 
the integer lattice point nearest to the crossing line becomes a part of A's 
digitization. In the case where A crosses a grid line halfway between two lattice 
points, the tie is resolved by choosing the PE associated with the lattice point that 
lies to the right of A (in the sense that we are traversing A) to be a member of the 
digitization of A. Define PEs(i _ 1,j _+ 1) to be the 8-neighbors of PE(i,j), assuming 
they exist. Given a set S of PEs, and two PEs P, Q e S, P and Q are defined to be 
8-connected if and only if there exists a finite connected path of 8-neighbors in S 
from P to Q. A set S of PEs is an 8-connected set if and only if for all PEs P, Q e S, P 
and Q are 8-connected. 

An 8-connected set D of two or more PEs is a digital arc if all but two of the 
PEs in D have exactly two 8-neighbors in D, and the exceptional two, called the 
endpoints, each have exactly one 8-neighbor in D [KR1]. Given two lattice points 
p and q, corresponding to two PEs in D, the line segment ~ is said to lie near D 
if, for any point (x, y) of ~-~, (x, y) e ~2, there exists a lattice point (a, b) correspond- 
ing to a PE(a ,b)eD such that m a x { ] a -  x[, Ib - Y l }  < 1. O is said to have the 
chord property if, for every p, q e D, the line segment ~ lies near D [R1]. 

LEMMA 19 [R1]. A digitized arc has the chord property if and only if it is the 
digitization of a straight line segment. 

LEMMA 20 [KR1]. A set of processors S has the chord property if and only if S is 
convex. 

From Lemmas 19 and 20, we see that D could have arisen as the digitization 
of a straight line segment if and only if it is a convex digitized arc. By the result 
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in [KR1], this implies that a convex set D of two or more PEs is the digitization 
of a straight line segment if and only if 

(1) all but two of the PEs of D have exactly two 8-neighbors in D, and the 
exceptional two have exactly one 8-neighbor in D, and 

(2) O is 8-connected. 

Further, we can show that if D is convex and satisfies property (1), then it 
satisfies property (2) as well. (This is false for nonconvex sets, as can be seen 
by considering a disconnected set consisting of digitizations of a circle and a 
line). Thus a convex set D of two or more PEs is the digitization of a straight 
line if and only if it satisfied property (1). 

This characterization yields an efficient algorithm to determine whether or 
not a set D of lattice points could have arisen as the digitization of a straight 
line segment. (It is assumed that D corresponds to a set of labeled PEs). From 
Corollary 11, it can be decided in | n) time whether or not D is convex. 
If D is not convex, then the algorithm halts and it is known that D could not 
have arisen as the digitization of a straight line segment, while otherwise the 
algorithm continues in an effort to determine whether or not D is a digital arc 
(property (1)). To determine if property (1) holds, each base PE that is a member 
of D determines in | time the number of its 8-neighbors that are members 
of D. By passing these results up to the apex and combining them at each 
level, after | n) time the apex will know whether or not property (1) holds, 
and hence knows whether D could have arisen as the digitization of a straight 
line segment. This gives the following. 

THEOREM 21. Given a digitized black/white picture stored in the base of a pyramid 
computer of size n, in O(log n) time it can be decided whether or not the set of black 
pixels could have arisen as the digitization of a straight line segment. 

Corollary 15 gives an algorithm to decide whether or not each of an arbitrary 
number of figures in a digitized picture is convex in | 1/4) time. Combining the 
algorithms associated with Lemma 1, Corollary 15, and Theorem 21, we obtain 
the following. 

COROLLARY 22. In a pyramid computer of size n, if there are multiple sets, then 
the ones that could have arisen as the digitization of straight line segments can 
be determined in O(n 1/4) time. 

6. Smaller Pyramids. There are at least three ways we could consider using 
smaller pyramids for obtaining geometric information about image data. In 
the first, suppose it is known that no figure has an 11 diameter greater than 
D. Then a pyramid computer of size n can be conceptually partitioned into 
subpyramids of size | where problems such as labeling or marking extreme 
points are solved in the subpyramids, exchanging data as needed between neigh- 
boring subpyramids. This would result in faster algorithms, replace "n"  with " D  2' '  
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in the time bounds. This method has been used in pyramid algorithms appearing 
in [Ta2] and [St2]. 

A second way to use small pyramids is to consider a picture of size N and 
a pyramid of size n with n < N. The pyramid could work on subsquares of 
size n, gluing results together as necessary. While this is often required in 
practice, and efficient gluing is not always easy, we do not consider this class 
of smaller pyramids further. 

A third possibility is to consider again a picture of size N and a pyramid 
of size n, with n _< N, but with a slight change in the pyramid. (For convenience, 
assume that N = 4in, for i > 0 an integer.) This modified pyramid computer 
(modified pyramid) of size n has PEs with wordlengths of size | N). Each of 
the n base PEs has O(N/n) words of memory, while PEs above the base need 
only 0(1) words of memory. The input to the algorithm consists of a picture 
of size N that is partitioned in a natural fashion into subsquares so that each 
base PE is given a subsquare of size N/n. 

Many of the multiple figure algorithms presented in this paper assume that 
the figures (connected components) have been labeled. For a picture of size n 
stored 1 pixel per base PE on a pyramid of size n, [MS4] gives a | 
labeling algorithm, as mentioned in Section 2.3. Before discussing convexity 
algorithms for digitized pictures on a modified pyramid, we first discuss some 
fundamental results related to labeling connected components of a digitized 
black/white picture of size N on a modified pyramid of size n. 

THEOREM 23. Given a digitized black/white picture of size N stored in the base 
of a modified pyramid computer of size n, n < N, in | + N 1/4) time the 
connected components can be labeled. 

PROOF. The component-labeling algorithm in [MS4] works by moving data 
up the pyramid, where PEs at level i need | i) time to perform their calculations. 
In a modified pyramid, the base PEs simulate the bottom log 4 N/n levels. Each 
base PE must simulate (N/n)~4 i PEs at level i, 0 < i <  log4 N/n, so the time 
required to perform computations at level i is | Therefore, the base PEs 
finish their simulations in | time. The higher PEs in [MS4] need |  1/4) 
time, so the total time is as claimed. [] 

Given a digitized black/white picture of size N distributed | pixels per 
base PE on a modified pyramid of size n, then in order to minimize the running 
time of the component-labeling algorithm, the relationship between n and N 
should be n = f~(N3/4). This gives the following. 

COROLLARY 24. To within a multiplicative factor, on a picture of size N a modified 
pyramid computer of size N 3/4 can perform component labeling as fast as a pyramid 
computer of size N. 

COROLLARY 25. For n <_ N 3/4, a modified pyramid computer of size n can label 
components with linear speed-up on a picture of size N. 
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For algorithms presented in this paper that consist of straightforward top-down 
and bottom-up divide-and-conquer strategies, modified pyramid algorithms may 
be patterned after the component-labeling algorithm associated with Theorem 23. 
The crucial technique is to let the base of the modified pyramid simulate the 
bottom log 4 N/n levels of the (unmodified) pyramid. For example, for the | n)- 
time pyramid-computer algorithms that are presented in this paper, the base level 
simulation technique just described will yield | + log n)-time algorithms on 
a modified pyramid of size n for input of size N. This comes from letting each 
base processor simulate (N/n)/4 i PEs at level i, 0 ___ i _< log 4 N/n, where processors 
at level i need | time to perform their calculations, and higher PEs need | n) 
time to complete the operation. 

For other algorithms presented in this paper, a combination of serial and 
parallel (pyramid) algorithms may be more efficient than a base-level simula- 
tion. A good example is the algorithm associated with Theorem 12, which 
enumerates the extreme points of an arbitrary set of lattice points. In order to 
enumerate the extreme points of a set of lattice points of size N on a modified 
pyramid of size n, we could first let each base processor determine the extreme 
points of its subset, simultaneously for all base processors, and then apply the 
rest of the pyramid algorithm in a natural fashion. This would give a running 
time of | + log 2 n/log log n), since the extreme points of a set of lattice 
points of size k can be enumerated in | time on a serial machine. 

Finally, there are algorithms in this paper that rely on data-movement opera- 
tions such as the (sparse) pyramid write and the (extended) reduction Of a function. 
A discussion of their implementation on a modified pyramid is outside the focus 
of this paper, but the reader might wish to consult [MS4] for insight into extending 
these operations, and hence the algorithms that rely on these operations, to a 
modified pyramid. 

7. Related Machine Models. There are several machine models that are related 
to the pyramid computer. One is the 4-ary (quad) tree, i.e.,-a pyramid without the 
nearest-neighbor links. Like the pyramid, the quadtree has a logarithmic com- 
munication diameter, but it is easy to show that the apex of a quadtree often acts 
as a bottleneck. For example, a simple wire-counting argument shows that a 
quadtree needs ~(n) time to sort data and ~(n 1/2) time to label components or 
determine nearest neighbors, in the worst case. Further, these time bounds remain 
even if higher PEs have additional memory, as suggested in [AS]. It should be 
noted that algorithms attaining these lower bounds are quite straightforward. 

The mesh computer also has shortcomings due to the fact that is communica- 
tion diameter is | This shows that ~(n 1/2) time is required for all of the 
problems in this paper. Mesh algorithms solving these problems in this time 
appear in [NS] and [MS3]. 

A more interesting model is known as orthogonal trees or mesh-of-trees lUll. 
This model has a base mesh of size n augmented with a tree of processors over 
each row and over each column (for a total of 3n - 2n lIE PEs), with these trees 
being disjoint except at their leaves. In this model | 1/a logan) bits can be 
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moved from the leftmost log n columns to the rightmost log n columns in 
| n) time. This is a significant improvement over the pyramid bound in 
Lemma 2, though not enough to permit polylogarithmic time sorting. The 
mesh-of-trees has not received much consideration as an image-processing ma- 
chine, but it can perform all of the problems considered here in polylogarithmic 
time [MS6]. 

The mesh-of-trees does, however, have some drawbacks. The pyramid com- 
puter can be layed out on a chip using area proportional to that required by 
the base mesh [D1], but the mesh-of-trees needs a factor of log 2 n more area 
[U1]. Further, the pyramid computer has close ties to other objects of interest 
to research in image processing, including (region) quadtrees and animal optic 
systems. 

Additional models that solve all of the geometric problems mentioned in 
this paper in polylogarithmic time are the hypercube [MS5], the reconfigurable 
mesh [MPRS1], [MPRS2], the PRAM, and some related pyramid models that 
have been proposed in I-St3]. 

8. Final Remarks. Our results indicate a progression of complexity in finding 
extreme points of convex hulls. Single convex figures are the most constrained, 
enabling a bottom-up approach to eliminate points from further consideration 
rapidly. Next come arbitrary single figures and sets of PEs with a given label. 
Multiple figures require much more data movement than single figures, but 
far less data movement than PEs with arbitrary labels. It is also interesting to 
note that, at least for our algorithms, it is sometimes slightly easier to decide 
convexity than it is to find the extreme points. 

It has been shown in [MS6] that a pyramid algorithm designed for a single 
figure can be implemented on a variety of architectures to yield efficient solutions 
to the same problem for multiple figures. Therefore, designing efficient single-figure 
pyramid algorithms, such as those presented in Section 3, are important for a 
variety of reasons. Many of the results presented in this paper are optimal, and 
we believe all are near optimal for the pyramid computer. Since each problem can 
have inputs that require combining information at opposite edges of the base, 
all algorithms must have a worst-case time of ~(log n). Therefore, Lemma 7, 
Theorem 9, Corollary 11, Theorem 10, and Corollary 17 are all optimal. The only 
algorithms for a single object that may nonoptimal are Theorem 18 and the 
| z n)/log log n)-time algorithm to enumerate the extreme points of a single 
arbitrary set of PEs. In fact, as mentioned previously, a | n)-time algorithm 
to solve this problem is an interesting open problem. For multiple figures or sets 
of processors, all of the algorithms presented in this paper are either optimal or 
within a polylogarithmic factor of optimal. It appears that for these problems 
lower bound arguments that are stronger than the bit-counting argument of 
Lemma 2 are needed for proofs of optimality. 

Despite the optimality of our results, there are some situations that arise in 
practice for which faster algorithms can be developed. One such situation is 
when there is a bound on the number of different labels or figures. This is 
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obvious from a comparison of the results of Sections 3 and 4, and there are various 
ways we can interpolate those results. For example, suppose it is known that 
there are no more than n r labels, where 0 < c < 1. By slightly modifying the 
algorithm in Theorem 13 in |  c/2 log n) time we can enumerate the extreme 
points for all labels. 
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