
Algorithmica (1991) 6:658-684 Algorithmica
�9 1991 Springer-Verlag New York Inc.

Computing Convexity Properties of Images on a
Pyramid Computer 1

Russ Mil ler 2 and Quent in F. S tout 3

Abstract. We present efficient parallel algorithms for using a pyramid computer to determine
convexity properties of digitized black/white pictures and labeled figures. Algorithms are presented for
deciding convexity, identifying extreme points of convex hulls, and using extreme points in a variety
of fashions. For a pyramid computer with a base of n simple processing elements arranged in an
n 1/a x n 1/2 square, the running times of the algorithms range from | n) to find the extreme points
of a convex figure in a digitized picture, to O(n U6) to find the diameter of a labeled figure, | TM log n)
to find the extreme points of every figure in a digitized picture, to | l/a) to find the extreme points
of every labeled set of processing elements. Our results show that the pyramid computer can be used
to obtain efficient solutions to nontrivial problems in image analysis. We also show the sensitivity of
efficient pyramid-computer algorithms to the rate at which essential data can be compressed.
Finally, we show that a wide variety of techniques are needed to make full and efficient use of the
pyramid architecture.

Key Words. Pyramid computer, Convexity, Digitized pictures, Digital geometry, Image processing,
Parallel computing, Parallel algorithms.

1. Introduction. Pyramid- l ike para l le l compute r s have long been p r o p o s e d for
per forming h igh-speed low-level image process ing [D 1] - [D 3] , [R3] , [S t l] , [St2],
[T a K] , [T a l] , [Ta2] , [U h l] , [Uh2] and several are under cons t ruc t ion [BV],
[C F L S] , [C M] , [F r] , [Sc], [SHBV] , [Ta2] . The p y r a m i d has a s imple geomet ry
tha t adap t s na tura l ly to many types of problems, and which may have ties to

h u m a n vision processing. Fu r the rmore , the p y r a m i d can be p ro jec ted on to a
regular pa t t e rn in the plane, which makes it ideal for VLSI implemen ta t ion I-D2],
and provides the poss ibi l i ty of cons t ruc t ing py ramids with t h o u s a n d s or mil l ions

of process ing elements.
A p y r a m i d compu te r can be viewed as being cons t ruc ted from layers of mesh

computers . A mesh computer (mesh) of size n is a col lect ion of n s imple processing
elements (PEs) a r ranged in an n 1/z • n 1/2 grid, where each PE, except those a long
the border , is connec ted to its four nearest neighbors . A pyramid computer
(pyramid) of size n has a base which is a mesh of size n. The base is called the

1 This research was partially supported by National Science Foundation Grants MCS-83-01019,
DCR-8507851, DCR-8608640, IRI-8800514 and an Incentives for Excellence Award from the Digital
Equipment Corporation.
2 Department of Computer Science, 226 Bell Hall, State University of New York, Buffalo, NY 14260,
USA. cmail: miller@cs.buffalo.edu.
3 Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor,
MI 48109-2122, USA. email: qstout@eecs.umich.edu.

Received November 29, 1988; revised July 13, 1989. Communicated by Frank Dehne.

Computing Convexity Properties of Images on a Pyramid Computer 659

level 2

level 1

base level 0

Fig. 1. Pyramid computer of size 16.

zeroth level. The level above the base, level 1, is a mesh of size n/4, and so on to
the apex at level log 4 n. Except for PEs along the boundary, each PE at level k
is connected to its four mesh neighbors at level k, four children at level k - 1, and
parent at level k + 1. (See Figure 1.) This model is the same as that used in [D2],
[MS4], [St2], and [Ta3]. (A complete description of a pyramid computer is given
in Section 2.)

A serial computer operating on n pieces of data must take f~(n) time to solve
the problems considered in this paper, since all the data needs to be examined.
For problems involving images, a mesh is a natural data structure, which means
that the mesh computer is a logical alternative to a serial machine for solving the
problems considered in this paper. Notice that for a mesh computer of size n, any
algorithm that requires global communication of data must take f2(n l/z) time.
While algorithms that run in | 1/2) time are a significant improvement over
f2(n)-time serial algorithms, the relatively long communication diameter of the
mesh, with respect to other parallel architectures, has been a major criticism of
that architecture.

The pyramid computer's parent-child links provide the possibility of | n)
algorithms, and some simple problems, such as finding a maximum and computing
parity, can be solved in this time. However, many problems cannot be solved in
O(log n) time on the pyramid. For example, [St2] showed that sorting requires
fl(n l/z) time on a pyramid of size n. Since | sorting is possible on a
mesh [ThK], the pyramid structure does not need to be utilized in order to obtain
a | pyramid-computer sorting algorithm. Sorting requires ~(n 1/2) time
because of the large amount of data movement required, while finding a maximum
value can be completed in | n) time by rapidly eliminating values from
consideration and moving the remaining values up the pyramid. This extreme
sensitivity to the amount of data movement makes the pyramid a rather unique
parallel architecture.

In this paper we present algorithms to solve a variety of problems, all of which
deal with convexity. It will become clear that the differences in the running times
of the algorithms are related to the rate at which data can be eliminated from

660 R. Miller and Q. F. Stout

further consideration during the course of an algorithm. Convexity is a funda-
mental property of figures, and convexity algorithms for meshes have been widely
studied (see [DR], [KR1], [MS3], [Ski), but the only previous pyramid algorithms
we know of are preliminary (conference) announcements of the results presented
in this paper [MS1]-[MS3].

For an arbitrary black figure F on a white background, the extreme points
representing the convex hull of F (i.e., the vertices of the smallest enclosing convex
polygon of F) often give a satisfactory compressed approximation of the figure.
These extreme points can also be used to obtain important geometric classifica-
tions of the figure, such as determining a smallest enclosing box, smallest enclosing
circle, and the external diameter of the figure. Efficient pyramid-computer algo-
rithms that generate and use the extreme points of a single or multiple figures are
given in this paper.

In Section 2 we give formal definitions of the pyramid computer, define the
types of input that are considered, define convexity and related properties, and
define some fundamental data movement operations that are used in the algo-
rithms. Section 3 contains algorithms for deciding convexity and finding extreme
points of single figures or sets of PEs with the same label, and Section 4 contains
algorithms for determining convexity properties of multiple figures or sets of labels.
Section 5 contains some algorithms that make use of extreme points to determine
properties of sets, such as linear separability, diameter, smallest enclosing box,
smallest enclosing circle, and so forth. Section 6 considers smaller pyramids for
obtaining geometric information about image data, and Section 7 discusses related
machine models such as the 4-ary (quad) tree, mesh-of-trees, and hypercube. In
Section 8 we conclude with observations about optimality and some situations in
which the results can be improved.

2. Definitions. In this section we define standard notation, formally define the
mesh and pyramid computers, specify the forms of input that our problems use,
define convexity and related properties, and discuss some fundamental data
movement operations for the pyramid computer.

2.1. Notation. We use | to mean "order exactly," O to mean "order at most,"
and f~ to mean "order at least." That is, given nonnegative functions f and g
defined on the positive integers, we write f = | if and only if there are positive
constants C1, C2, and a positive integer N such that Clg(n)<_ f (n)< Czg(n),
whenever n > N. We write f = O(g) if and only if there is a positive constant C
and an integer N such that f(n) <_ Cg(n), for all n > N, and we write f = fl(g) if
and only if there is a positive constant C and an integer N such that Cg(n) < f(n),
for all n > N.

2.2. Models of Computation. The mesh computer (mesh) of size n is a machine
with n processing elements (PEs) arranged in a square lattice. To simplify exposi-
tion, we assume n = 4 c for some integer c. For all i, j ~ [0, . . . , n 1/2 - 1], PE(i,j),
representing the PE in row i and column j, is connected by a distinct bidirectional
anit-time communication link to each of the following four neighbors that exist:

Computing Convexity Properties of Images on a Pyramid Computer 661

PE(i,j + 1), PE(i,j - 1), PE(i + 1,j), and PE(i - 1,j). Each PE has a fixed number
of registers (words), each of size O(log n). In one unit of time, each PE can perform
standard arithmetic and Boolean operations on the contents of its registers and
can also send and receive a word of data from each of its neighbors. Each PE
contains its row and column indices, as well as a unique identification register,
the contents of which is initialized to the concatenation of the PE's row and
column indices.

A pyramid computer (pyramid) of size n is a machine that can be viewed as a
full, rooted, 4-ary tree of height log4 n, with additional horizontal Hnks so that
each horizontal level is a mesh. (See Figure 1.) Another convenient view of the
pyramid is as a tapering array of mesh computers. A pyramid computer of size n
has at its base a mesh of size n, and a total of ~-n - �89 PEs. The levels are numbered
so that the base is level 0 and the apex is level log 4 n. A P E at level i is connected
by a distinct bidirectional unit-time communication link to each of the following
nine neighbors that exist: four adjacent PEs of the mesh at level i, four children
at level i - 1, and a parent at level i + 1. Similar to the mesh, it is assumed that
each PE has a fixed number of words, each of size O(log n), and that all arithmetic,
Boolean, and communication operations take unit time. Further, each PE contains
registers with its row, column, and level coordinates, the concatenation of which
provides a unique index (label) for the PE. These registers can be initialized in
| n) time if necessary.

2.3. Input Data. There are two different forms the data can take. One form of
input consists of each base PE containing a label, where there are no assumptions
made concerning the origin of the labels. In particular, the set of PEs with a given
label may be disconnected. For example, classification labels give rise to such input
[To].

The other form of input consists of an n ~/2 x n 1/2 black/white picture M = {ml,j}
stored in the base of the pyramid so that base PE(i,j) stores pixel mi, j. Two black
pixels are called 4-neighbors (neighbors) if they are stored in PEs sharing a
communication link, and are connected if there is a path of neighboring black
pixels between them. This divides the black pixels i n to (maximal) connected
components, which we call figures. (We could also define figures and connected
in terms of 8-neighbors, where a black pixel stored in PE(i l , j l) is an 8-neiohbor
of a black pixel stored in P E (i z , j 2) if max([i a - i 2 [, j 1 - J 2 [) --= 1. It should be
noted that all of the results presented in this paper work with trivial modifications
for this definition as well.) For many of the problems considered in this paper we
assume that the figures have been labeled, which means that each black pixel has
been assigned a label, where two black pixels are assigned the same label if and
only if they are in the same figure. The following result was presented in [MS4]
for using a pyramid computer to label the figures of a digitized black/white picture,
and we make frequent use of it throughout the paper.

LEMMA 1 [-MS4]. Given an arbitrary black~white picture stored one pixel per PE
in the base of a pyramid computer of size n, the figures (connected components)
can be labeled in | 1/4) time.

662 R. Miller and Q. F. Stout

2.4. Lower Bounds. Notice that the pyramid has a communication diameter of
| n), meaning that any two PEs can exchange messages in O(log n) time, and
some pairs require ~(log n) time. This sets a lower bound on any problem which
may require information to be exchanged between arbitrary processors. For very
simple problems, such as counting the number of black pixels or locating the
northernmost black pixel, it is quite easy to construct standard bottom-up
collection, top-down distribution algorithms that finish in | n) time.

As noted earlier, sorting provides an example of a different class of problems
for which the extensive data movement required forces the time to be f~(nl/Z). For
many of the problems considered in this paper, however, neither of these bounds
is appropriate. The logarithmic bound is still true, but overly optimistic, while the
n ~/2 bound does not apply because not as much data needs to be moved. We show
that by exploiting properties of image data, many geometric problems can be
solved in about n 1/4 time. In some cases we can achieve O(na/6)-time solutions,
and for a few problems we achieve solutions that run in polylooarithmic time, i.e.,
O(log k n) time, for some integer k > 0. A lower bound more appropriate to these
situations is contained in the following theorem due to [MS4].

LEMMA 2 [MS4]. In a pyramid computer of size n, suppose that there are B
bits in the first column of the base, 1 <_ B <_ Cn 1/2 log(n), for some constant C > O,
and suppose that these are to be moved to the last column of the base. Then
f~(log(n) + [B/log(n)] 1/2) time is required.

An example of where Lemma 2 can be applied follows. In [MS4] it is shown that
labeling the figures of an arbitrary black/white picture stored in the base of a
pyramid of size n may require O(n l/z) bits to be sent from the leftmost column in
the base to the rightmost column of the base. Therefore, from Lemma 2, it is
known that f~(nl/4/log 1/2 n) time is required to label the base picture.

2.5. Convexity. Throughout this paper we identify the base PE(i,j) with the
integer lattice point (i,j). A set of base PEs is said to be convex if and only if the
corresponding set of integer lattice points is convex, i.e., the smallest convex
polygon containing them contains no other integer lattice points. This is the proper
notion of convexity for integer lattice points, but it does have the annoying
property that some disconnected sets of points, such as {(1, 1), (3, 4)}, are convex.
The reader might wish to consult [KR1] and [MS3] for further discussions of
convexity and digitized data. Some uses of convexity are illustrated in [MS3] and
[To].

Given a set S of base PEs, the convex hull of S, denoted hull(S), is the smallest
convex set of PEs containing S. As for standard, planar convexity, the convex hull
of S is the intersection of all convex sets containing S. A P E P ~ S is an extreme
point of S if P ~ hull(S - P). The extreme points of S are the corners of the smallest
convex polygon containing S. We say that we have marked the extreme points of
S if every PE P in the base of the pyramid has a Boolean variable that is true if
and only if P is an extreme point of S. We say that we have enumerated the extreme
points of S if we have marked the extreme points of S, and each extreme point has

Computing Convexity Properties of Images on a Pyramid Computer 663

/

/ 6 - '

Fig. 2. Enumerated extreme points of a set.

been assigned a number as follows. The rightmost extreme point has the number
1 (if there are two rightmost extreme points then the lower one is number 1), and
the numbering continues around the extreme points in counterclockwise order.
Each extreme point must know its number, the total number of extreme points,
and the locations of the preceding and following extreme points. (See Figure 2).

2.6. Data-Movement Operations. Efficient parallel algorithms for regular archi-
tectures often rely on a variety of fundamental operations to move data around
[M]. Several such operations were introduced for the pyramid computer in [MS4],
one of which is the pyramid write. The pyramid write is used to move data up
the pyramid from a given mesh level to a desired mesh level that contains enough
PEs to hold all of the distinct pieces of data being sent. For the algorithms in this
paper we need only a restricted version of this operation.

LEMMA 3 [MS4]. Given a pyramid computer of size n, f ix constants p and C, where
0 < C and 0 < p < 1. Suppose there are no more than Cn p PEs in the base that have
a piece of data to be sent to level [log 4 n ~ -P/C]. (This level is the highest one with
at least Cn p PEs.) The pyramid write will move the data to its proper location in
O(n p/2 log 1/2 n) time.

We emphasize that Lemma 3 considers p and C fixed, and only considers n to
vary. This is all we need for our results, but in other circumstances we may need
to determine completely the dependence on p and C, as well as on n.

We now introduce a closely related data-movement operation, the sparse
pyramid write.

PROPOSITION 4. Given a pyramid computer of size n, f ix constants p and C, where
0 < C and 0 < p < 1. Suppose there are no more than Cn p PEs in the base that have
a piece of data to be sent to level/log4 n a -P/C]. Further, in each base subsquare o f

664 R. Miller and Q. F. Stout

size k, 0 <_ k <_ n, assume that there are no more than Ck v PEs sending data. Then
a sparse pyramid write will move the data to level [log4 n I -v /CJ in | p/2) time.

PROOF. To perform a sparse pyramid write, fix p and C, and in parallel perform
a sparse pyramid write in each quadrant. The level that the data is written to is
either the same as the desired final level, or else it is one level below. Merge the
data together using a mesh-computer operation such as random access read
[MS3], and move up one level if necessary. For fixed p and C, the time obeys an
equation of the form T(n) = T(n/4) + dn p/2, which has a solution of | []

Our algorithms use one additional data-movement operation from [MS4],
called reducing a function. Given sets A and B (which in this paper will always
be the same), given a function f mapping A x B into some set C, and given an
associative, commutative operation �9 on C, let g be defined on A by g(a) =
f (a , bt)* f (a , b2) * " " * f (a , bk), where B = {b t , . . . , bk}. g is called the reduction
o f f . For example, if A and B are sets of points in the plane, if C is the set of real
numbers, if f computes the distance between points, and if �9 is the maximum
operation, then g(a) is the farthest distance from a to any point in B.

LEMMA 5 [MS4]. Suppose that f and * can be computed in unit time, and that A
and B are stored one itern per P E at level l with m PEs, 1 < m <<_ n t/2. The operation
of reducing a function will compute g in | t/2) time, storing g(a) in the PE at level

l storing a.

We also need to use an extended reduction operation for the situation where
there are three sets A1, A2, and A3, a function f mapping At x A 2 x A3 into C,
and an associative commutative operation �9 on C. The reduction of f is the
function g mapping A1 to C given by

9(a) = , f (a , x, y).
(x , y)~A2 • A3

This operation is presented in [M].

LEMMA 6 [M]. Suppose that f and * can be computed in unit time, and that A 1,
A2, and A 3 are stored one item per PE at a level with m PEs, 1 <_ m <_ n t/3. Then
the reduction o f f can be computed in | t/2) time.

3. Single Figures or Labels. In this section we consider input at the base of the
pyramid that consists of a single digitized black figure on a white background (i.e.,
there is only one connected black component in the picture) or a figure with a
single label (i.e., all base PEs that contain a label, contain the same label). Pyramid
solutions to problems involving single figures are important for a variety of
reasons, including the recent result presented in [MS6] which shows how to
transport a single figure pyramid algorithm to a variety of architectures, including

Computing Convexity Properties of Images on a Pyramid Computer 665

the pyramid, mesh, hypercube, mesh-of-trees, and several bus-augmented mesh
machines, and solve the corresponding problem for multiple figures. The approach
used in [MS6] is to create a simulated essential pyramid over every figure and then
use these to run the single-figure algorithms simultaneously. For a variety of
architectures, it is shown in [MS6] that the multiple-figure version will run nearly
as fast as the single-figure pyramid-computer version.

Before solving some general convexity problems for single figures, we first prove
a lemma that will be quite useful. The lemma shows that once the extreme points
of a figure have been marked, they can be enumerated in | n) time on a
pyramid of size n.

LEMMA 7. In a pyramid computer of size n, suppose the extreme points of a set S
of base PEs have been marked. Then in | n) time the pyramid can enumerate the
extreme points of S.

PROOF. The algorithm requires that the processors determine certain basic
information, as follows:

1. By using a bottom-up report, followed by a top-down broadcast operation, in
(2 log4 n) steps all PEs in the pyramid computer can know the identity of the
base processor that contains the extreme point that will be labeled 1. This may
be accomplished as follows. Pass data up the pyramid so that at step i, 1 < i _<
log 4 n, each PE at level i will know the identity of the extreme point in the
base beneath it that would be labeled 1 if the extreme points of S were restricted
to the subset of S in the base beneath it. After (log 4 n) steps, the apex of the
pyramid knows the identity of the extreme point in the subset of S beneath it
(i.e., in the entire base) that is to be labeled 1. This information is broadcast to
all PEs in the pyramid in (log 4 n) steps by a straightforward top-down broadcast
operation that is initiated by the apex.

2. In a similar fashion, in (2 log4 n) steps all PEs can simultaneously determine
the total number of extreme points of S.

3. Using a bottom-up report procedure, in (log 4 n) steps the apex of the pyramid
can know the locations of the rightmost-bottommost, rightmost-topmost,
topmost-rightmost, topmost-leftmost, leftmost-topmost, leftmost-bottommost,
bottommost-leftmost, and bottommost-rightmost extreme point of S. These
eight (not necessarily distinct) extreme points partition the extreme points of S
into eight "triangular regions," as shown in Figure 3.

Fig. 3. The eight "triangular regions."

666 R. Miller and Q. F. Stout

4. In (2 log 4 n) steps, every PE in the pyramid can know the total numbers of
extreme points of S in the base under it that are in each of these eight regions.
Notice that the boundaries of these (possibly degenerate) triangular regions
may be generated in unit-time by every PE of the pyramid once they are
informed as to the locations of these eight points.

Once this information has been determined, the extreme points of S can be
labeled in | n) steps by having the apex recursively distribute ranges of the
numbers to its children for each of the eight regions. Distributing the proper
numbers to the children is straightforward since the extreme points represent a
convex polygon. Notice that within each region, this is a prefix computation.

It only remains to show that each base PE containing an extreme point of S
can determine the location of the preceding and succeeding extreme points of S
in | n) steps. During the numbering process, as every PE passes ranges of
numbers to its children, it also determines if any of its children are responsible for
extreme points that have a preceding or succeeding extreme point in another one
of its children. For each such case, the PE creates a neighbor record, which consists
of the numbers of the extreme points involved, as well as the identity of the PE
creating the record. When the numbering phase of the algorithm terminates, these
neighbor records are sent in lockstep fashion down to the base. When a base PE
receives a neighbor record, it is examined to determine if either of the numbers
in the record correspond to its extreme point number. If there is a match, then
the location of the extreme point is appended to the record, and the record is sent
back up to the PE that generated it, while otherwise the record is discarded.
Finally, the neighboring information is sent down to the base in lockstep fashion
so every base PE in S will know not only its number, but the location of its
predecessor and successor. Hence, the extreme points of S have been enumerated.

The algorithm requires a fixed number of | n)-time top-down and bottom-
up tree-like operations. Therefore, the running time of the algorithm is | n).

[]

We now look at the general problem of enumerating the extreme points of a
single convex set of base PEs (i.e., marking and numbering the PEs that contain
extreme points of the figure). This is important in many image-processing applica-
tions that require a compact description of a single convex figure for storage or
transmission purposes. One such description is given by the extreme points of
the figure.

Before we give our result for enumerating the extreme points of a single convex
figure, we first give a simple technical lemma which we find extremely useful. The
lemma is concerned with the fact that it is possible to take a digitized convex
figure, divide it into two parts by a straight line parallel to one of the grid axes,
and have points which are extreme points of the parts but not of the entire figure.
An important consequence of the following lemma is that there are only O(log n)
such points.

LEMMA 8. Given a convex figure F on a grid, suppose the grid is divided vertically
in half and the extreme points of the restriction o fF to the right half are determined.

Computing Convexity Properties of Images on a Pyramid Computer 667

Suppose p and q are extreme points alon9 the top of the right-hand portion. Further,
suppose p and q are not extreme points o fF, and that q is further from the dividin 9
line than is p. Then q is more than twice as far from the dividin 9 line as p is.

PROOF. Since p = (Px, Py) and q = (qx, qy) are not extreme points of F, it must
be that the line segment L from q, passing through p and continuing on to the
dividing line, lies in the convex hull of F when viewed as a figure in the real plane
(rather than just on the grid). If q were less than twice p's distance to the dividing
line, then the grid point r = (2px - q~, 2py - qy) would lie on L and be on the
same side of the dividing line as p and q. This means that r would be in F and,
specifically, in the restriction of F to the right half. However, since p is halfway
between q and r, this contradicts the assumption that p is an extreme point of the
restriction of F to the right half. []

The next result is concerned with enumerating the extreme points of a convex
set of processors. The algorithm used to solve this problem is based on a bottom,up
divide-and-conquer solution strategy.

THEOREM 9. In a pyramid computer of size n, suppose the PEs with a 9iven label
form a convex set S. Then in | n) the time the extreme points of S can be
enumerated.

PROOF. The algorithm proceeds in two phases. The first phase of the algorithm
marks the extreme points of S, and the second phase of the algorithm enumerates
them by applying the algorithm of Lemma 7. Therefore, we need only describe
the marking phase of our algorithm.

Our algorithm for marking extreme points works in a bottom-up fashion, where
at step k, 0 < k _< log 4 n, decisions regarding extreme points are made by PEs at
level k. Consider the PEs at level k in the pyramid. These are the apices of disjoint
subpyramids with bases of size 2 k x 2 k. Call the base of each of these disjoint
subpyramids a subsquare. At the end of step k, suppose that in each 2 k x 2 k
subsquare those points which are not extreme points of the restriction of the figure
to their subsquare have been marked as not being extreme, while those that are
extreme points in their subsquare remain as candidate extreme points for the entire
figure. Suppose further that for each way of forming a square of four subsquares,
each point which is not an extreme point in the larger square has also been marked
as not being extreme. Notice that these larger squares overlap, and some corre-
spond to bases of subpyramids of height k + 1, while others do not.

Now consider step k + 1, where for PEs at level k + 1 we call the base of each
of the corresponding subpyramids a block. Since each block is a square of four
2 k x 2 k subsquares, we know that at the beginning of step k + 1 those points which
are not extreme points in their block have already been marked as not extreme.
The purpose of step k + 1 (i.e., the recursive step) is to identify those points which
were candidate extreme points at the end of step k, but which are not extreme
points in some square of four blocks. This must be done for all possible squares

668 R. Miller and Q. F. Stout

2 k

2 k

q

Fig. 4. Eliminating extreme points.

of four blocks, not just those corresponding to the base of a subpyramid of height
2 + k .

Each square of four blocks can be viewed as merging two blocks together (for
two sets in parallel), and then merging these rectangles together. Both merge steps
are similar, so only the first is described. Since all squares of four 2~• 2 ~
subsquares have been considered during step k, for a candidate extreme point p
to be marked as not being a candidate during step k + 1, there must be a triangle
containing p with one if its vertices being an extreme point q more than 2 k away.
An example is given in Figure 4, where q can be taken to be the rightmost
remaining candidate extreme point in its subsquare, and p the leftmost remaining
candidate extreme point in its subsquare. Further, if q causes two remaining
candidate extreme points to be eliminated, then an argument as in Lemma 8 shows
that the second, call it r, must be more than twice as far from q as p is. Therefore,
r must be in a different subsquare than p, and since it must also be the next
candidate extreme point after p, in left-right order, r must be the leftmost extreme
point in its subsquare. This same consideration shows that q cannot eliminate
more than two candidate extreme points within this square of four blocks. Thus,
by knowing for each subsquare only the leftmost and rightmost remaining
candidate extreme points along the top, the leftmost and rightmost remaining
candidate extreme points along the bottom, the topmost and bottommost remain-
ing candiate extreme points along the left, and the topmost and bottommost
remaining .candidate extreme points along the right, we can determine all false
extreme points in the merger of the blocks.

The apex of each block maintains this information about its block. By exchang-
ing information with its neighbors at level k + 1, in constant time, simultaneously
for every apex, an apex can determine for each possible square of four blocks
which of its candidate extreme points should be eliminated from further considera-
tion. To finish step k + 1, every PE at level k + 1 initiates a top-down broadcast
message of the information to its block, and supplies its parent with the informa-
tion necessary to start step k + 2.

The time between the start of step k + 1 and the start of step k + 2 is | The
time it takes to finish the final top-down broadcast after the last step is complete
is | n). Therefore, the total running time is | n). []

The next problem we consider is that of marking the convex hull of a single
figure that is described by a set of enumerated extreme points. If the original figure

Computing Convexity Properties of Images on a Pyramid Computer 669

was not convex, then the figure that we generate will be an approximation of the
original figure. However, if the original figure is "blob"-like, then this operation
can be viewed approximately as the inverse operation .to that of generating the
extreme points of the figure.

THEOREM 10. In a pyramid computer o f size n, suppose the extreme points o f
the PEs with a given label have been enumerated, then in | n) time the PEs
in the convex hull of this set can be marked.

PROOF. Since the extreme points have been enumerated, all base processors
containing an extreme point know the location of the extreme points preceding
and succeeding it according to the counterclockwise ordering of extreme points.
Assume that there are p extreme points in the figure, where the base PE containing
the ith extreme point is denoted Pi, 1 < i _< p. Each base PE Pi assumes responsi-
bility for the hull edge, call it el, between its (extreme) point and the extreme point
that follows it in the counterclockwise ordering. All Pi can now determine, in |
time, the processor in the pyramid at maximum level (closest to the apex), denoted
Pi~,,), that is an ancestor of Pi such that ei crosses the boundary between the
subpyramids rooted at the children of Pit,,)- All base processors, Pi now pass up
to their respective Pi~,,), the hull edge e~ that they are responsible for, as well as a
flat indicating which side of ei is on the inside of the hull. Notice that no processor
in the pyramid will be responsible for more than four such edges. After log4 n units
of time, all processors in the pyramid will know the (at most) four edges in the
base that cross the boundaries of the subpyramids of its children. This information
is then passed down the pyramid in lockstep fashion from all Pi(r~) to their
descendants. As each base PE receives such information, it decides in | time
whether or not it is in the convex hull. []

The next result provides an optimal solution to the problem of deciding whether
or .not a marked set of PEs is convex. The algorithm is straightforward, combining
the results just presented in Theorems 9 and 10. First, use the algorithm associated
with Theorem 9 to mark the "extreme points" of the set. Using the preceding two
"extreme points" and the succeeding two "extreme points", every PE determines
whether or not it can decide that the figure is not convex. Combining these results,
it can be decided whether or not the "extreme points" are convex. If the set of
"extreme points" are not convex, then the algorithm halts and it is known that
the original marked set of PEs is not convex. Otherwise, use the algorithm
associated with Theorem 9 to mark the convex hull of the extreme points, and
compare those marked PEs with the original marked set of PEs. This gives the
following result.

COROLLARY 11. In a pyramid computer of size n, in | n) time the set of PEs
with a given label can decide whether or not they are convex.

The next problem considered is that of enumerating the extreme points of an
arbitrary set of base PEs. This extreme-point generation algorithm degrades by a

670 R. Miller and Q. F. Stout

factor of | n/log log n) over the convexity-query algorithm just presented. This
is counterintuitive in that the solution to the convexity-query problem can be
obtained faster than generating the extreme points of a given set of base PEs. It
should be noted that a | n)-time extreme-point generation algorithm is an
open problem.

The extreme-point generation algorithm that is presented in Theorem 12 follows
a top-down divide-and-conquer solution that exploits the following fact about
extreme points. A point is an extreme point if and only if it is the first point of
the figure contacted as some line is moved toward the figure from infinity. By way
of an example, suppose that for a given digital figure embedded in an n a/a x n 1/2

grid, there exists a unique topmost, bottommost, leftmost, and rightmost extreme
point (which may be detected by finding, the first point contacted as lines of slope
0 come from the top and bottom, and lines of slope ~ come from the left and
right, respectively). Then for any extreme point p of the figure that is between the
topmost point and the leftmost point (in the ordering of extreme points), there
must be a slope in the range (n- a/z, ha/Z) such that p is the first point of the figure
contacted as a line with this slope comes toward the figure from the upper-left
direction. If the line with slope (n-a/2 + nl/2)/2 is used to detect an extreme point
between the topmost and leftmost extreme points, then

(1) if the first point contacted is the topmost extreme point, then there are no
extreme points of the figure between these two that will be detected by slopes
in the range [(n-a/2 + na/2)/2, na/2), while

(2) if the first point contacted is the leftmost extreme point, then there are no
extreme points of the figure between these two that will be detected by slopes
in the range (n-1/2, (n-t/2 + na/2)/2] ' while

(3) if a first point contacted was.not the topmost or leftmost extreme point, then
this first point (or, in the case of a multiple detection, the outermost points
contacted) is an extreme point.

These situations define a recursive search procedure that is used to detect extreme
points. Notice that if a single new extreme point is found iia an interval, then this
new extreme point is used to create two subintervals, both of which are searched
for additional extreme points. These observations form the basis of the algorithm
that follows.

THEOREM 12. In a pyramid computer of size n, the extreme points of the base PEs
with a given label can be enumerated in | a n/log log n) time.

PROOF. The algorithm uses a top-down divide-and-conquer solution strategy.
First an algorithm requiring O(log 2 n) time is given, and then we show how to
modify it so as to reduce the running time to | / n/log log n). Let S be the set
of base PEs with a given label. Observe that starting with an arbitrary line l far
away from S and moving it in toward S (without changing its slope), then the
element of S that 1 reaches first must be an extreme point of S. (If several elements
of S are reached simultaneously, then only the two extreme points of this
one-dimensional set of points are extreme points of S). Notice that a P E P that is

Computing Convexity Properties of Images on a Pyramid Computer 671

/

1
S

1

P2

t

Fig. 5. Detecting P as an extreme point.

an extreme point of S, with P1 and P2 the preceding and succeeding extreme
points, respectively, will be detected as an extreme point of S by a line 1 that has
a slope between slope(PP1) and slope(PPz) and moves toward S from the concave
side of the angle formed by PtPP2. (See Figure 5.)

The set S of base PEs is embedded in an n 1/2 X n a/2 grid. Therefore, the difference
of slopes between any two distinct pairs of these grid points must be greater than
1/n. Except for vertical lines, all lines through two PEs have slopes between - n 1/2
and n ~/2, so by checking all multiples of 1In between these two values, all extreme
points of S will be detected. In fact, while only | different slopes can actually
occur, the algorithm will check | 3/2) slopes. This will cause no significant time
penalty, and it is much simpler to consider just multiples of 1In.

In | n) time, the apex determines the (not necessarily distinct) rightmost-
bottommost, rightmost-topmost, topmost-rightmost, topmost-leftmost, leftmost-
topmost, leftmost-bottommost, bottommost-leftmost, and bottommost-rightmost
members of S. These are all extreme points of S, and they divide the perimeter of
S into eight (or fewer) intervals. (Refer back to Figure 3.) Four of these intervals,
e.g., between the topmost-rightmost and the topmost-leftmost points, contain no
more extreme points, while the other four intervals, e.g., between the topmost-
rightmost and the rightmost-topmost points, might contain more extreme points.
For each of the four intervals that might contain more extreme points there is a
corresponding interval of line slopes that may be used to locate the extreme points
in the interval. For example, in the interval between the topmost-rightmost and
the rightmost-topmost extreme points, the slopes are in the range of - n -1/2 to
- - n 1/2. From now on an interval means a pair of endpoint coordinates, along with
the associated interval of slopes. Notice that when a slope m is being used, if each
base PE computes the inner product of its (x, y) position with (l/m, 1), then the
base PE with the greatest inner product is the one that would be reached first. (If
the line approaches from the opposite side, then the base PE with the least inner
product is the one reached first.)

Initially, the apex of the pyramid is responsible for the four intervals that may
contain more extreme points. The algorithm proceeds in stages, where a PE is

672 R. Miller and Q. F. Stout

responsible for at most eight intervals during any stage. At the beginning of each
stage, if the endpoints of an interval in a PE lie beneath the same child, then
responsibility for that interval is passed on to that child (which may in turn pass
it further down). Next, for each interval that a PE is responsible for, the PE creates
a record corresponding to the interval's endpoints and the middle slope. In a
top-down fashion, starting with the apex, copies of these records are then sent
from every PE to each of its four children. Every PE receiving such a record
ignores it if none of its descendants could be an extreme point as discovered by
that slope, while otherwise it passes the record down to its children, along with
any such records it may generate. Notice that no PE passes more than eight such
records to any of its children.

When these records reach the base, each element of S determines its inner
product with the indicated slope and appends this to the record, along with the
PE's coordinates, and passes this record back to its parent. This information is
passed up through the pyramid, where when a parent receives multiple copies of
an interval, it passes along only the one with the largest inner product. (If there
are ties, then the two outermost extreme points among the ties are passed up.)
When this information returns to the PE generating the request, several possibili-
ties can occur. For example, if two new extreme points, say N 1 and N 2, were
discovered between extreme points P1 and P2, as in Figure 6, then the original
P1P2 interval is divided into three new intervals, namely, PaNt and N2P2, both
of which have no more than half as many slopes as the original PIP2 interval,
and N~N a which requires no further work. Other possibilities are treated similarly.
Finally, each time an extreme point is found it is marked.

Each stage of the algorithm takes | n) time. Since there are at most | 3/2)
slopes, and each stage subdivides an interval's slopes by at least half, then there
are at most | n 3/2) = | n) steps. When finished, all extreme points have
been marked, and in an additional | n) time the extreme points can be
enumerated by applying the algorithm of Lemma 7.

The algorithm as described requires | 2 n) time. To reduce the time of the
algorithm to | 2 n/log log n), have each PE that is responsible for an interval
divide that interval's slopes into log2 n pieces, instead of two pieces. These records
are sent down in serial fashion (i.e., pipelined), where no PE passes more than
8 log 2 n records to its children. Each stage still takes | n) time, but because
the intervals are being broken up faster only | n/log log n) stages are needed,
Therefore, the algorithm finishes in the time indicated. []

N 1
N 2 ~ P1

; f f I t j I

P2

Fig. 6. Discovering two new extreme points in an interval.

Computing Convexity Properties of Images on a Pyramid Computer 673

4. Multiple Figures or Labels�9 In this section we consider the problems of
enumerating extreme points and deciding convexity for multiple sets of base PEs
(i.e., multiple figures or labels). Since there may be | disjoint sets of base PEs,
applying the algorithms of Section 3 to one set of PEs at a time would yield
substantially suboptimal running times in the worst case. In order to determine
convexity properties for multiple sets of base PEs efficiently, it appears that the
algorithms must be designed to work on multiple sets simultaneously. Further,
since f~(n 1/2) time is required if only the base mesh of the pyramid is used, faster
algorithms must use both the parent-child and mesh links that are available in
the pyramid. Finally, the algorithms must avoid having many figures trying to
send data through the apex, for then the apex becomes a bottleneck.

The running times of algorithms presented in this section are slower than the
running times of algorithms from Section 3 that involved single figures. Neverthe-
less, the results presented in this section are at most a logarithmic factor from
optimal for the pyramid computer. The first result of this section describes an
algorithm to mark and enumerate the extreme points for each of an arbitrary
number of digitized figures.

THEOREM 13. In a pyramid computer of size n with a digitized black~white picture
in its base, in | 1/4 log n) time the extreme points of everyfigure can be enumerated.

PROOF. The algorithm uses a bottom-up divide-and-conquer approach. For each
figure, first enumerate the extreme points of the restriction of the figure to each of
the four quadrants of the picture. For a figure in two or more quadrants, as in
Figure 7, we need to determine which extreme points in the quadrant are not
extreme points in the entire figure. These form an interval, e.g., in Figure 7 they
are the ones between the dotted lines. To find these dotted lines, we use a binary
search on the hull edges of the (at most four) pieces of the figure. For example, in
Figure 7, the topmost dotted line can be found as follows. Find the leftmost and
rightmost extreme points of the restriction of the figure to the right subimage.
Using this information, find and send the top hull edge which is in the middle of
these two extreme points in the enumeration ordering (as restricted to the right
subimage) to the left subimage. Next, determine if the line collinear with this edge
passes above the restriction of the figure to the left subimage, passes through or

| �9 ~ �9 |

�9 . � 9 1 4 9 �9 |

�9 �9 ~ 1 4 9 �9

| �9 �9 � 9 1 4 9 �9 ~

| ?

| |

�9 �9 �9 �9 ~

�9 �9 �9 , � 9 |

Fig. 7. Not all extreme points of the subregions are extreme points of the region.

674 R. Miller and Q. F. Stout

below it, or is tangent to it (and hence is the dotted line). In the first case, the
edge and all hull edges preceding it in the counterclockwise ordering (with respect
to the restriction of the figure to the right subimage) and eliminated from further
consideration, while in the second case the edge and all hull edges following it are
eliminated.

Next, the left-hand piece sends over its middle edge, and a similar check
eliminates half of the hull edges with respect to the restriction of the figure to the
left subimage. A binary search for the top dotted line continues in a natural fashion,
alternating between the halves. Eventually, either an edge on the dotted line is
found, or else both pieces locate an extreme PE representing an extreme point
such that the edge on one side is too high, and the edge on the other side is too
low. In this case the dotted line passes through the PE. Once the intervals of
extreme points between the dotted lines have been determined, it is easy to
enumerate the remaining points using their old enumeration information.

There may be O(n 1/2) figures merging pieces together, so for each step of the
binary search, for all figures, simultaneously, we move an edge up to a level of
size O(nl/2), across the level, and down to the piece on the other side. We use a
sparse pyramid write, with p = �89 to move the data up. This sparse pyramid write
can be used since, in any subsquare of size k, if a piece of data is being moved up,
then it is in a figure crossing the border of the subsquare, and there are O(k 1/2)
such figures. A similar operation moves the data down. The time obeys a
recurrence equation of the form T(n) = T(n/4) + cn 1/4 log n, c a constant, which
has a solution of T(n) = | 1/4 log n). []

Suppose we know a priori that the digitized figures in the base of the pyramid
are all convex. Then by incorporating the approach of Theorem 9, the time of the
previous theorem for enumerating the extreme points of each figure can be reduced
by a factor of | n).

COROLLARY 14. In a pyramid computer of size n with a digitized picture in its base,
suppose all the figures are convex. Then the extreme points of each figure can be
enumerated in O(n 1/4) time.

In Section 3 the algorithm associated with Corollary 11 can be used to decide
whether or not a digitized figure is convex. This algorithm was designed by making
a minor modification to the algorithm in Theorem 9 that enumerates the extreme
points of a convex digitized figure. A similar modification can be made so that
we can detect for each digitized figure whether or not it is convex.

COROLLARY 15. In a pyramid computer of size n with a digitized picture in its base,
in O(n 1/4) time every figure can decide whether or not it is convex.

Suppose that we are given an arbitrary number of (not necessarily connected)
labeled sets of PEs in the base of the pyramid. Further, suppose that we are
interested in enumerating the extreme points of each labeled set of PEs. By a fairly
straightforward wire-counting argument, it is easy to show that in the worst case,

Computing Convexity Properties of Images on a Pyramid Computer 675

| pieces of data may have to cross from the left half of the pyramid to the right
half of the pyramid. Therefore, any pyramid-computer algorithm to solve this
problem will require f~(n 1/2) time. Since a mesh algorithm to solve this problem
in | 1/2) time is given in [-MS3], we simply ignore the pyramid structure above
the base mesh, and use the mesh-computer algorithm to enumerate the extreme
points of each set of base PEs.

THEOREM 16. In a pyramid computer of size n, in | 1/2) optimal time we can
enumerate the extreme points of the PEs with the same label, for all labels
simultaneously.

5. Applications of Extreme Points. In this section we solve problems by giving
algorithms that make use of enumerated extreme points. These algorithms solve
problems such as deciding if two sets of PEs are linearly separable, determining
a smallest enclosing box, determining the smallest enclosing circle, and determining
the diameter of a set of multiple sets of PEs. Additional applications of extreme
points can be found in [MS3] and [To].

A set A of base PEs is linearly separable from a set B of base PEs if and only if
there is a straight line in the plane such that all elements of A lie on one side of
the line, and all elements of B lie on the other side. A well-known observation is
that two sets are linearly separable if and only if their convex hulls are disjoint.
Given the enumerated extreme points of two sets of (not necessarily distinct) base
PEs, in | n) time it can be determined whether or not these two sets are linearly
separable as follows. Mark the convex hull of A and the convex hull B such that
a base PE has the value c~ if it is in the convex hull of A, and the value fl if it is
in the convex hull of B. This takes | n) time by applying the algorithm
associated with Theorem 10 once for A and a second time for B. All base PEs
send to the apex a Boolean flag that is set to "true" if the PE is labeled e and fl,
and that is set to "false" otherwise. As each PE in the pyramid receives the four
Boolean values from its children, they are logically "or"ed together and passed
up. In O(log n) the apex knows the answer to the query which it propagates to
all PEs in the pyramid in O(log n) time. Hence the algorithm is complet e in | n)
time.

COROLLARY 17. In a pyramid computer of size n, suppose the extreme points
corresponding to a set A of base PEs have been enumerated, as have the extreme
points of a set B of base PEs. Then in | n) time it can be decided whether or
not A is linearly separable from B.

Given a metric d and a set S of base PEs, the diameter of S with respect to d is
max{d(P,Q)[P, Q ~ S}. We assume d is one of the Iv metrics, such as the 11 (taxicab)
metric, loo (chessboard) metric, or 12 (Euclidean) metric. The lp distance from (a, b)
to (c, d) is ([a - c[v + Ib - diP) lip for 1 < p N 0% and the l~o distance from (a, b)
to (c, d) is max([a - c[, [b - d[). The metrics can be computed in unit time, and
for them the diameter is max{d(P, Q)[P and Q are extreme points of S}. Metrics

676 R. Miller and Q. F. Stout

other than the lp metrics could also be used, but a complete discussion of
appropriate metrics is outside the focus of this paper.

Given a set S of points in the plane, a smallest enclosing rectangle (also known
as a smallest box) is a rectangle of least area containing S. (If rectangles of zero
area contain S, then we want the smallest line segment containing S.) If S is finite,
then it can be shown that a smallest enclosing rectangle must contain an extreme
point of S on each side, and at least one side must contain two consecutive extreme
points [FS]. The smallest enclosing circle is the circle of least area containing S.
Smallest enclosing rectangles and smallest enclosing circles appear in [FS], I-MS3],
and [To].

THEOREM 18. In a pyramid computer of size n, suppose the extreme points of a
labeled set of PEs have been marked. Then in O(n 1/6) time the diameter (measured
with any given Ip metric), smallest enclosing circle, and a smallest enclosing rectangle
of this set of PEs can be determined.

PROOF. We use the number-theoretic fact that for a set of lattice points in a
square of size k there are O(k 1/3) extreme points [VK]. Using a sparse pyramid
write, in ~)(n 1/6) time move the extreme points to a level in the pyramid that
consists of a mesh of size |

To determine the diameter, let E be the set of extreme points and let d compute
the given metric. Let g be defined for e ~ E by 9(e) = max(d(e, x)[x ~ E}. So, 9(e)
is the maximum distance from e to any other labeled PE, and g can be computed
in ~(n 1/6) time by reducing d with respect to maximum, as mentioned in Section
2.6. The diameter of the set is just max{g(e)le ~ E}, which can be computed in
| n) time once g has been computed.

A smallest enclosing rectangle can be found in a similar manner. For each edge,
assume an orientation of the points that has this edge as the southernmost edge
parallel to the x-axis, and use reduction to find the northernmost, westernmost,
and easternmost points. For each hull edge, these three points determine the
minimum-area enclosing rectangle that includes the edge. (See Figure 8.) A smallest

E

/

Fig. 8. Determining a smallest enclosing box for hull edge XY.

Computing Convexity Properties of Images on a Pyramid Computer 677

enclosing rectangle of the entire set is found by taking a minimum over these
rectangles.

The smallest enclosing circle is the largest circle either passing through three of
the extreme points or having two of the extreme points as a diameter [MS3].
Thus the smallest enclosing circle can be found by using a reduction of a function
over a triple cross product of the extreme points,which too can be done in t~)(n 1/6)
time, as described in Section 2.6. []

Much work in digital image processing and pattern recognition has been spent
on the fundamental problem of deciding whether a digitized figure could have
arisen as the digitization of a straight line segment [R1], [R2], IRK], [K2], [K3],
[KR1], [G]. Our next theorem proves that a pyramid computer of size n can
determine in | n) time whether or not a digitized figure could have arisen as
the digitization of a straight line segment. The theorem will combine a result about
digital arcs [KR1] with Corollary 11 in order to arrive at this asymptotically
optimal algorithm.

Digitization can make the detection of even basic properties of a figure nontrivial
to determine. The digitization scheme that we use is the standard grid-intersection
scheme [R3] for digitizing arcs. (For a further discussion of digitization schemes,
see [R2], [RK], [G], [K1] - [K3] , [KR1], [KR2], [KS], and [DS]). Given a
coordinate grid superimposed on an arc A, then as we traverse A we cross a
succession of grid lines. Whenever A crosses a grid line, the PE associated with
the integer lattice point nearest to the crossing line becomes a part of A's
digitization. In the case where A crosses a grid line halfway between two lattice
points, the tie is resolved by choosing the PE associated with the lattice point that
lies to the right of A (in the sense that we are traversing A) to be a member of the
digitization of A. Define PEs(i _ 1,j _+ 1) to be the 8-neighbors of PE(i,j), assuming
they exist. Given a set S of PEs, and two PEs P, Q e S, P and Q are defined to be
8-connected if and only if there exists a finite connected path of 8-neighbors in S
from P to Q. A set S of PEs is an 8-connected set if and only if for all PEs P, Q e S, P
and Q are 8-connected.

An 8-connected set D of two or more PEs is a digital arc if all but two of the
PEs in D have exactly two 8-neighbors in D, and the exceptional two, called the
endpoints, each have exactly one 8-neighbor in D [KR1]. Given two lattice points
p and q, corresponding to two PEs in D, the line segment ~ is said to lie near D
if, for any point (x, y) of ~-~, (x, y) e ~2, there exists a lattice point (a, b) correspond-
ing to a PE(a ,b)eD such that m a x {] a - x[, Ib - Y l } < 1. O is said to have the
chord property if, for every p, q e D, the line segment ~ lies near D [R1].

LEMMA 19 [R1]. A digitized arc has the chord property if and only if it is the
digitization of a straight line segment.

LEMMA 20 [KR1]. A set of processors S has the chord property if and only if S is
convex.

From Lemmas 19 and 20, we see that D could have arisen as the digitization
of a straight line segment if and only if it is a convex digitized arc. By the result

678 R. Miller and Q. F. Stout

in [KR1], this implies that a convex set D of two or more PEs is the digitization
of a straight line segment if and only if

(1) all but two of the PEs of D have exactly two 8-neighbors in D, and the
exceptional two have exactly one 8-neighbor in D, and

(2) O is 8-connected.

Further, we can show that if D is convex and satisfies property (1), then it
satisfies property (2) as well. (This is false for nonconvex sets, as can be seen
by considering a disconnected set consisting of digitizations of a circle and a
line). Thus a convex set D of two or more PEs is the digitization of a straight
line if and only if it satisfied property (1).

This characterization yields an efficient algorithm to determine whether or
not a set D of lattice points could have arisen as the digitization of a straight
line segment. (It is assumed that D corresponds to a set of labeled PEs). From
Corollary 11, it can be decided in | n) time whether or not D is convex.
If D is not convex, then the algorithm halts and it is known that D could not
have arisen as the digitization of a straight line segment, while otherwise the
algorithm continues in an effort to determine whether or not D is a digital arc
(property (1)). To determine if property (1) holds, each base PE that is a member
of D determines in | time the number of its 8-neighbors that are members
of D. By passing these results up to the apex and combining them at each
level, after | n) time the apex will know whether or not property (1) holds,
and hence knows whether D could have arisen as the digitization of a straight
line segment. This gives the following.

THEOREM 21. Given a digitized black/white picture stored in the base of a pyramid
computer of size n, in O(log n) time it can be decided whether or not the set of black
pixels could have arisen as the digitization of a straight line segment.

Corollary 15 gives an algorithm to decide whether or not each of an arbitrary
number of figures in a digitized picture is convex in | 1/4) time. Combining the
algorithms associated with Lemma 1, Corollary 15, and Theorem 21, we obtain
the following.

COROLLARY 22. In a pyramid computer of size n, if there are multiple sets, then
the ones that could have arisen as the digitization of straight line segments can
be determined in O(n 1/4) time.

6. Smaller Pyramids. There are at least three ways we could consider using
smaller pyramids for obtaining geometric information about image data. In
the first, suppose it is known that no figure has an 11 diameter greater than
D. Then a pyramid computer of size n can be conceptually partitioned into
subpyramids of size | where problems such as labeling or marking extreme
points are solved in the subpyramids, exchanging data as needed between neigh-
boring subpyramids. This would result in faster algorithms, replace "n" with " D 2' '

Computing Convexity Properties of Images on a Pyramid Computer 679

in the time bounds. This method has been used in pyramid algorithms appearing
in [Ta2] and [St2].

A second way to use small pyramids is to consider a picture of size N and
a pyramid of size n with n < N. The pyramid could work on subsquares of
size n, gluing results together as necessary. While this is often required in
practice, and efficient gluing is not always easy, we do not consider this class
of smaller pyramids further.

A third possibility is to consider again a picture of size N and a pyramid
of size n, with n _< N, but with a slight change in the pyramid. (For convenience,
assume that N = 4in, for i > 0 an integer.) This modified pyramid computer
(modified pyramid) of size n has PEs with wordlengths of size | N). Each of
the n base PEs has O(N/n) words of memory, while PEs above the base need
only 0(1) words of memory. The input to the algorithm consists of a picture
of size N that is partitioned in a natural fashion into subsquares so that each
base PE is given a subsquare of size N/n.

Many of the multiple figure algorithms presented in this paper assume that
the figures (connected components) have been labeled. For a picture of size n
stored 1 pixel per base PE on a pyramid of size n, [MS4] gives a |
labeling algorithm, as mentioned in Section 2.3. Before discussing convexity
algorithms for digitized pictures on a modified pyramid, we first discuss some
fundamental results related to labeling connected components of a digitized
black/white picture of size N on a modified pyramid of size n.

THEOREM 23. Given a digitized black/white picture of size N stored in the base
of a modified pyramid computer of size n, n < N, in | + N 1/4) time the
connected components can be labeled.

PROOF. The component-labeling algorithm in [MS4] works by moving data
up the pyramid, where PEs at level i need | i) time to perform their calculations.
In a modified pyramid, the base PEs simulate the bottom log 4 N/n levels. Each
base PE must simulate (N/n)~4 i PEs at level i, 0 < i < log4 N/n, so the time
required to perform computations at level i is | Therefore, the base PEs
finish their simulations in | time. The higher PEs in [MS4] need | 1/4)
time, so the total time is as claimed. []

Given a digitized black/white picture of size N distributed | pixels per
base PE on a modified pyramid of size n, then in order to minimize the running
time of the component-labeling algorithm, the relationship between n and N
should be n = f~(N3/4). This gives the following.

COROLLARY 24. To within a multiplicative factor, on a picture of size N a modified
pyramid computer of size N 3/4 can perform component labeling as fast as a pyramid
computer of size N.

COROLLARY 25. For n <_ N 3/4, a modified pyramid computer of size n can label
components with linear speed-up on a picture of size N.

680 R. Miller and Q. F, Stout

For algorithms presented in this paper that consist of straightforward top-down
and bottom-up divide-and-conquer strategies, modified pyramid algorithms may
be patterned after the component-labeling algorithm associated with Theorem 23.
The crucial technique is to let the base of the modified pyramid simulate the
bottom log 4 N/n levels of the (unmodified) pyramid. For example, for the | n)-
time pyramid-computer algorithms that are presented in this paper, the base level
simulation technique just described will yield | + log n)-time algorithms on
a modified pyramid of size n for input of size N. This comes from letting each
base processor simulate (N/n)/4 i PEs at level i, 0 ___ i _< log 4 N/n, where processors
at level i need | time to perform their calculations, and higher PEs need | n)
time to complete the operation.

For other algorithms presented in this paper, a combination of serial and
parallel (pyramid) algorithms may be more efficient than a base-level simula-
tion. A good example is the algorithm associated with Theorem 12, which
enumerates the extreme points of an arbitrary set of lattice points. In order to
enumerate the extreme points of a set of lattice points of size N on a modified
pyramid of size n, we could first let each base processor determine the extreme
points of its subset, simultaneously for all base processors, and then apply the
rest of the pyramid algorithm in a natural fashion. This would give a running
time of | + log 2 n/log log n), since the extreme points of a set of lattice
points of size k can be enumerated in | time on a serial machine.

Finally, there are algorithms in this paper that rely on data-movement opera-
tions such as the (sparse) pyramid write and the (extended) reduction Of a function.
A discussion of their implementation on a modified pyramid is outside the focus
of this paper, but the reader might wish to consult [MS4] for insight into extending
these operations, and hence the algorithms that rely on these operations, to a
modified pyramid.

7. Related Machine Models. There are several machine models that are related
to the pyramid computer. One is the 4-ary (quad) tree, i.e.,-a pyramid without the
nearest-neighbor links. Like the pyramid, the quadtree has a logarithmic com-
munication diameter, but it is easy to show that the apex of a quadtree often acts
as a bottleneck. For example, a simple wire-counting argument shows that a
quadtree needs ~(n) time to sort data and ~(n 1/2) time to label components or
determine nearest neighbors, in the worst case. Further, these time bounds remain
even if higher PEs have additional memory, as suggested in [AS]. It should be
noted that algorithms attaining these lower bounds are quite straightforward.

The mesh computer also has shortcomings due to the fact that is communica-
tion diameter is | This shows that ~(n 1/2) time is required for all of the
problems in this paper. Mesh algorithms solving these problems in this time
appear in [NS] and [MS3].

A more interesting model is known as orthogonal trees or mesh-of-trees lUll.
This model has a base mesh of size n augmented with a tree of processors over
each row and over each column (for a total of 3n - 2n lIE PEs), with these trees
being disjoint except at their leaves. In this model | 1/a logan) bits can be

Computing Convexity Properties of Images on a Pyramid Computer 681

moved from the leftmost log n columns to the rightmost log n columns in
| n) time. This is a significant improvement over the pyramid bound in
Lemma 2, though not enough to permit polylogarithmic time sorting. The
mesh-of-trees has not received much consideration as an image-processing ma-
chine, but it can perform all of the problems considered here in polylogarithmic
time [MS6].

The mesh-of-trees does, however, have some drawbacks. The pyramid com-
puter can be layed out on a chip using area proportional to that required by
the base mesh [D1], but the mesh-of-trees needs a factor of log 2 n more area
[U1]. Further, the pyramid computer has close ties to other objects of interest
to research in image processing, including (region) quadtrees and animal optic
systems.

Additional models that solve all of the geometric problems mentioned in
this paper in polylogarithmic time are the hypercube [MS5], the reconfigurable
mesh [MPRS1], [MPRS2], the PRAM, and some related pyramid models that
have been proposed in I-St3].

8. Final Remarks. Our results indicate a progression of complexity in finding
extreme points of convex hulls. Single convex figures are the most constrained,
enabling a bottom-up approach to eliminate points from further consideration
rapidly. Next come arbitrary single figures and sets of PEs with a given label.
Multiple figures require much more data movement than single figures, but
far less data movement than PEs with arbitrary labels. It is also interesting to
note that, at least for our algorithms, it is sometimes slightly easier to decide
convexity than it is to find the extreme points.

It has been shown in [MS6] that a pyramid algorithm designed for a single
figure can be implemented on a variety of architectures to yield efficient solutions
to the same problem for multiple figures. Therefore, designing efficient single-figure
pyramid algorithms, such as those presented in Section 3, are important for a
variety of reasons. Many of the results presented in this paper are optimal, and
we believe all are near optimal for the pyramid computer. Since each problem can
have inputs that require combining information at opposite edges of the base,
all algorithms must have a worst-case time of ~(log n). Therefore, Lemma 7,
Theorem 9, Corollary 11, Theorem 10, and Corollary 17 are all optimal. The only
algorithms for a single object that may nonoptimal are Theorem 18 and the
| z n)/log log n)-time algorithm to enumerate the extreme points of a single
arbitrary set of PEs. In fact, as mentioned previously, a | n)-time algorithm
to solve this problem is an interesting open problem. For multiple figures or sets
of processors, all of the algorithms presented in this paper are either optimal or
within a polylogarithmic factor of optimal. It appears that for these problems
lower bound arguments that are stronger than the bit-counting argument of
Lemma 2 are needed for proofs of optimality.

Despite the optimality of our results, there are some situations that arise in
practice for which faster algorithms can be developed. One such situation is
when there is a bound on the number of different labels or figures. This is

682 R. Miller and Q. F. Stout

obvious from a comparison of the results of Sections 3 and 4, and there are various
ways we can interpolate those results. For example, suppose it is known that
there are no more than n r labels, where 0 < c < 1. By slightly modifying the
algorithm in Theorem 13 in | c/2 log n) time we can enumerate the extreme
points for all labels.

References

[AS]

[B]

[BV]

[CFLS]

[CM]

[DS]

[D1]

[D2]

[D3]

[DR]

[FS]

[Fr]

[G]

[K1]

[K2]

[K3]

[KR1]

[KR2]

[KS]

[KV]

[LZ]

N. Ahuja and S. Swamy, Multiprocessor pyramid architectures for bottom-up image
analysis, IEEE Trans. Pattern. Anal Mach. IntelL, 6 (1984), 463-474.
P. Burt, The pyramid as a structure for efficient computation, in Multiresolution linage
Processing and Analysis (A. Rosenfield, ed), Springer-Verlag, Berlin, 1984, pp. 6-35.
P. J. Burt and G. S. van der Wal, Iconic image analysis with the pyramid vision machine
(PVM), Proc. IEEE 1987 Workshop on Pattern Analysis and Machine Intelligence,
pp. 137-144.
V. Cantoni, M. Ferretti, S. Levialdi, and R. Stefanelli, Papia: pyramidal architecture for
parallel image processing, Proc. Computer Arithmetic Conf., Urgana, Ill. (1985).
Ph. Clermont and A. Merigot, Real time synchronization in a multi-SIMD massively
parallel machine, Proc. IEEE 1987 Workshop on Pattern Analysis and Machine Intelligence,
pp. 131-136.
L. Dorst and W. M. Smeulders, Discrete representation of straight lines, IEEE Trans.
Pattern Anal Mach. IntelL, 6 (1984), 450-463.
C. R. Dyer, A VLSI pyramid machine for hierarchical parallel image processing, Proc.
IEEE Conf. on Pattern Recognition and Image Processing, (1981), pp. 381-386.
C. R. Dyer, A Quadtree Machine for Parallel Image Processing, Tech. Report KSL 51,
University of Illinois at Chicago Circle, 1981.
C. R. Dyer, Pyramid algorithms and machines, in Multicomputers and Image Processing
Algorithms and Programs (K Preston and L. Uhr, eds.), Academic Press, New York, 1982,
pp. 409-420
C. R. Dyer and A. Rosenfeld, Parallel image processing by memory augmented cellular
automata, IEEE Trans. Pattern. Anal Mach. IntelL, 3 (1981), 29-41.
H. Freeman and R. Shapira, Determining the minimal-area enclosing rectangle for an
arbitrary closed curve, Comm. ACM, 18 (1975), 409-413.
G. Fritsch et aL, EMSY85--the Erlangen multi-processor system for a broad spectrum of
applications, Proc. 1983 Int. Conf. on Parallel Processing, pp. 325-330.
M. Gaafar, Convexity verification, block-chords, and digital straight lines, Comput.
Graphics Image Process., 6 (1977), 361-370.
C. E. Kim, On the cellular convexity of complexes, IEEE Trans. Pattern. Anal Mach.
Intell., 3 (1981), 617-625.
C. E. Kim, Digital convexity, straightness, and convex polygons, IEEE Trans. Pattern
Anal. Mach. IntelL, 4 (1982), 618-626.
C. E. Kim, Three-dimensional digital line segments, IEEE Trans. Pattern Anal Mach.
IntelL, 5 (1983), 231-234.
C. E. Kim and A. Rosenfeld, Digital straight lines and convexity of digital regions, IEEE
Trans. Pattern Anal Mach. lntell., 4 (1982), 149-153.
C. E. Kim and A. Rosenfeld, Convex digital solids, IEEE Trans. Patterns Anal Mach.
IntelL, 4 (1982), 612-618.
C. E. Kim and J. Sklansky, Digital and cellular convexity, Pattern Recognition, 15
(1982), 359-387.
J. J. Koenderink and A. J. van Dorn, New type of raster scan preserves the topology of the
image, Proc. IEEE, 67 (1979); 1465-1466.
A. Lempel and J. Ziv, Compression of two-dimensional data, IEEE Trans. Inform. Theory,
32 (1986), 2-8.

Computing Convexity Properties of Images on a Pyramid Computer 683

[M]

[MS1]

[MS2]

[MS3]

[MS4]

[MS5]

[MS6]

[MS7]

[MPRS1]

[MPRS2]

[NS]

[R1]
[R2]
[r3]

[RK]

[Sa]

[Sc]

[SHBV]

[Sk]
[St1]

[St2]

[St3]

ETal]

[Ta2]

[Ta3]

[TaK]

R. Miller, Ph.D. thesis, State University of New York at Binghamton, 1985. Pyramid
Computer Algorithms.
R. Miller and Q. F. Stout, The pyramid computer for image processing, Proc. 7th Int. Conf.
on Pattern Recognition, (1984), pp. 240-242.
R. Miller and Q. F. Stout, Convexity algorithms for pyramid computers, Proc. 1984 Int.
Conf. on Parallel Processing, pp. 177-184.
R. Miller and Q. F. Stout, Geometric algorithms for digitized pictures on a mesh-connected
computer, IEEE Trans. Pattern Anal Mach. Intell., 7 (1985), 216228.
R. Miller and Q. F. Stout, Data movement techniques for the pyramid computer, SIAM J.
Comput., 16 (1987), 38-60.
R. Miller and Q. F. Stout, Some graph and image processing algorithms for the hypercube,
Hypercube Muhiprocessors 1987, SIAM, Philadelphia, Pa., pp. 418M25.
R. Miller and Q. F. Stout, Simulating essential pyramids, IEEE Trans. Comput., 37
(1988), 1642-1648.
R. Miller and Q. F. Stout, Parallel Algorithms for Regular Architectures, MIT Press,
Cambridge, Mass, 1992.
R. Miller; V. K. Prasanna Kumar, D. Reisis, and Q. F. Stout, Image computations on
reconfigurable VLSI arrays, Proc. IEEE Conf. on Computer Vision and Pattern Recogni-
tion, (1988), pp. 925-930.
R. Miller, V. K. Prasanna Kumar, D. Reisis, and Q. F. Stout, Data movement operations
and applications on reconfigurable VLSI arrays, Proc. 1988 Int. Conf. on Parallel
Processing, Vol. I, pp. 205-208.
D. Nassimi and S. Sahni, Finding connected components and connected ones on a
mesh-connected parallel computer, SIAM J. Comput., 9 (1980); 744-757.
A. Rosenfeld, Digital straight line segments, IEEE Trans. Comput., 23 (1974), 1264-1269.
A. Rosenfeld, Digital topology, Amer. Math. Monthly, 86 (1979), 621-630.
A. Rosenfeld (ed.), Multiresolution Image Processing and Analysis, Springer-Verlag, Berlin,
1984.
A. Rosenfeld and C. E. Kim, How a digital computer can tell whether a line is straight,
Amer. Math. Monthly, 89 (1982), 230-235.
B. Sakoda, Parallel Construction of Polygonal Boundaries from Given Vertices on a
Raster, Tech. Report CS81 1-21, Department of Computer Science, Pennsylvania State
University, 1981.
D. H. Schaefer et aL, The PMMP--a pyramid of MPP processing elements, Proc. 18th
Hawaiian Int. Conf. on Systems Science, Vol. 1 (1985), pp. 178-184.
D. H. Schaefer, P. Ho, J. Boyd, and C. Vallejos, The GAM pyramid, in Parallel Computer
Vision (L. Uhr, ed.), Academic Press, New Yorks, 1987, pp. 15 42.
J. Sklansky, Recognition of convex blobs, Pattern Recognition, 2 (1970), 3-10.
Q. F. Stout, Drawing straight lines with a pyramid cellular automation, Inform. Process.
Lett., 15 (1982), 233-237.
Q. F. Stout, Sorting, merging, selecting, and filtering on tree and pyramid machines, Proe.
1983 Int. Conf. on Parallel Processing, pp. 214-221.
Q. F. Stout, Pyramid computer algorithms optimal for the worst-case, in Parallel Computer
Vision (L. Uhr, Ed.), Academic Press, New York, 1987, pp. 147-168.
S. L. Tanimoto, Towards Hierarchical Cellular Logic: Design Considerations for Pyramid
Machines, Tech. Report 81-02-01, Department of Computer Science, University of Wash-
ington, 1981.
S. L. Tanimoto, Programming techniques for hierarchical parallel image processors, in
Muhicomputers and Image Processing Algorithms and Programs (K. Preston and L. Uhr,
eds.), Academic Press, New York, 1982, pp. 421M29.
S. L. Tanimoto, Sorting, Histogramming, and Other Statistical Operations on a Pyramid
Machine, Tech. Report 82-08-02, Department of Computer Science, University of Wash-
ington, 1982.
S. L. Tanimoto and A. Klinger, Structured Computer Vision: Machine Perception Through
Hierarchical Computation Structures, Academic Press, New Yorks, 1980.

684 R. Miller and Q. F. Stout

[ThK]

ETo]

[Uhl]

[Uh2]

[UI]

[VK]

C. D. Thompson and H. T. Kung, Sorting on a mesh-connected parallel computer, Comm.
ACM, 20 (1977), 263-271
G. T. Toussaint, Pattern recognition and geometrical complexity, Proc. 5th Int. Conf. on
Pattern Recognition, (1980), pp. 1324-1347.
L. Uhr, Layered "recognition cone" networks that preprocess, classify, and describe, IEEE
Trans. Comput., 21 (1972), 758-768.
L. Uhr, Algorithm-Structured Computer Arrays and Networks, Academic Press, New
York, 1984.
J. D. Ullman, Computational Aspects of VLSI, Computer Science Press, Rockville,
Md., 1984.
K. Voss and R. Klette, On the Maximum Number Edges of Convex Digital Polygons
Included into a Square, Forschungsergebnisse Nr. N/82/6, Friedrich-Schiller Universitat,
Jena, 1982.

