Skip to main content
Log in

Polynomial enumeration of multidimensional lattices

  • Published:
Mathematical systems theory Aims and scope Submit manuscript

Abstract

Denoting the nonnegative (resp. signed) integers byN (resp.Z) and the real numbers byR, letK ⊂ R m andf: R m → R. Thenf is astoring function (resp.packing function) onK wheneverf|(Z m ⊒ K) is an injection into (resp. bijection onto)N. Unit translations gm of some P. Chowla [1961] polynomials are packing functions on the correspondingN m, and all compositions of these polynomials yield further packing functions on variousN r. We study this accessible family of packing functions, using standard properties ofordered trees to classify all those compositions, up to a simple equivalence, which define polynomial packing functions on eachN m. The numberc(m) of equivalence classes is an exponentially growing function for largem, whence the uniqueness conjecture of our prior two-dimensional work has no counterpart for largerm. We obtain the admissible degrees for composition polynomials inm variables; we describe the tre structures for all such polynomials with extremal degrees. Them-variable polynomials of least degree form a rather irregular numbera(m) of equivalence classes. Density considerations give some degree constraints on ageneral polynomial packing function whose domainK is the topological closure of a nonvoid open cone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M. Abramowitz and I. A. Stegun,Handbook of Mathematical Functions, U.S. Government Printing Office, Washington, D.C., 1964.

    Google Scholar 

  2. G. Cantor, Ein Beitrag zur Mannigfaltigkeitslehre,J. für die reine und angewandte Mathematik (Crelle's Journal), 34, 242–258 (1878).

    Google Scholar 

  3. G. Cantor, Beiträge zur Begrundung der transfiniter Mengenlehre,Math. Annalen, 46, 481–512 (1895), translated asContributions to the Founding of the Theory of Transfinite Numbers, Dover Publications Inc., New York, 1952.

    Google Scholar 

  4. A. L. Cauchy,Cours d'analyse de l'Ecole Royale Polytechnique, lre partie: analyse algébrique [no others published], l'Imprimerie Royale, Paris 1821, reprinted Wissenschaftliche Buchgesellschaft, Darmstadt, 1968.

  5. P. Chowla, On some polynomials which represent every natural number exactly once,Det Kongelige Norske Widenskabers Selskabs Fordhandlinger 34: 2, 8–9 (1961).

    Google Scholar 

  6. H. Davenport, On a principle of Lipschitz,J. London Math. Soc. 26, 179–183 (1951).

    Google Scholar 

  7. M. Davis,Computability and Unsolvability, McGraw Hill Book Co., New York, 1958.

    Google Scholar 

  8. I. M. H. Etherington, Some problems of nonassociative combinations I,Edinburgh Math. Notes, 32, 1–6 (1940).

    Google Scholar 

  9. R. Fueter and G. Pólya, Rationale Abzählung der Gitterpunkte,Viertelsjahrsschrift der Naturforschenden Gesellschaft in Zürich 58, 380–386 (1923).

    Google Scholar 

  10. P. R. Halmos,Measure Theory, D. Van Nostrand Co., New York, 1950.

    Google Scholar 

  11. D. E. Knuth,The Art of Computer Programming, Second Edition: Volume 1 / Fundamental Algorithms, Addison-Wesley Publishing Co., Reading, Mass., 1975.

    Google Scholar 

  12. J. S. Lew and A. L. Rosenberg, Polynomial indexing of integer lattice-points I,J. of Number Theory 10, 192–214 (1978).

    Google Scholar 

  13. J. S. Lew and A. L. Rosenberg, Polynomial indexing of integer lattice-points II,J. of Number Theory 10, 215–243 (1978).

    Google Scholar 

  14. Th. Motzkin, Relations between hypersurface cross ratios, and a combinatorial formula for partitions of a polygon, for permanent preponderance, and for non-associative products,Bull. Amer. Math. Soc., 54, 352–360 (1948).

    Google Scholar 

  15. G. Pólya and G. Szegö,Aufgaben und Lehrsätze aus der Analysis, Springer-Verlag, New York, 1964, translated asProblems and Theorems in Analysis, Springer-Verlag, New York, 1976.

    Google Scholar 

  16. H. Rogers, Jr.,Theory of Recursive Functions and Effective Computability, McGraw Hill Book Co., New York, 1967.

    Google Scholar 

  17. A. L. Rosenberg, Data graphs and addressing schemes,J. Comput. Syst. Sci., 5, 193–238 (1971).

    Google Scholar 

  18. A. L. Rosenberg, Storage mappings for extendible arrays, in R. T. Yeh (ed.), Current Trends in Programming Methodology IV: Data Structuring, Prentice-Hall, Englewood Cliffs, N.J., 263–311, 1978.

  19. E. Schröder, Vier combinatorische Probleme,Zeits. für Math. Phys. 15, 361–376 (1870).

    Google Scholar 

  20. N. J. A. Sloane,A Handbook of Integer Sequences, Academic Press, New York, 1973.

    Google Scholar 

  21. G. Szegö,Orthogonal Polynomials (revised edition), Amer. Math. Soc., New York, 1959.

    Google Scholar 

  22. H. Whitney,Complex Analytic Varieties, Addison-Wesley Publishing Co., Reading, Mass., 1972.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lew, J.S. Polynomial enumeration of multidimensional lattices. Math. Systems Theory 12, 253–270 (1978). https://doi.org/10.1007/BF01776577

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01776577

Keywords

Navigation